Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thongpan, W.; Louloudakis, D.; Pooseekheaw, P.; Kumpika, T.; Kantarak, E.; Panthawan, A.; Tuantranont, A.; Thongsuwan, W.; Singjai, P. Electrochromic properties of tungsten oxide films prepared by sparking method using external electric field. Thin Solid Films 2019, 682, 135–141. [Google Scholar] [CrossRef]
- Mukherjee, R.; Sahay, P.P. Effect of precursors on the microstructural, optical, electrical and electrochromic properties of WO3 nanocrystalline thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 6293–6305. [Google Scholar] [CrossRef]
- Mardare, C.C.; Hassel, A.W. Review on the versatility of tungsten oxide coatings. Phys. Status Solidi A 2019, 216, 1900047. [Google Scholar] [CrossRef] [Green Version]
- Bourdin, M.; Gaudon, M.; Weill, F.; Duttine, M.; Gayot, M.; Messaddeq, Y.; Cardinal, T. Nanoparticles (NPs) of WO3-x compounds by polyol route with enhanced photochromic properties. Nanomater.-Basel 2019, 9, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Guo, J.; Wang, C.; Zhang, J.; Liu, J.; Dong, G.; Zhong, X.; Diao, X. Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochim. Acta 2020, 332, 135504. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Y.; Zheng, R.; Wang, M.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. J. Mater. Chem. A 2019, 7, 13956–13967. [Google Scholar] [CrossRef]
- Wang, B.; Man, W.; Yu, H.; Li, Y.; Zheng, F. Fabrication of Mo-Doped WO₃ Nanorod Arrays on FTO Substrate with Enhanced Electrochromic Properties. Materials (Basel, Switzerland) 2018, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chang, C. Preparation of Orthorhombic WO3 Thin Films and Their Crystal Quality-Dependent Dye Photodegradation Ability. Coatings 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.Y.; Haider, Z.; Van, T.K.; Pawar, A.U.; Kang, M.J.; Kim, C.W.; Kang, Y.S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, K.; Zhang, X.; Yuan, W.; Shi, M.; Ning, H.; Tao, R.; Liu, X.; Yao, R.; Peng, J. Effects of annealing temperature on optical band gap of sol-gel tungsten trioxide films. Micromach.-Basel 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Rozman, M.; Žener, B.; Matoh, L.; Godec, R.F.; Mourtzikou, A.; Stathatos, E.; Bren, U.; Lukšič, M. Flexible electrochromic tape using steel foil with WO3 thin film. Electrochim. Acta 2020, 330, 135329. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, B.; Wang, H.; Chai, Y.; Jin, Y.; Qi, H.; Shao, J. Electrochromic behavior of WO3 thin films prepared by GLAD. Appl. Surf. Sci. 2018, 447, 471–478. [Google Scholar] [CrossRef]
- Wang, J.C.; Shi, W.; Sun, X.Q.; Wu, F.Y.; Li, Y.; Hou, Y. Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase-Junction. Nanomater.-Basel 2020, 10, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Chang, C. Improvement of Ethanol Gas-Sensing Responses of ZnO-WO3 Composite Nanorods through Annealing Induced Local Phase Transformation. Nanomater.-Basel 2019, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Leidinger, M.; Huotari, J.; Sauerwald, T.; Lappalainen, J.; Schütze, A. Selective detection of naphthalene with nanostructured WO3 gas sensors prepared by pulsed laser deposition. J. Sens. Sens. Syst. 2016, 5, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Chen, Y.; Li, X.; Qi, T.; Peng, Z.; Liu, G. Preparation and electrochromism of pyrochlore-type tungsten oxide film. Rare Metals 2018, 37, 604–612. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Kulkarni, N.; Kaur, D. Structural and optical studies of nanocrystalline V2O5 thin films. Thin Solid Films 2008, 516, 912–918. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Maeng, W.J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- De Andrade, J.R.; Cesarino, I.; Zhang, R.; Kanicki, J.; Pawlicka, A. Properties of electrodeposited WO3 thin films. Mol. Cryst. Liq. Cryst. 2014, 604, 71–83. [Google Scholar] [CrossRef]
- Pal, S.; Jacob, C. The influence of substrate temperature variation on tungsten oxide thin film growth in an HFCVD system. Appl. Surf. Sci. 2007, 253, 3317–3325. [Google Scholar] [CrossRef]
- Blackman, C.S.; Parkin, I.P. Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties. Chem. Mater. 2005, 17, 1583–1590. [Google Scholar] [CrossRef]
- Kangkun, N.; Kiama, N.; Saito, N.; Ponchio, C. Optical properties and photoelectrocatalytic activities improvement of WO3 thin film fabricated by fixed-potential deposition method. Optik 2019, 198, 163235. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Ning, H.; Chen, H.; Wu, Q.; Jiang, M.; Li, C.; Guo, D.; Wang, Y.; Yao, R.; et al. Tungsten doped stannic oxide transparent conductive thin film using preoxotungstic acid dopant. Superlattices Microstruct 2019, 130, 277–284. [Google Scholar] [CrossRef]
- Fardindoost, S.; Iraji Zad, A.; Rahimi, F.; Ghasempour, R. Pd doped WO3 films prepared by sol-gel process for hydrogen sensing. Int. J. Hydrog. Energy 2010, 35, 854–860. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Bueno, P.R.; Faria, R.C.; Bulhões, L.O.S. Electrochromic properties of lithium doped WO3 films prepared by the sol-gel process. Electrochim. Acta 2001, 46, 1977–1981. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ’sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Liu, Q.; Zhang, Q.; Lu, B.; Zhai, J.; Diao, X. Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films. Sol. Energy Mater. Sol. Cells 2019, 200, 110017. [Google Scholar] [CrossRef]
- Wen-Cheun Au, B.; Chan, K.; Knipp, D. Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3). Opt Mater. 2019, 94, 387–392. [Google Scholar] [CrossRef]
- Sonavane, A.C.; Inamdar, A.I.; Shinde, P.S.; Deshmukh, H.P.; Patil, R.S.; Patil, P.S. Efficient electrochromic nickel oxide thin films by electrodeposition. J. Alloys Compd. 2010, 489, 667–673. [Google Scholar] [CrossRef]
- Jin, L.H.; Bai, Y.; Li, C.S.; Wang, Y.; Feng, J.Q.; Lei, L.; Zhao, G.Y.; Zhang, P.X. Growth of tungsten oxide nanostructures by chemical solution deposition. Appl. Surf. Sci. 2018, 440, 725–729. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Dong, G.; Wang, H.; Yan, H. Efficient electrochromic device based on sol-gel prepared WO3 films. Ionics 2015, 21, 2879–2887. [Google Scholar] [CrossRef]
- Vidmar, T.; Topič, M.; Dzik, P.; Opara Krašovec, U. Inkjet printing of sol-gel derived tungsten oxide inks. Sol. Energy Mater. Sol. Cells 2014, 125, 87–95. [Google Scholar] [CrossRef]
- García-García, F.J.; Mosa, J.; González-Elipe, A.R.; Aparicio, M. Sodium ion storage performance of magnetron sputtered WO3 thin films. Electrochim. Acta 2019, 321, 134669. [Google Scholar] [CrossRef]
- Leitzke, D.W.; Cholant, C.M.; Landarin, D.M.; Lucio, C.S.; Krüger, L.U.; Gündel, A.; Flores, W.H.; Rodrigues, M.P.; Balboni, R.D.C.; Pawlicka, A.; et al. Electrochemical properties of WO3 sol-gel thin films on indium tin oxide/poly(ethylene terephthalate) substrate. Thin Solid Films 2019, 683, 8–15. [Google Scholar] [CrossRef]
- Djaoued, Y.; Ashrit, P.V.; Badilescu, S.; Bruning, R. Synthesis and characterization of macroporous tungsten oxide films for electrochromic application. J. Sol-Gel Sci. Technol. 2003, 28, 235–244. [Google Scholar] [CrossRef]
- Caruso, T.; Castriota, M.; Policicchio, A.; Fasanella, A.; De Santo, M.P.; Ciuchi, F.; Desiderio, G.; La Rosa, S.; Rudolf, P.; Agostino, R.G.; et al. Thermally induced evolution of sol-gel grown WO3 films on ITO/glass substrates. Appl. Surf. Sci. 2014, 297, 195–204. [Google Scholar] [CrossRef]
- Ge, C.; Wang, M.; Hussain, S.; Xu, Z.; Liu, G.; Qiao, G. Electron transport and electrochromic properties of sol-gel WO3 thin films: Effect of crystallinity. Thin Solid Films 2018, 653, 119–125. [Google Scholar] [CrossRef]
- Mukherjee, R.; Sahay, P.P. Structural, morphological, optical and electrical properties of spray-deposited Sb-doped WO3 nanocrystalline thin films prepared using ammonium tungstate precursor. J. Mater. Sci. Mater. Electron. 2015, 26, 2697–2708. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Jeong, R.H.; Boo, J. Enhanced electrochromic properties of nanorod based WO3 thin films with inverse opal structure. Thin Solid Films 2018, 660, 596–600. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tian, W.; Liu, X.; Yang, R.; Li, X. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries. J. Solid State Chem. 2007, 180, 3360–3365. [Google Scholar] [CrossRef]
- Madhavi, V.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Phys. B: Condens. Matter 2014, 454, 141–147. [Google Scholar] [CrossRef]
- Kim, H.; Choi, D.; Kim, K.; Chu, W.; Chun, D.; Lee, C.S. Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films. Sol. Energy Mater. Sol. Cells 2018, 177, 44–50. [Google Scholar] [CrossRef]
- Koo, B.; Ahn, H. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects. Nanoscale 2017, 9, 17788–17793. [Google Scholar] [CrossRef]
- Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D.A.; Wenzel, S.; Janek, J.; Elm, M.T.; Klar, P.J. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 2015, 17, 15903–15911. [Google Scholar] [CrossRef] [Green Version]
- Kharade, R.R.; Mane, S.R.; Mane, R.M.; Patil, P.S.; Bhosale, P.N. Synthesis and characterization of chemically grown electrochromic tungsten oxide. J. Sol-Gel Sci. Technol. 2010, 56, 177–183. [Google Scholar] [CrossRef]
- Muthu Karuppasamy, K.; Subrahmanyam, A. The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films. Sol. Energy Mater. Sol. Cells 2008, 92, 1322–1326. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater. 2018, 47, 3552–3559. [Google Scholar] [CrossRef]
- Najafi-Ashtiani, H.; Bahari, A. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3. Opt. Mater. 2016, 58, 210–218. [Google Scholar] [CrossRef]
- Najafi-Ashtiani, H.; Bahari, A.; Gholipour, S. Investigation of coloration efficiency for tungsten oxide-silver nanocomposite thin films with different surface morphologies. J. Mater. Sci. Mater. Electron. 2018, 29, 5820–5829. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. The injection of Ag nanoparticles on surface of WO3 thin film: Enhanced electrochromic coloration efficiency and switching response. J. Mater. Sci. Mater. Electron. 2017, 28, 14855–14863. [Google Scholar] [CrossRef]
- Zhi, M.; Huang, W.; Shi, Q.; Wang, M.; Wang, Q. Sol-gel fabrication of WO3/RGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 2016, 6, 67488–67494. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, G.; Guo, K.; Guo, D.; Shi, M.; Ning, H.; Qiu, T.; Chen, J.; Fu, X.; Yao, R.; et al. Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties. Micromachines 2020, 11, 311. https://doi.org/10.3390/mi11030311
Liu J, Zhang G, Guo K, Guo D, Shi M, Ning H, Qiu T, Chen J, Fu X, Yao R, et al. Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties. Micromachines. 2020; 11(3):311. https://doi.org/10.3390/mi11030311
Chicago/Turabian StyleLiu, Jinxiang, Guanguang Zhang, Kaiyue Guo, Dong Guo, Muyang Shi, Honglong Ning, Tian Qiu, Junlong Chen, Xiao Fu, Rihui Yao, and et al. 2020. "Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties" Micromachines 11, no. 3: 311. https://doi.org/10.3390/mi11030311
APA StyleLiu, J., Zhang, G., Guo, K., Guo, D., Shi, M., Ning, H., Qiu, T., Chen, J., Fu, X., Yao, R., & Peng, J. (2020). Effect of the Ammonium Tungsten Precursor Solution with the Modification of Glycerol on Wide Band Gap WO3 Thin Film and Its Electrochromic Properties. Micromachines, 11(3), 311. https://doi.org/10.3390/mi11030311