Paper-based Photocatalysts Immobilization without Coffee Ring Effect for Photocatalytic Water Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drop-reactor Methods: The Coffee Ring Method and Paper-based Method
2.2. Synthesis of mpg-C3N4
2.3. Degradation of MB
3. Results
3.1. Drop-reactor Methods: The Coffee Ring Method and Paper-based Method
3.2. Photocatalytic Degradation of MB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar]
- Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Nan, M.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar]
- Wang, N.; Zhang, X.; Chen, B.; Song, W.; Chan, N.Y.; Chan, H.L.W. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source. Lab Chip 2012, 12, 3983–3990. [Google Scholar] [CrossRef]
- Wang, N.; Tan, F.; Zhao, Y.; Tsoi, C.C.; Fan, X.; Yu, W.; Zhang, X. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions. Sci. Rep. 2016, 6, 28928. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Wang, Y.; Yu, W.; Chan, H.L.W. Microfluidic reactors for photocatalytic water purification. Lab Chip 2014, 14, 1074–1082. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Rajender, S. Varma; Vaishakh Nair Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 2017, 46, 6675. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, R.; Zhu, X.; Liao, Q.; He, X.; Li, S.; Li, L. Optofluidic membrane microreactor for photocatalytic reduction of CO2. Int. J. Hydrog. Energy 2016, 41, 2457–2465. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Yang, Q.; Liu, Y.; Zhu, Y.; Li, T.; Tsang, Y.H.; Zhang, X. Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Adv. 2016, 6, 101974–101980. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wang, J.; Li, T.; Wang, J.; Xu, M.; Yu, W.; El Abed, A.; Zhang, X. Review on optofluidic microreactors for artificial photosynthesis. Beilstein J. Nanotechnol. 2018, 9, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patinglag, L.; Sawtell, D.; Iles, A.; Melling, L.M.; Shaw, K.J. A Microfluidic Atmospheric-Pressure Plasma Reactor for Water Treatment. Plasma Chem. Plasma Process. 2019, 39, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Fern, J.; Garrig, G.; Cazorla, D. Photo-microfluidic chip reactors for propene complete oxidation with TiO2 photocalyst using UV-LED light. J. Environ. Chem. Eng. 2019, 7, 103408. [Google Scholar]
- Liu, A.; Li, Z.; Wu, Z.; Xia, X. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta 2018, 182, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Meng, Z. A novel and highly photocatalytic “ TiO2wallpaper ” made of electrospun TiO2/bioglass hybrid nanofiber. Mater. Sci. Semicond. Process. 2018, 80, 68–73. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.J.; Fan, J.; Fang, Q. Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta 2013, 116, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, I.; Habba, Y.G.; Capochichi-gnambodoe, M.; Marty, F.; Vial, J. Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsystems Nanoeng. 2018, 4, 17093. [Google Scholar] [CrossRef]
- Li, L.; Chen, R.; Liao, Q.; Zhu, X.; Wang, G.; Wang, D. High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrog. Energy 2014, 39, 19270–19276. [Google Scholar] [CrossRef]
- Chen, R.; Li, L.; Zhu, X.; Wang, H.; Liao, Q.; Zhang, M. Highly-durable optofluidic microreactor for photocatalytic water splitting. Energy 2015, 83, 797–804. [Google Scholar] [CrossRef]
- Huang, X.; Hao, H.; Liu, Y.; Zhu, Y.; Zhang, X. Rapid screening of graphitic carbon nitrides for photocatalytic cofactor regeneration using a drop reactor. Micromachines 2017, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Antonietti, M.; Liu, J. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: Photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J. Mater. Chem. A 2014, 2, 7686. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shen, Y.; Li, Y.; Liu, A.; Liu, S.; Zhang, Y. Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACS Nano 2015, 9, 12480–12487. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano 2015, 9, 931–940. [Google Scholar] [CrossRef]
- Liu, J.; Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ. Sci. 2013, 6, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Lin, H.; Huang, X.; Lyu, M.; Zhang, H.; Zhang, X.; Wang, R. Paper-based Photocatalysts Immobilization without Coffee Ring Effect for Photocatalytic Water Purification. Micromachines 2020, 11, 244. https://doi.org/10.3390/mi11030244
Li Q, Lin H, Huang X, Lyu M, Zhang H, Zhang X, Wang R. Paper-based Photocatalysts Immobilization without Coffee Ring Effect for Photocatalytic Water Purification. Micromachines. 2020; 11(3):244. https://doi.org/10.3390/mi11030244
Chicago/Turabian StyleLi, Qingwei, Huichao Lin, Xiaowen Huang, Maocui Lyu, Hongxia Zhang, Xiaoning Zhang, and Ruiming Wang. 2020. "Paper-based Photocatalysts Immobilization without Coffee Ring Effect for Photocatalytic Water Purification" Micromachines 11, no. 3: 244. https://doi.org/10.3390/mi11030244
APA StyleLi, Q., Lin, H., Huang, X., Lyu, M., Zhang, H., Zhang, X., & Wang, R. (2020). Paper-based Photocatalysts Immobilization without Coffee Ring Effect for Photocatalytic Water Purification. Micromachines, 11(3), 244. https://doi.org/10.3390/mi11030244