Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Etching Rate of Modifications Recorded with Double Femtosecond Pulses
3.2. Directional Etching of Vertical Bow-Like Structures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shimotsuma, Y.; Hirao, K.; Qiu, J.; Miura, K. Nanofabrication in transparent materials with a femtosecond pulse laser. J. Non-Cryst. Solids 2006, 352, 646–656. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Marcinkevičius, A.; Juodkazis, S. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 2001, 26, 277–279. [Google Scholar] [CrossRef]
- Shimotsuma, Y.; Kazansky, P.G.; Qiu, J.; Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 2003, 91, 247405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hnatovsky, C.; Taylor, R.S.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett. 2005, 30, 1867–1869. [Google Scholar] [CrossRef]
- Lancry, M.; Poumellec, B.; Canning, J.; Cook, K.; Poulin, J.C.; Brisset, F. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 2013, 7, 953–962. [Google Scholar] [CrossRef]
- Bellouard, Y.; Said, A.; Dugan, M.; Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 2004, 12, 2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.; Herman, P.R.; Aitchison, J.S. Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels. Appl. Phys. A 2012, 106, 5–13. [Google Scholar] [CrossRef]
- Turco, S.L.; Osellame, R.; Ramponi, R.; Vishnubhatla, K.C. Hybrid chemical etching of femtosecond irradiated 3D structures in fused silica glass. MATEC Web Conf. 2013, 8, 05009. [Google Scholar] [CrossRef] [Green Version]
- Hermans, M.; Gottmann, J.; Riedel, F. Selective, laser-induced etching of fused silica at high scan-speeds using KOH. J. Laser Micro Nanoeng. 2014, 9, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Bellouard, Y.; Said, A.A.; Bado, P. Integrating optics and micro-mechanics in a single substrate: A step toward monolithic integration in fused silica. Opt. Express 2005, 13, 6635–6644. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, K.; Xu, J.; Wu, D.; Hanada, Y.; Wang, Z. Femtosecond laser 3D micromachining: A powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 2014, 14, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Osellame, R.; Hoekstra, H.J.W.M.; Cerullo, G.; Pollnau, M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011, 5, 442–463. [Google Scholar] [CrossRef]
- Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J. Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation. Appl. Surf. Sci. 2015, 336, 39–42. [Google Scholar] [CrossRef]
- Schille, J.; Schneider, L.; Kraft, S.; Hartwig, L.; Loeschner, U. Experimental study on double-pulse laser ablation of steel upon multiple parallel-polarized ultrashort-pulse irradiations. Appl. Phys. A 2016, 122, 644. [Google Scholar] [CrossRef]
- Chu, W.; Tan, Y.; Wang, P.; Xu, J.; Li, W.; Qi, J.; Cheng, Y. Centimeter-Height 3D Printing with Femtosecond Laser Two-Photon Polymerization. Adv. Mater. Technol. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, L.; Hu, J.; Yan, X.; Xia, B.; Lu, Y. Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass. Opt. Lett. 2013, 38, 4613. [Google Scholar] [CrossRef]
- Chu, D.; Sun, X.; Dong, X.; Yin, K.; Luo, Z.; Chen, G.; Duan, J.-A.; Hu, Y. Effect of double-pulse-laser polarization and time delay on laser-assisted etching of fused silica. J. Phys. D Appl. Phys. 2017, 15, 013001. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Song, J.; Li, Q.; Zeng, X.; Dai, Y. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation. J. Phys. D Appl. Phys. 2018, 51, 155101. [Google Scholar] [CrossRef]
- Sadat, A.; Somayeh, A.; Aliasghar, N.; Wolfgang, A.; Reza, H. Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica. Appl. Phys. A 2018, 124, 1–6. [Google Scholar]
- Zhang, W.; Zhai, Q.; Song, J.; Lou, K.; Li, Y.; Ou, Z.; Zhao, Q.; Dai, Y. Manipulation of self-organized nanograting for erasing and rewriting by ultrashort double-pulse sequences irradiation in fused silica. J. Phys. D Appl. Phys. 2020, 53, 165106. [Google Scholar] [CrossRef]
- Ross, C.A.; MacLachlan, D.G.; Choudhury, D.; Thomson, R.R. Optimisation of ultrafast laser assisted etching in fused silica. Opt. Express 2018, 26, 24343. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Lin, Z.; Qi, J.; Wang, P.; Chu, W.; Fang, Z.; Wang, Z.; Chai, Z.; Cheng, Y. Polarization-insensitive space-selective etching in fused silica induced by picosecond laser irradiation. Appl. Surf. Sci. 2019, 485, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Hnatovsky, C.; Taylor, R.S.; Rajeev, P.P.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 2005, 87, 014104. [Google Scholar] [CrossRef]
- Stankevič, V. Formation and Characterization of Micro-Opto-Mechanical 3D Devices for Sensor Application in Transparent Materials; Vilnius University; Center for Physical Sciences and Technology: Vilnius, Lithuania, 2017. [Google Scholar]
- Stankevič, V.; Rakickas, T.; Račiukaitis, G. Internal to External Microfluidic Device for Ellipsometric Biosensor Application. J. Laser Micro Nanoeng. 2016, 11, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Murata, A.; Shimotsuma, Y.; Sakakura, M.; Miura, K. Control of periodic nanostructure embedded in SiO2 glass under femtosecond double-pulse irradiation. J. Laser Micro Nanoeng. 2016, 11, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Rohloff, M.; Das, S.K.; Höhm, S.; Grunwald, R.; Rosenfeld, A.; Krüger, J.; Bonse, J. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences. J. Appl. Phys. 2011, 110, 014910. [Google Scholar] [CrossRef]
- Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics. Appl. Surf. Sci. 2016, 374, 331–338. [Google Scholar] [CrossRef]
- Rajeev, P.P.; Gertsvolf, M.; Simova, E.; Hnatovsky, C.; Taylor, R.S.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B. Memory in Nonlinear Ionization of Transparent Solids. Phys. Rev. Lett. 2006, 97, 253001. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.; Jia, F.; Heinrich, M.; Döring, S.; Peschel, U.; Tünnermann, A.; Nolte, S. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica. Opt. Lett. 2012, 37, 482–484. [Google Scholar] [CrossRef]
- Taylor, R.; Hnatovsky, C.; Simova, E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2008, 2, 26–46. [Google Scholar] [CrossRef]
- Génin, F.Y.; Salleo, A.; Pistor, T.V.; Chase, L.L. Role of light intensification by cracks in optical breakdown on surfaces. J. Opt. Soc. Am. A 2001, 18, 2607. [Google Scholar] [CrossRef] [PubMed]
- Hecht, E. Optics; Addison-Wesley: Boston, MA, USA, 2002; ISBN 0321188780. [Google Scholar]
- Springer Handbook of Lasers and Optics; Springer: Berlin, Germany, 2007; Volume 45, ISBN 9780387955797.
- Taylor, R.S.; Simova, E.; Hnatovsky, C. Creation of chiral structures inside fused silica glass. Opt. Lett. 2008, 33, 1312. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankevič, V.; Karosas, J.; Račiukaitis, G.; Gečys, P. Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication. Micromachines 2020, 11, 483. https://doi.org/10.3390/mi11050483
Stankevič V, Karosas J, Račiukaitis G, Gečys P. Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication. Micromachines. 2020; 11(5):483. https://doi.org/10.3390/mi11050483
Chicago/Turabian StyleStankevič, Valdemar, Jonas Karosas, Gediminas Račiukaitis, and Paulius Gečys. 2020. "Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication" Micromachines 11, no. 5: 483. https://doi.org/10.3390/mi11050483
APA StyleStankevič, V., Karosas, J., Račiukaitis, G., & Gečys, P. (2020). Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication. Micromachines, 11(5), 483. https://doi.org/10.3390/mi11050483