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Abstract: A novel type of spatial three revolute-cylindrical-universal (3-RCU) flexible micro
manipulator is designed based on flexible hinges, and analyzed by finite element analysis (FEA).
The piezoelectric actuators are adopted as driving devices in this platform, a new lever amplification
mechanism is designed as its micro-displacement amplification mechanism, the workspace of the
platform is enlarged, and the theoretical and simulation amplification ratios of the amplification
mechanism are 3.056 and 2.985, respectively. The margin of error is just 2.3%. In space, the 3-RCU
platform can realize the micro movement of three degrees of freedom. Also, the platform has a high
carrying capacity, less motion loss, and the transmission efficiency is higher when the platform works.
The decoupling performance, stress under extreme conditions and natural frequency of the platform
are simulated by ANSYS Workbench software. A series of simulation analyses show the feasibility and
security of the platform. The platform has good decoupling and working performance. The simulation
results show that the platform has high simulation stiffness and high positioning accuracy.

Keywords: three revolute-cylindrical-universal (3-RCU); flexible hinge; flexible micro manipulation
platform; lever amplification mechanism; finite element analysis; high precision

1. Introduction

With the development of microelectronics, the miniaturization of devices, high integration of
chips, and simplification of operations have become hot spots in micron(micro)/nanometer(nano)
technology. The parallel micro operating platform, which combines micro-operation with parallel
robot technology, has become a new direction of research. The micro operation platform has many
advantages, such as good stability, high precision, high rigidity, and good bearing capacity [1,2]. The key
part of micro-manipulator robot technology is to design a compact structure with large stroke, high
precision, high flexibility, and easy miniaturization [3]. Generally, the precision positioning platform
uses traditional rigid motion pairs, which are easily affected by the motion gap, and it is difficult
to meet the requirements of high precision and structural reliability of the micro/nano platform [4].
The emergence of flexible hinges provides a solution to this problem and the systematic study of flexible
hinges dates back to the late 1980s. A flexible mechanism is realized by a flexible hinge. The flexible
mechanism is a new mechanism for transforming or transferring motion, force, and energy with a small
deformation of material [5]. The flexible mechanism is easy to process, has no gap, friction, and wear,
as well as high precision and better transmission efficiency. Thus, the flexible hinge is very suitable to
replace the traditional rigid joints as the motion pair of the flexible micro-manipulator. Many flexible
micro-operating platforms are driven by piezoelectric actuators (PZTs), which have broad application
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prospects in micro-manipulators. Piezoelectric actuators are simple in structure, easy to control, and
high in resolution [6]. However, the output displacement of the piezoelectric actuators is too small,
so it is necessary to add a micro-displacement amplifying mechanism. The amplifying mechanism
should satisfy the large-stroke, high-precision design requirements of the micro-motion platform [7].
Because of the many advantages of parallel mechanisms [3,8,9], such as, they can meet the needs of
micro-operating robots for high motion resolution, demonstrate fast response speed, have a small shape
and high precision, based on previous researches [1,2,4,8,10–17], a new revolute-cylindrical-universal
(3-RCU) parallel platform is designed. This is a feasible solution for the platform with high positioning
accuracy. The platform can realize three-dimensional (3D) motion at micro/nano level and has the
advantages of compact structure, high precision, and a good linear relationship.

2. The Overall Design of Flexible Micro-Operation Platform

2.1. Structural Design of the Platform

A new three degrees of freedom (DOF) flexure parallel micromanipulation platform was designed.
The micro platform consists of a moving platform, a static platform, and three identical branches.
The three branched chains are distributed symmetrically with 120◦. The platform with this distribution
mode has good stability, and the motion decoupling of the mechanism is also good. The moving
platform is connected with the hook hinge. In the middle is a new compound cylindrical pair, and
the flexible rotation pair is connected with the static platform. During the movement of the platform,
the closer the direction of the cylindrical pair moves to the vertical direction, the better the transmission
effect of the flexible motion pair is. That is, the angle between the moving direction and the vertical
direction of the branch chain is as small as possible. Overall, the optimal design method is to place
the whole branch chain vertically, perpendicular to the two platforms. According to the arrangement
position of branched-chain and flexible movement pairs on the branched-chain, the mechanism is
named as 3-RCU flexible micro-operation platform. The mechanism diagram of the micro-manipulator
platform is shown in Figure 1.
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Figure 1. Structure diagram of micromanipulator platform.

There are two initial designs for the platform configuration. Firstly, the amplifying mechanism is
connected in parallel with the guiding mechanism to form a motion pair, and then placed at the end
of the branch. Secondly, a flexible platform with a 3-PRS configuration is selected, and a composite
bridge amplifying mechanism is applied as a micro-displacement amplifying mechanism of the
platform. The three prismatic-universal-universal (3-PUU) [18] and three revolute-prismatic-spherical
(3-RPS) [19] are the classical models of these two schemes, respectively. For the 3-PUU platform,
the motion pair at the bottom, and the only part of the load can be transferred to the moving platform,
which seriously affects the transmission efficiency of the platform. The flexible ball hinge used in the
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platform has very strict thickness requirements. If the thickness is too large, the range of rotation of
the torsion angle will be affected. On the contrary, the bear stress of the platform under the extreme
working environment is difficult to meet the requirements, and breakage may even occur. The platform
designed is aimed at high-precision operation use in the fields of biological engineering medical surgery,
optical fiber docking, etc. The platform with three degrees of freedom can realize rotation around two
directions and movement along the z-axis. The most typical structure of the 2-rotate-1-translation
(2R1T) type platform is the 3-RPS parallel mechanism [20,21]. In this paper, the parallel 3-RCU
mechanism is adopted which is seldom used in the field of flexible precise positioning.

The final model of the 3-RCU flexible parallel micro operation platform is shown in Figure 2.
The compact flexible U-shaped hinge designed has great advantages in space, rigidity, and motion
performance. Compared with the serial hooker hinge in the 3-PUU mechanism, the type of hooker
hinge in this paper is more suitable for the miniaturization of structure design. Compared with the
3-RPS mechanism, the slotted design with three circular arrays can reduce the mass of the moving
platform and increase the transmission performance of the end of the moving platform. The flexible
cylindrical pair is used as an amplifier and a piezoelectric actuator is built into the amplifier mechanism,
which not only reduces the size of the supporting chain and makes the structure compact, but also
increases the stiffness of the mechanism and strengthens the bearing capacity of the supporting chain.
By placing the branch chain vertically in space, the angle between the branch chain and the moving
platform is reduced and the transmission effect of the platform will be better, which is conducive to
improving the motion performance of the platform. In addition, compared with the composite bridge
displacement amplification mechanism, the new type of lever amplifying mechanism designed in
this paper contains fewer flexible hinges, so the platform has less motion loss, higher transmission
efficiency, and better precision.
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Figure 2. A three revolute-cylindrical-universal (3-RCU) flexible parallel micro operation platform.

2.2. Calculation of Platform Degrees of Freedom

According to the mechanism diagram of the platform and the Kutzbach–Gubler [22] freedom
degree calculation Equation (1), the degree of freedom of the platform is calculated:

M = 6(n− g− 1) +
g∑

i=1

fi + µ, (1)

where M is the degree of freedom of the mechanism, n is number of components including the rack, g
is number of kinematic pairs, f i is the number of degrees of freedom for the i-th kinematic pair, and µ
is the total number of over-constraints in the mechanism.

To analyze the number of motion pairs and components of the 3-RCU parallel mechanism,
the number of components n is 8, the number of motion pairs g is 9, and the total number of
over-constraints µ in the mechanism is zero. The sum of the degrees of freedom of the nine motion
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pairs is 15. Substitute these parameters into Equation (1), and the degree of freedom of the platform
is 3.

3. The Design of Branch Chain

3.1. Branch Chain Structure Design

The single branch chain of the 3-RCU platform is shown in Figure 3. The motion pairs in the
branches are flexible hinges instead of the traditional rigid motion pairs because the flexible hinges
have small elastic deformation, higher displacement resolution, and fast speed response, which can
avoid the free motion and mechanical friction of the platform during the movement.
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Figure 3. Single branch chain.

The single branch chain is structurally composed of a flexible hook hinge U, a flexible cylindrical
pair C including a micro-displacement amplification mechanism, and a flexible revolute pair R.
The flexible hook hinge U can realize the rotation of two orthogonal axes, which can be realized by two
flexible rotating pairs in series. Generally, the flexible hook hinge has two types: axis intersection and
axis stagger. They have good compactness and high precision. This paper adopts the former with a
simpler structure.

Since the traditional rigid motion pair can realize the functions of movement and rotation,
the flexible cylindrical pair C can be formed by a combination of a flexible moving pair and a rotating
pair. The flexible moving pair adopts parallel four-bar flexible moving pair. Its guiding precision is high,
its flexibility is concentrated, its movement condition is good, but its movement stroke is small [23].
When the piezoelectric actuator works, the displacement of the branch chain can be increased by the
amplification mechanism, and the working space of the micro-operation platform is enlarged.

The PZTs (Model P-820.20) manufactured by PI Company of Germany (PI Company, Karlsruhe,
Germany), which has a diameter of 9 mm and length of 44 mm. The driver can magnify and transfer
its output displacement subtly. For the design of the PZTs, the size parameters of the piezoelectric
actuators must be considered first. Therefore, the size of the branch chain must be designed reasonably,
leaving enough space. Since PZT cannot withstand pressure, shear, torque, etc., a hemispherical sphere
with a radius of 1.5 mm is designed on top of the driver to contact with the rod, which can ensure the
safety of PZT and extend the service life [10].
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The flexure hinge of 3-RCU are all straight round flexure hinge. Figure 4 shows the structure of
straight circular flexure hinge. It has high flexibility and a good rotation angle, which can better reduce
the energy lost during the operation of the amplifying mechanism, increases the amplification ratio of
the lever amplifying mechanism, and improves the overall output performance of the platform [10].
In addition, research of Hu, J.F. [24] on the performance of four kinds of flexure hinges and research of
Wang, C.T. [25] on the stiffness characteristics of three kinds of flexible four-bar mechanisms can prove
that the straight circular flexure hinge and the flexible four-bar mechanism with four straight circular
flexure hinges have better comprehensive performance. In comparison with other hinges, the straight
circular flexure hinge has the smallest shape variable, the highest precision, and the least stress. So,
the amplifier and rotating pairs adopt a straight circular flexure hinge. The design parameters of the
straight round flexible hinges are shown in Table 1. In Table 1, the t is the minimum thickness of
the flexure hinge, r is the radius of the flexure hinge, b is the width of the flexure hinge, and h is the
thickness of the flexure hinge.
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Table 1. Design parameters of straight round flexure hinge.

Parameter t r b h

Value (mm) 0.5 2.0 4.5 4.5

3.2. Design of Amplification Mechanism

Scott–Russell amplification, lever amplification, and bridge displacement amplification are
three flexible hinge amplification methods commonly used at this stage [12,26,27]. Because of the
simple structure, good performance of the level magnification mechanism, and serious distortion
of the magnification ratio of the multi-stage magnification mechanism [28], a new type of one-stage
magnification mechanism with small space size is designed. Figure 5a is structural diagram of the
lever amplifying mechanism, where 1, 2, and 3 respectively represent the fixed position, the input end,
and the output end.

The lever amplifying mechanism is shown in Figure 5b. The solid point 1 is the fixed end of
the amplifying mechanism, the distance between input end and the fixed end is L1, and the distance
between the input end and the output end is L2. ∆X is the input end displacement and ∆X’ is the
displacement produced by the output end. The theoretical amplification ratio of the mechanism is
calculated by the principle of the lever amplification mechanism [29]:

A =
∆
∆′

=
L1 + L2

L1
(2)

In the Equation (2), L1 = 9mm, L2 = 18.5 mm. We can get A ≈ 3.056.
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4. Finite Element Analysis

In order to verify the reliability of the theoretical calculation results of the magnification ratio of the
lever magnification mechanism and the rationality of the relevant performance of the micro-operation
platform, the micro displacement magnification mechanism and the micro-operating platform need
to be simulated and analyzed. Finite element analysis (FEA) is also known as the finite element
method. From the perspective of mechanics, the complex continuum is divided into a finite number of
elements in an imaginary way, and the finite number of elements are combined into an assembly in a
certain way to replace the original continuum for research [30,31]. For the high-precision, complex,
and nonlinear system of a flexible parallel robot, the finite element method takes into full account the
elastic deformation of all part of the flexure hinge and can reflect the mechanical properties of the
flexible parallel robot more correctly and comprehensively [32,33]. Create 3D models of magnifying
mechanism and 3-RCU micro manipulation platform in SolidWorks (SolidWorks, Concord, MA, USA),
save the file as parasolid (x.t.), then import the finite element simulation analysis software ANSYS
Workbench (ANSYS, Pittsburgh, PA, USA) for simulation analysis.

The aluminium alloy (AL)7075-T6 (Alcoa, Pittsburgh, PA, USA) of aerospace aluminum alloy
is used as the material for the micro-operation platform. The density of AL7075-T6 is 2810 kg/m3,
the Poisson’s ratio is 0.33, the modulus of elasticity is 71,700 Pa and the yield strength of the material is
503 MPa.

The parameters of the P-820.20 piezoelectric actuators manufactured by the German PI company
are as follows: the resolution is 0.3 nm, the maximum thrust is 50 N, the maximum stroke is 30 µm,
the stiffness is 7 N/µm, and the no-load resonant frequency is 15,000 Hz.

4.1. Simulation Analysis of Amplification Mechanism

The theoretical amplification ratio of the amplification mechanism has already known, and its
reliability is verified by simulation analysis. Open the model in the ANSYS Workbench, add materials,
set and modify material parameters, divide grids, apply constraints and loads, and then conduct finite
element simulation analysis. The mesh size of the partition is set as 2 mm, and the fixed constraint is
applied at the fixed hole of the fixed hinge. Loading 5 µm and 10 µm displacements at the input end of
the amplification mechanism, respectively, the results of the static simulation of amplifier mechanism
is shown in Figure 6. The output displacements from the simulation results were 14.925 µm and
29.850 µm, respectively. So, the simulation magnification of the mechanism is 2.985 and the margin
of error is only 2.3%. The reason for this error is that the elastic deformation of the flexure hinge is
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Figure 6. Simulation of amplifier mechanism. (a) Input displacement 5 µm. (b) Input displacement
10 µm.

4.2. Verification of Material Properties Selected for the Platform

First of all, in the case of no load on the entire platform, the input ends of one branch chain,
two branch chains, and three branch chains are respectively loaded with a displacement of 5 µm.
The simulation results are shown in Figure 7. The maximum output displacements under the three
loading modes were 36.278 µm, 37.226 µm, and 12.307 µm, respectively. Combined with the output
displacement of the moving platform under three working conditions, it can be seen that each branch
chain can work independently, and the platform has good motion decoupling. In the actual working
process, loading different displacements and angles can make the micro-operating platform reach the
ideal spatial position.

From the data of Figure 7c, the simulation magnification of the overall platform is 2.461. The reasons
for this result are: the platform structure is more complicated, the error generated during simulation
calculation is larger, there are more flexible hinges in the platform than the amplification mechanism,
and more energy is absorbed by the flexible hinge.

Then, the parameters of the selected piezoelectric actuator are verified by the stiffness of the whole
mechanism under various working conditions. Determine whether the piezoelectric actuators can
meet the demand of platform output characteristics, and verify the reliability of the platform. In the
case of no load, thrust of 10 N, 20 N, 30 N, 40 N, and 50 N was loaded on the input end of one branch
chain, two branch chains, and three branch chains of the platform, respectively, and the relationship
between input thrust and output displacement is shown in Figure 8. In the case where one-branch
chain, two-branch chain and three-branch chain are respectively applied with thrust, the rigidity of the
mechanism is 2162.86 N/mm, 2093.01 N/mm, 6254.29 N/mm, respectively. The results of simulation are
all lower than that of the actuator with a stiffness of 7000 N/mm (7 N/µm), indicating that the platform
can overcome the stiffness of the external mechanism and generate thrust. In addition, the flexibility of
the platform determines the carrying capacity of the platform and affects the positioning accuracy of
the platform. That is, the higher the stiffness, the higher the positioning accuracy [34].

Considering the micro-operating platform under extreme conditions, whether the maximum
stress is within the yield strength range of the selected AL7075-T6 aerospace aluminum alloy, verify the
safety of the platform work. The three branched chains were loaded with a maximum displacement of
30 µm and a maximum thrust of 50 N respectively. The static simulation of maximum stress value is
shown in Figure 9. The simulation results show that the maximum stress of the former simulation
is 205.94 MPa, and the maximum stress of the latter simulation is 14.645 MPa. The maximum stress
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values occurred at a circular flexure hinge and less than the yield strength of AL7075-T6 aviation
aluminum alloy 503 MPa. Therefore, the micro-operation platform will not break during operation,
which ensures the safety of the platform and the stability of the mechanism.Micromachines 2020, 11, 423 8 of 11 
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4.3. Modal Analysis

Finally, modal analysis is performed on the 3-RCU platform. The natural frequency is very
important for the micro operation platform. The higher the natural frequency, the stronger the
anti-interference ability of the micro operation platform, and the faster the dynamic response. Table 2
shows the first six natural frequencies of the mechanism obtained by modal analysis. The piezoelectric
actuators P820.20 used in the platform has a natural frequency of 15,000 Hz, which is much larger than
the natural frequency obtained by simulation. Therefore, the platform has better anti-interference
ability. The platform will not resonate with PZTs driver during operation, which ensures the service
life and safety of the platform.

Table 2. The first six natural frequencies.

No. Natural Frequencies
(Hz) No. Natural Frequencies

(Hz)

1 129.59 4 518.96
2 176.34 5 525.30
3 177.17 6 551.60

5. Conclusions

This paper presents the design of a new 3-RCU flexible parallel micro operation platform. Carrying
out theoretical calculations and finite element simulation analysis on the magnification of the lever
amplification mechanism, the margin of error is just 2.3%. The decoupling of the platform under three
different displacement conditions and the stiffness of the platform under three different conditions
were simulated and analyzed. The maximum stress under the limit condition is obtained by loading
the maximum displacement and the maximum thrust on the platform. Modal analysis was performed
on the micro-operation platform to obtain the first six natural frequencies of the mechanism. A series
of simulation results show that the design of the platform is reasonable and reliable, and the platform
has large stroke, high accuracy, good safety, and good dynamic performance. For the magnification
mechanism, the design of a better performing magnification mechanism still needs in-depth research.
The parameters of the platform and flexure hinge are not optimized in this paper, and will be worth
studying in the future. In addition, considering whether the flexible parallel micro-operation platform
can be better applied to manufacturing and whether the relevant design of the platform is of great
significance to the development of the discipline, it is also necessary to solve the workspace, conduct
kinematics analysis, dynamics analysis, and error analysis, which will be the core of the next work.
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