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Abstract: The next generation optical, electronic, biological, and sensing devices as well as platforms
will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused
ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic
precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical
dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source
FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current,
dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects.
We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally,
we investigate the competition of material deposition and sputtering during the 3D FIBID process,
with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex
3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as
16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the
underlying fabrication technology compatible with existing lithographic techniques, suggesting a
higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

Keywords: helium ion microscopy; focused ion beam induced deposition; 3D nano-printing;
direct-write nanofabrication

1. Introduction

Design, high precision placement, and high throughput of 3D conductive and insulating
nanostructures is attractive for many fields. These assemblies unlock complex geometry and can
be created atop other structurally complex sites, otherwise inaccessible by standard lithographic
methods [1–6]. Recent advances in the bottom-up design of 3D features include two-photon lithography,
focused-electron-beam-induced deposition, and gallium ion beam irradiation [7–10].

Two-photon lithography is a technique capable of producing very complex nanostructures at a
spatial resolution of ~140 nm [11]. By polymerizing the precursor with a laser, virtually any structure
can be printed on the micron scale. Furthermore, many precursor polymers are being developed to
offer material specificity for a given application [12,13].

Micromachines 2020, 11, 527; doi:10.3390/mi11050527 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0003-0856-9982
https://orcid.org/0000-0002-6295-5115
https://orcid.org/0000-0002-9964-3254
http://www.mdpi.com/2072-666X/11/5/527?type=check_update&version=1
http://dx.doi.org/10.3390/mi11050527
http://www.mdpi.com/journal/micromachines


Micromachines 2020, 11, 527 2 of 13

Similar concepts are used in additive manufacturing, where layer by layer fabrication of 3D
structures is possible for a variety of materials [14,15]. Here, 40–60 µm droplets of metal ink or,
for features less than 10 µm, nanoparticle inks and ion solutions may be used [16]. Recently, an additive
manufacturing process featuring a lithography-based approach showcasing Ni octet-lattices with
2-µm unit cells, 300–400-nm beams, and 30-nm layers has been demonstrated [17]. Direct write via
electrolysis induced by electron and ion beams from liquid precursor solutions consisting of H2PdCl4
and K2PtCl6 has also been demonstrated as an approach for creating 3D Pd and Pt structures with
feature sizes ~15 nm feature size when using a He ion beam [18,19].

An alternative route towards 3D nanostructures is using a gas injection system (GIS) in tandem
with a charged-particle beam—an active area of research in recent years. Significant efforts went
into developing topics such as nanoscale magnetic structures, freestanding copper nanostructures,
precursor development (including liquid based precursors), optimization of operating conditions for
working with 2D materials, simultaneous use of oxidants for enhanced deposit purity, and theory
developments [20–36]. Fowlkes et al. recently demonstrated a duo of predictive modeling and
fabrication; showcasing complex 3D nanostructures with focused-electron-beam-induced deposition
(FEBID) [37]. This method is optimized for the deposition of general mesh object models defined as
interconnected networks of suspended 3D nanowires—a form of 3D nanoprinting [38–41]. Electron
beam induced heating has emerged as an important physical phenomenon to consider during 3D
nanoprinting [42]. Recently, 3D nanoprinting using the electron beam has been extended to include
the deposition of solid nanoscale object models, moving beyond the deposition of mesh object
frameworks [43]. These studies [42,43] have revealed that electron beam heating can decrease the
deposition rate dynamically, effectively degrading deposit quality if the heating effect is not accounted
for during design. In fact, low temperature ion-induced deposition has been demonstrated as a means
to increase growth rates but should also implicitly limit the negative side-effects of beam heating [44,45].
Additionally, 3D nanoprinting with automated methods to correct for deposit distortions, regardless of
the origin of the unwanted deformation [46], have been demonstrated in nanomagnetic Co/Fe nanowire
framework [47].

In addition to FEBID, gallium ion beam irradiation has been used for decades to deposit metals
via a process referred to as focused-ion-beam-induced deposition (FIBID) [48–50]. Relative to FEBID,
FIBID deposits are generally larger due to the increased spot size, greater secondary electron (SE) yield,
and higher ion-solid energy transfer which dissociate adsorbed precursor molecules. Complex 3D
structures are also possible with the gallium beam, with relatively high throughput when compared to
FEBID [48,49,51]. Recently, interest in direct-write deposition of 3D conductive structures has shifted
towards achieving single-digit-nanometer-scale fabrication, largely driven by the pursuit of new
approaches to interconnecting architectures [5,50,52]. Gas field ion sources have been demonstrated to
manufacture smaller and cleaner 3D structures [52–54]. While several studies discuss and demonstrate
helium ion microscopy (HIM) as a nanofabrication tool for 3D structures, few studies [55] to date
systematically explore the parameter space of the HIM gas flow injection system, or the interplay of
deposition and milling that occurs during the fabrication process [31,54,56–58].

In this work, we demonstrate complex 3D mesh geometries, with features as small as 16 nm at full
width half maximum (FWHM), made in a HIM with a gas flow injection system. We rely on automated
methods to control the microscope and the gas injection system settings to yield 3D nanostructures as
large as 300 nm made of interconnected parts. The manufacturing process is relatively quick, with each
shape completing in or under one minute. Three-dimensional structure growth on conductive as well
as insulating SiO2 substrates is possible and is demonstrated. Furthermore, we explore beam heating
effects and the interplay of deposition and milling, which occurs as matter interacts with an accelerated
ion beam in FIBID of free-standing structures by mapping deposition and milling regimes as a function
of beam pitch and dwell time. Understanding beam heating and the simultaneous control of both
milling and deposition offers the potential for higher fidelity and higher purity structures, and the
ability to repair structures in situ.
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2. Experimental Methods

2.1. Growth

3D platinum structures were grown on boron doped P-type silicon substrates with a Zeiss Orion
Nanofab helium ion microscope (Zeiss, Peabody, MA, USA). Substrates were plasma cleaned in
nitrogen plasma for 1 minute. All deposition patterns were executed using the NanoPatterning and
Visualization Engine (NPVE) pattern generator produced by Fibics Inc. (Ottawa, ON, Canada). A
25 kV He+ beam was used at various current to control deposit dimensions. The working distance of
8.142 mm was used throughout the experiment. The helium pressure was 2 × 10−6 torr with a spot
number 4. The HIM was used for imaging as well as FIBID. A first generation OmniGIS Gas Injection
System, (GIS) produced by Oxford Instruments (Abingdon, UK), was utilized to flow MeCpPtMe3

into the HIM using ultra-pure (99.9995%) nitrogen carrier gas, with a 5% duty cycle. The Pt precursor
was heated to 33 ◦C prior to use to minimize spiking of the chamber pressure. The vertical section
of the pillar was grown by parking the beam for 2 ms. The chamber pressure prior to gas injection
was ~3 × 10−7, and ~1.0 × 10−5 torr during the GIS operation. The GIS was at approximately 45◦ with
respect to the ion column. All 3D structures were generated using an in-house computer-aided design
(CAD) software package (ORNL, Oak Ridge, TN, USA) [37,59]. To analyze the composition of the
nanostructures, energy dispersive X-ray spectroscopy (EDS) analysis was performed on a Zeiss Merlin
SEM with a Bruker EDS spectrometer (Bruker, Billerica, MA, USA).

2.2. Data Analysis

Image analysis consisted of three main aspects: image pre-processing, segmentation, feature
extraction, and quantification [60–62]. We used open-source Python 2.7 for all analysis steps. First, the
image background was removed using local morphological filtering with circular filtering window
of 400 pixels in diameter, to enhance the nanostructures. We then used a watershed function to
automatically select the nanostructures and create a mask. After that segmentation was performed to
separate all pixels corresponding to individual pillars. Finally, each pillar was fitted as by the function
representing two connected linear segments. Fitting results were used to calculate length of the top
segment l, its width w and angle α. An example of the single pillar analysis is shown in Figure 1c,
where black dots show actual pixels of the pillar and red lines represent fitting results.
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Figure 1. Focused-ion-beam-induced deposition (FIBID) diagram, calibration structure growth, and
parametrization. (a) FIBID process in the helium ion microscopy (HIM) diagram, different structures
are obtained by changing the beam pitch. (b) PtC structure array, made at 25 kV, 0.54 pA beam current
with a 5 µm aperture with 8.142 mm working distance, columns are varying dwell times of 4, 6, 9,
and 12 ms, and rows are varying pitch of 0.25, 0.5, 1.0 and 1.5 nm, respectively. (c) An example of a
parametrized pillar grown for calibration of growth parameters with pillar values extracted.

3. Results and Discussion

The size, deposition rate, and composition of the HIM FIBID structures with the MeCpPtMe3

precursor depend on many parameters. The precursor physically adsorbs onto the substrate before
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local dissociation by the ion beam from the generated secondary electrons (SEs) [63] as well as energy
transfer via displaced deposited atoms, as illustrated in Figure 1a [64,65]. Depending on the precursor,
deposition (2D and 3D), or etching are possible [66,67]. In this work, we focus on material deposition
for 3D nanostructures. Firstly, we created large arrays of calibration structures at the different growth
conditions shown in Figure 1b (for 0.54 pA, 25 keV), where the measured growth dimensions are
illustrated in Figure 1c. The calibration structure consists of a vertical nanowire, or a pillar, which
serves as the base for the subsequent deposition of a branch, or a segment, nanowire. After the
calibration structures were deposited, an in-house developed analysis software was used to extract
deposit dimensions and angles (see Experimental Methods) from HIM images.

Figure 2a is a plot of the segment angle versus the He+ dwell time at different pixel point pitches
for a beam energy of 25 keV, a beam current of 0.54 pA, and a precursor chamber pressure of 1 × 10−5

torr. The plot illustrates that the segment angle increases with increasing dwell time. Furthermore,
at a fixed dwell time, the segment angle also increases with decreasing pixel pitch. To illustrate the
interdependence of the dwell time and pixel pitch, we combine these two terms into the dwell time per
lateral displacement (DTPLD) (s nm−1) and plot the resultant segment height (h = sl*tan(α)) for a fixed
lateral scan length (sl) versus s nm−1. As illustrated in Figure 2b, the data converge into a single curve.
Furthermore, Figure 2b includes data for lower (0.38 pA) and higher current (2.3 pA). Note that the
0.38 pA data have a lower segment vertical growth rate (lower α), however the 2.3 pA data essentially
overlay the 0.54 pA data, which show that the growth rate saturates. The data suggest that at low
current the growth is limited by the beam induced dissociation (reaction rate limited), but at higher
currents a transition to growth is limited by the precursor coverage (mass transport limited). Figure 2c
is a plot of the vertical growth per current (nm-pA−1), which illustrates that the high current growth is
clearly less efficient. However, it is noteworthy that the 0.54 pA efficiency is greater than the lowest
current, 0.38 pA data. As illustrated below, the slightly increased current leads to an increase in the
segment width (w) which produces a positive feedback in the vertical growth rate as more energy is
deposited and secondary electrons are generated.

Regarding the overall specific vertical growth rate (nm-s−1/pA−1), for 30 keV - 21 pA FEBID
the maximum specific vertical growth efficiency maximum is ~ 5 nm-s−1/pA−1 [68]. For FIBID,
because of the increased stopping power of the ion beam, the maximum deposition efficiency for
the 0.38, 0.54 and 2.3 pA current 25 keV He+ beam is ~163 nm-s−1/pA−1, 211 nm-s−1/pA−1, and
46 nm-s−1/pA−1, respectively.

Figure 3a is a plot of w as a function of the DTPLD for three currents. At the lowest current there is
the expected increase in w with increasing DTPLD, which is suggestive of a reaction rate limited regime
similar to a previous study [53]. At 0.54 pA, at low DTPLD, the width increases and then peaks and
decreases at higher DTPLD. At high current, w is lower and steadily decreases with decreasing DTPLD.
The decreasing w with increasing DTPLD and increasing current is indicative of beam heating effects
and a transition from a reaction rate limited growth regime to a mass transport limited growth regime.
In addition to the expected increase in heating with an increase in current, the small cross-sectional
area of the resultant nanostructure also promotes a high thermal resistance, which further amplifies
the heating effect. The thermal resistance increases with the increasing growth length because the
substrate acts as a heat sink. A slight downward deflection in FEBID nanostructures has been identified
as a signature of the onset of beam heating, which sets up a competition between higher precursor
surface diffusion versus shorter precursor residence times, as the temperature progressively increases
at the beam impact region [43]. Analysis of FEBID using the MeCpPtMe3 precursor has revealed
that the residence time is the dominant parameter and thus the deposition rate decreases slightly,
due to precursor depletion, and deposit bending results. Figure 3b illustrates an example of two
pillars bending in segments grown at 25 keV, 2.3 pA, with 12 ms dwell time, and 0.25 nm and 2 nm
pixel pitches.

In addition to beam heating, we also postulate a secondary competitive ion beam milling
effect. We investigated the sputtering process of material from grown structures using the Monte
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Carlo [69] simulation code EnvizION [70,71]. EnvizION simulates the ion solid interactions, similar
to the SRIM [72] package, where EnvizION is coupled to a voxelized substrate, allowing cumulative
sputtering and arbitrary target geometries. Each voxel represents a single atom, and the voxel size
is the mean interatomic distance. The simulation allows compound target geometries [67], however,
these are purely sputtering simulations and do not include the deposition process.
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Figure 2. (a) Plot of the segment angle versus the He+ dwell time at different pixel point pitches for a
beam energy of 25 keV, a beam current of 0.54 pA and a precursor chamber pressure of 1 × 10−5 Torr.
(b) Plot of the resultant segment height (h) for a fixed lateral scan length (sl) versus dwell time per
lateral displacement (DTPLD) (s nm−1), (c) plot of the vertical growth per current (nm-pA-1). Beam
energy of 25 keV, beam currents of 0.38 pA, 0.54 pA and 2.3 pA, and a precursor chamber pressure of 1
× 10−5 torr used in (b,c).
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The schematic for the simulated target is shown in Figure 4a, and it consists of a 25 nm radius
cylindrical pillar with a cap, positioned at α degrees from the z-axis. We vary the angle α depending
on the dwell time of the beam, to model the difference in pillar growth during FIBID. The experimental
effect of dwell time on α is shown in Figure 2a. Initially, the simulated pillar consists of carbon and
platinum with a C:Pt stoichiometry of ~8:1. A 25 kV He+, 50 nm FWHM Gaussian beam, with current
0.23 pA, is scanned along the pillar, from x = −50 nm, to x = 0 nm, with a pixel spacing of 0.5 nm. We
simulate two dwell times: 4 ms, and 12 ms, with β = 52 and 25 degrees, respectively. Cross sections of
the pillars after scanning are shown in Figure 4b,c. The sputter yields (corresponding to both backward
and forward sputter yields) for each scan are given in Table 1. When the dwell time is 12 ms, the
sputter yields are 50% higher for each specie, since the beam strikes the pillar at a glancing angle. Thus,
the longer dwell time and the higher angle results in more sputtering, and when the reaction is limited
by local precursor depletion the cumulative effect could contribute to narrower pillars.Micromachines 2020, 11, x 7 of 14 
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Figure 4. EnvizION Monte Carlo simulation results. (a) Schematic of the initial geometry for sputtering
simulations. (b) Pillar corresponding to the 4 ms dwell time scan (~5.6 million ions), and (c) pillar
corresponding to the 12 ms dwell time scan (~16.8 million ions).

Table 1. Sputter yields of each species for the sputtering simulations of the pillars in Figure 2.

Dwell Time C Sputter Yield (Atoms/Ion) Pt Sputter Yield (Atoms/Ion)

4 ms 0.084 0.023
12 ms 0.15 0.035
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We demonstrate feature sizes currently obtainable in FIBID with HIM, in Figure 5. Figure 5a is
the HIM image of the branch structures, where the dwell time of the three grown posts were 4, 6 and
8 ms from left to right, with the 4 ms dwell time; producing the smallest features of ~16 nm (Figure 4c)
at FWHM. These secondary processing steps with in situ feedback and control of the ion beam have
the possibility to push structure fidelity down to single digit length scales and will be the focus of
subsequent work. The line profile plot in Figure 5c is the overall size of the pillars, as measured across
the line profile in Figure 5b. Some complex 3D geometries grown on conductive substrates with the
HIM are shown in Figure 6. Figure 6a is a deltahedron grown on a post and Figure 4b is a truncated
icosahedron with a total feature size of ~300 nm, which is half the total structure size to a similar
icosahedron demonstrated with FEBID by Fowlkes et. al. of ~600 nm, as well as smaller than additive
manufacturing approaches [18,38]. In addition to a reduction in total structure size, the nanowire
thickness is nominally 20% smaller for the FIBID nanostructure in Figure 6b when compared with the
complementary nanostructure deposited by FEBID [37]. However, the FIBID deposit exhibits more
nanowire broadening on underlying nanowires, caused by transmitted and partially scattered primary
ions emitted during the deposition of the topmost nanowire network. Further studies will be required
at fixed precursor pressures to deconvolute the contributions of electron/ion scattering and total areal
dose, for FEBID versus FIBID, to fully explain the origins of the broadening phenomenon.Micromachines 2020, 11, x 8 of 14 
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Furthermore, Figure 6c,d show pillars and a deltahedron grown on SiO2. To estimate the
composition of the as-grown FIBID 3D nanostructures, energy dispersive x-ray analysis was used to
characterize a 3D “sheet”. Qualitative EDS was used to determine the uncorrected C/Pt peak ratio for a
3D deposit based on the integration range of 180–350 eV for carbon (K) and 1940–2250 eV for platinum
(M), Figure 7. The C/Pt integrated EDS peak ratio of ~0.09 serves as a ‘pure Pt’ reference where small
platinum (N) peak exists in the carbon peak region. The C/Pt peak ratio will vary depending on the
EDS hardware but seems to vary over no more than ~0.01 [73–75]. This method, previously used by
Mehendale [73] and Plank [74], yields an underestimate of the Pt content because the SiL peak also
slightly overlaps the CK range. A C/Pt ratio of 0.44 ± 0.08 was calculated for our deposits. This estimate
can be placed in the context of focused-electron-beam-induced deposition, or FEBID, using the same
precursor MeCpPtMe3. The typical uncorrected C/Pt range for FEBID spans 0.7–1.3 [76], with PtCx

values ranging from PtC4 to PtC8. Thus, the 3D FIBID deposits appear to have PtCx values where
x < 4. For reference, 2D He-IBID deposits conducted with a beam energy of 30 kV, an exposure dose of
2 nC/µm2, a 6 pA beam current, and a MeCpPtMe3 reservoir temperature of 30 ◦C yielded reported
deposit compositions of 15–19% Pt [76].

While not the focus of this initial study, we note in Figure 6 that collateral deposition is more
pronounced on the SiO2 substrate versus the degenerately doped Si. Several conditions could
contribute to this observation, namely, higher precursor concentration on the SiO2 substrate or
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enhanced dissociation probability on the SiO2. Regarding the enhanced precursor concentration,
higher precursor residence time (binding energy) and/or higher surface diffusivity would lead to higher
concentration in the beam interaction region. Regarding the enhanced dissociation, as was recently
illustrated for ion beam induced reactive etching [77], energy transfer from incident and recoiled
atoms as well as secondary electrons (SE) contribute to focused ion beam stimulated reactive processes.
Naively, one would expect energy transfer in silicon would be higher as the average atomic number
(14) is higher than SiO2 (10) and the densities comparable (Si = 2.32, SiO2 = 2.27 g/cm3). Channeling
could be responsible for the decreased energy transfer in the single crystal silicon as ions scattered
into open directions have much lower scattering. Regarding the secondary electron contribution,
it should be noted that enhanced XeF2 chemical etching in Ga+ and Ne+ is dominated by the ion
beam energy transfer and SE’s only contribute only a small fraction (<10%) of the chemically assisted
etching. Regarding the ion induced secondary electron generation process, for conducting materials
inelastic scattering of electrons is the operative mechanism [71], whereas for insulating materials,
scattering from optical phonons is operative [78]. Future work will investigate the roles of these and
other contributions to the direct and collateral focused ion beam induced deposition.
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In conclusion, we demonstrate a novel method to grow platinum rich 3D structures atop a wide
variety of substrates using a FIBID process in a helium ion microscope. Our workflow allows the
users to rapidly optimize the experimental conditions for processing parameters using advanced data
analytics. Three-dimensional calibration curves of the segment angle versus dwell time and pitch
reveal the two variables converge to a single variable, the DTPLP. Slight deviations at DTPLP and high
current suggest beam heating effects are operative in some conditions. Analysis of the segment width
over a variety of patterning conditions can be understood by beam heating effects which lower the
precursor coverage in the beam growth region. We illustrate this approach for fabricating complex 3D
submicron architectures with minimum features measuring 16 nm, at FWHM. Future work will focus
on detailed investigation of the beam heating phenomena and correlating the purity and electrical
properties for different growth regimes and a wider variety of precursors.
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