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Abstract: The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different
globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP
experiments employed a gradient field factor ∇E2

m that is much smaller (in some instances by many
orders of magnitude) than the ~4 × 1021 V2/m3 required, according to current DEP theory, to overcome
the dispersive forces associated with Brownian motion. This failing results from the macroscopic
Clausius–Mossotti (CM) factor being restricted to the range 1.0 > CM > −0.5. Current DEP theory
precludes the protein’s permanent dipole moment (rather than the induced moment) from contributing
to the DEP force. Based on the magnitude of the β-dispersion exhibited by globular proteins in the
frequency range 1 kHz–50 MHz, an empirically derived molecular version of CM is obtained. This
factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190
for phospholipase) and when incorporated into the basic expression for the DEP force brings most of
the reported protein DEP above the minimum required to overcome dispersive Brownian thermal
effects. We believe this empirically-derived finding validates the theories currently being advanced
by Matyushov and co-workers.

Keywords: Clausius–Mossotti function; dielectrophoresis; dielectric spectroscopy; interfacial
polarization; proteins

1. Introduction

Dielectrophoresis (DEP) studies of biological particles have progressed from the microscopic
scale of cells and bacteria, through the much smaller scale of virions to the molecular scale of DNA
and proteins [1]. In a pioneering study of 1994, Washizu et al. [2] demonstrated that DEP forces
capable of overcoming randomizing Brownian influences could be exerted on protein molecules
(avidin, chymotripsinogen, concanavalin and ribonuclease) using micrometer-sized electrodes. The
applied fields (0.4–1.0 × 106 V/m) were considered to be substantially lower than standard DEP theory
predicts [2]. In fact, the word ‘substantially’ can be considered as an understatement of the situation.
As reviewed elsewhere, at least 22 different globular proteins have now been investigated for their DEP
responses [3–7]. In all the analyses by the authors of the cited studies, the so-called Clausius–Mossotti
(CM) function has been invoked. However, the macroscopic electrostatic concepts and assumptions
used in the theoretical derivation of CM arguably fail to describe the situation for nanoparticles, such
as proteins, that possess a permanent dipole moment, interact with water dipoles of hydration, and
possess other physico-chemical attributes at the molecular scale [6–8]. The fact that standard DEP
theory does not provide a basis for understanding protein DEP is recognized as “a well-accepted
paradigm, repeated in numerous studies” [6]. In another recent review it is correctly stated that protein
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DEP remains under development because due to their small size proteins “require greater magnitudes
of electric field gradients to achieve manipulation” [7]. Put more bluntly, protein DEP is considered to
not have a theoretical leg to stand on!

A new theory is in fact evolving in terms of a description at the molecular level of how a
macroscopic dielectric sample responds to an applied electric field [8–10]. This involves a consideration
of the actual ‘cavity field’ experienced by the protein molecule, as well as the time-dependent correlation
of the total electric moment of the protein. This moment is a resultant of all the permanent and
induced moments of the system comprising the protein molecule’s polypeptide chain(s), the protein’s
hydration sheath, as well as neighboring water molecules under the electrostatic influence of the
protein’s induced and permanent dipole field.

The purpose of this and an accompanying paper [11] is to critically evaluate the protein DEP
literature, to derive an empirical-based theory, and to then describe and summarize the molecular-based
theory developed by Matyushov and colleagues [8,10]. In this paper we examine aspects of the reported
protein DEP work not covered in previous reviews, and conclude that the reported DEP responses
for a range of proteins are largely consistent. Practically all of the DEP data cannot be explained in
terms of the induced-dipole moment theory currently employed by the DEP community. The previous
proposal [9] that the permanent, intrinsic, dipole moment of a protein, manifested when polarized as a
dielectric β-dispersion, should form the underlying basis for a proper theory of protein DEP is repeated
here. It is also shown that the reported DEP responses of protein molecules are understandable if the
‘cavity’ field experienced by the protein is at least 1000-times larger than the local macroscopic field in
the surrounding aqueous medium. By linking the β-dispersion (a molecular-scale phenomenon) to
the macroscopic phenomenon known as the Maxwell-Wagner interfacial polarization exhibited by
colloids, we derive an empirical relationship to describe this amplification of the protein’s cavity field.
This empirical relationship underscores the fact that the macroscopic CM function employed in the
present standard DEP theory is an analogue of (but not the same as) the molecular CM-relation that
formed the bedrock of classical dielectric theory [12] used to describe the electrical polarization of
proteins [13]. However, to exploit the potential benefits that protein DEP can offer to basic research
needs and clinical applications [6], we require a solid molecular-based theory. In our opinion, the
most promising theory currently being developed for protein DEP is that emerging from Matyushov’s
group [8,10]. An attempt to summarize this is given in the accompanying paper [11], within the
frameworks of the development and application of the molecular CM-relation in classical dielectric
theory; the key dielectric properties of solvated proteins; the published work on protein DEP.

In all of this it is instructive to appreciate how the CM-factor is incorporated into present DEP
theory. A detailed description is presented elsewhere [9], but in brief it is based on the following
sequence of assumptions and derivations:

(i) The internal electrical field Ei induced in an uncharged (or uniformly charged) spherical particle,
of radius R, located in an electric field Em within a dielectric medium is given by:

Ei =

(
3εm

εp + 2εm

)
Em (1)

with εp and εm the relative permittivity of the particle and surrounding medium, respectively. It
is assumed that εp and εm are well defined. At the molecular scale this requires certain conditions
to be met regarding dipole–dipole correlations. Boundary conditions also assume that the electric
potential, current density and displacement flux are continuous across an infinitesimally thin
surface at the sphere’s interface with the surrounding medium. Fine details such as those that
occur, for example, at the molecular interface between a protein and its hydration sheath are
not considered.

(ii) The induced polarization Pp per unit volume of the sphere is given by:
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Pp =
(
εp − εm

)
εoEi = 3εoεm

(
εp − εm

εp + 2εm

)
Em (2)

where εo is the permittivity of vacuum. The macroscopic dielectric concepts involved in this
equation and throughout this paper are summarized in Figure 1. It is assumed that the polarization
Pm of the surrounding medium remains uniform right up to the particle–medium interface. This
assumption requires examination at the molecular scale.

(iii) The dipole moment m of the sphere is the value of Pp multiplied by the sphere’s volume:

m = 4πR3εoεm

(
εp − εm

εp + 2εm

)
Em (3)

The term in brackets in Equations (2) and (3) is the Clausius–Mossotti (CM) function. Depending
on the relative values of εp and εm, CM is limited to values between +1.0 (εp >> εm) and −0.5
(εp << εm). This represents a severe limitation, at the macroscopic scale, to the range of effective
dipole moment densities that a particle can assume.

(iv) For the case where Em has a gradient, the particle experiences a DEP force given by:

FDEP = (m · ∇)Em (4)

where ∇ is the gradient (del) operator and Em is assumed irrotational (i.e., ∇×Em = 0). This
assumption holds if Em is said to be a conservative field. In our particular case of DEP, this
means that moving a polarized particle from location a to b, and then back again to location
a, will involve no net expenditure of work by the field. The actual path taken in moving from
say a to z is of no relevance. In the language of thermodynamics each infinitesimal change in
location is reversible. At the molecular level, the DEP motion of a protein involves the breaking
(enthalpy absorbed and entropy increased) and remaking of hydrogen-bonded water networks at
the hydrodynamic plane of shear. Some interesting variations of changes in Gibbs free energy
(∆G = ∆H − T ∆S) might occur. The response of an assembly of dipoles to an external electric
field is basically a thermodynamically non-equilibrium process—the thermal energy is never
equally distributed among the various degrees of motional freedom of the dipoles. Perhaps, at
the molecular level, each infinitesimal change in location is not reversible?

From Equations (3) and (4):

FDEP = 4πR3εoεm

(
εp − εm

εp + 2εm

)
(Em · ∇)Em = 2πR3εoεm

(
εp − εm

εp + 2εm

)
∇E2

m (5)

Equation (5) can be extended to describe oblate and prolate spheroids by introducing a polarization
parameter that moderates the internal field, and AC fields are accommodated using a complex CM (i.e.,
contains real and imaginary components) that takes into account the phase difference between charge
displacement and ohmic currents in particles exhibiting dielectric losses. The complex conductivity
and permittivity are related by σ∗ = iωεoε∗ where i =

√
−1 and ω is the radian frequency of the applied

r.m.s. field Eo. The form of CM (the term in brackets) shown in Equation (5) is valid at high frequencies
(typically >50 MHz). At DC and below ~100 Hz

CM =

(
σp − σm

σp + 2σm

)
(6)

At intermediate frequencies CM contains real and imaginary components, with only the real value
(Re[CM]) employed in Equation (5).
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Figure 1. A dielectric of relative permittivity ɛm is shown partly inserted between two electrified 
electrodes. ‘Free’ charge density σ on the electrodes creates the Maxwell field E and electric 
displacement D (both = σ/ɛo). ‘Bound’ charge density Δσ created by polarization (charge displacement) 
of the dielectric generates the polarization vector P (Δσ = ௦ܲ ⋅ ݊̑ = ܲ), and equates to the number density 
of polarized molecules – i.e., the dielectric’s dipole moment M per unit volume. These relationships give 
D = E + P/ɛo, and P = ɛo(ɛm−1)Eo = χmɛoEo. 
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According to the standard induced dipole moment model of DEP, CM is limited to the range of 
values 1.0 > CM > −0.5, and so the parameters that predominantly determine the magnitude of FDEP are 
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relation is expected regarding the physical dimensions of a globular protein and its molecular weight. 
However, an empirical relationship, provided by Malvern Panalytical® in their calculator software, 
gives a good estimate of a protein’s hydrodynamic (Stokes) radius. This relationship is plotted in 
Figure 2, to show that those proteins reported to exhibit DEP responses have radii in the range 2–7 nm. 
Values of Em and of 2

mE  in the ranges 105–108 V/m and 1012–1024 V2/m3, respectively, are reported for 
the DEP translocation and trapping of protein molecules. We can ask to what extent these fields and 
their gradients are consistent with the expectations of the current theoretical model of DEP when 
applied to a globular protein molecule. This question can be addressed by considering both the 
time-averaged free energy (UDEP = −(mEm)/2) of an electrically polarized particle and the work required 
to overcome the maximum dispersive (diffusional) force acting on it [4] (pp. 352–353). The first 
approach addresses the extent to which UDEP represents a sufficiently deep ‘trap’ to compete against 
thermal energy (3kT)/2 associated with Brownian motion. Using the relationship given for the dipole 
moment m in Equation (3):  
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For the protein to be trapped by DEP, UT must have a negative value—it should represent a sufficiently 
deep potential energy well for the molecule to be trapped for a time equivalent to the inverse of its 
probability to escape. For proteins such as bovine serum albumin (BSA) and avidin  
(R  3.5 nm, T = 300 K, and assigning CM = 0.5) suspended in an aqueous medium (i.e., ɛm  78) the 

Figure 1. A dielectric of relative permittivity εm is shown partly inserted between two electrified
electrodes. ‘Free’ charge density σ on the electrodes creates the Maxwell field E and electric displacement
D (both = σ/εo). ‘Bound’ charge density ∆σ created by polarization (charge displacement) of the dielectric
generates the polarization vector P (∆σ = Ps · n̂ = P), and equates to the number density of polarized
molecules—i.e., the dielectric’s dipole moment M per unit volume. These relationships give D =

E + P/εo, and P = εo(εm − 1)Eo = χmεoEo.

2. The Basic Problem to Be Empirically Resolved

According to the standard induced dipole moment model of DEP, CM is limited to the range
of values 1.0 > CM > −0.5, and so the parameters that predominantly determine the magnitude of
FDEP are particle size and the magnitude of the field-parameter ∇E2

m. In a first approximation a cubic
root relation is expected regarding the physical dimensions of a globular protein and its molecular
weight. However, an empirical relationship, provided by Malvern Panalytical® in their calculator
software, gives a good estimate of a protein’s hydrodynamic (Stokes) radius. This relationship is
plotted in Figure 2, to show that those proteins reported to exhibit DEP responses have radii in the
range 2–7 nm. Values of Em and of ∇E2

m in the ranges 105–108 V/m and 1012–1024 V2/m3, respectively,
are reported for the DEP translocation and trapping of protein molecules. We can ask to what extent
these fields and their gradients are consistent with the expectations of the current theoretical model of
DEP when applied to a globular protein molecule. This question can be addressed by considering
both the time-averaged free energy (UDEP = −(mEm)/2) of an electrically polarized particle and the
work required to overcome the maximum dispersive (diffusional) force acting on it [4] (pp. 352–353).
The first approach addresses the extent to which UDEP represents a sufficiently deep ‘trap’ to compete
against thermal energy (3kT)/2 associated with Brownian motion. Using the relationship given for the
dipole moment m in Equation (3):

UDEP = −
1
2

m · Em = −2πR3εoεm[CM]E2
m (7)

The total free energy UT of a polarized protein molecule is the sum of the Brownian thermal
energy and UDEP:

UT =
3
2

kT + UDEP =
3
2

kT − 2πR3εoεm[CM]E2
m (8)

For the protein to be trapped by DEP, UT must have a negative value—it should represent a
sufficiently deep potential energy well for the molecule to be trapped for a time equivalent to the
inverse of its probability to escape. For proteins such as bovine serum albumin (BSA) and avidin
(R ≈ 3.5 nm, T = 300 K, and assigning CM = 0.5) suspended in an aqueous medium (i.e., εm ≈ 78) the
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required field is Em ≥ 2.3 × 107 V/m. The maximum dispersive force per protein molecule is equal to
-kT/2R. For R ≈ 3.5 nm and T = 300 K, this force is 1.2 × 10−12 N. For the protein molecule to exhibit
DEP it must oppose this dispersive force. With the expression for FDEP from Equation (5) or from
Equation (7), using the definition FDEP = −∇UDEP, this implies the following condition must hold:

2πR3εoεm[CM]∇E2
m > 1.2× 10−12N (9)

For R = 3.5 nm and CM = 0.5 this requires ∇E2
m > 3.5 × 1021 V2/m3. As discussed in Section 3.7,

only two of the reported values of ∇E2
m have exceeded this minimum value. In one reported DEP

manipulation of BSA a value of 1012 V2/m3 is cited! There are also the interesting cases where both
positive and negative DEP of BSA have been reported at DC and 1 kHz, and where DEP of opposite
polarities have also been reported for the same protein types at DC.

Considering the potential importance that protein DEP can offer, these experimental quirks should
be addressed by a critical evaluation of both the validity of Equation (5) for protein DEP and the
reported studies themselves. An effort is made here to examine, in broader detail than we consider
has been attempted previously by others, the reported DEP literature on proteins and the relevant
theory. An assessment is made of possible confounding influences, such as protein aggregation. All of
the reported studies of protein DEP appear to be the results of careful work, and so even the more
puzzling cases should assist in a better understanding of protein DEP and for the development of a
more appropriate theoretical model to describe the DEP of proteins. We show that the protein DEP
results reported to date are consistent with a model in which an evaluation of an induced dipole
moment through Equations (1)–(3) should not be treated as the sole pertinent consideration. An
important step forward regarding Equation (5) should be inclusion of the intrinsic (i.e., permanent)
dipole moment possessed and well-studied for globular proteins [13]. Of particular importance is the
orientation polarization of this dipole moment [8,10]—a feature overlooked in a previous discourse
where the protein was considered to be a rigid dipole [9].
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(Stokes) radii located on the empirical relationship between protein size and molecular weight (dotted
curve) provided by Malvern Panalytical® (Zetasizer Nano ZS).
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3. The Status of Protein Dielectrophoresis (DEP) Experimentation

3.1. Summary of Protein DEP

The most studied protein for its DEP characteristics is BSA. Figures 3 and 4 provide summaries
of the observed DEP polarity, the frequency of the applied electric field and solution conductivity,
for the two main situations where the field gradients are generated using either conductive electrode
structures (eDEP) or posts/constrictions fabricated from insulator materials (iDEP) [14–42]. Most
investigators observed positive DEP, but in two cases negative iDEP is reported [17,25]. Cao et al. [26]
observed a transition from positive to negative DEP, with the cross-over frequency located between 1
and 10 MHz. The DEP results obtained [2,16,18,24–42] for proteins other than BSA are summarized
in Figure 5. Most research groups report positive DEP for frequencies up to 6 MHz (including direct
current), and of particular note is the observation that avidin and prostate specific antigen (PSA) exhibit
a DEP cross-over frequency at ~10 MHz [27,37]. As summarized in Figure 6, various concentrations
of BSA in aqueous solution have been employed. Included in Figure 6 are the concentrations used
for streptavidin which, after BSA, is the most studied protein for its DEP characteristics. The mean
separation distances between protein molecules for the various protein concentrations are also shown
in Figure 6. This information is of relevance regarding any discussion of possible interaction between
molecules. The molecular separation was estimated on the basis that a 1M solution contains Avogadro’s
number of molecules—i.e., 0.6 molecules/nm3. The volume occupied per molecule is thus 1.66/C nm3

for a C molar solution. The separation distances shown in Figure 6 were calculated by taking the
cube root of the volume per molecule. A wide range of values for the field gradient factor ∇E2 has
been reported by the various investigators for a range of proteins, or has been estimated by Hayes [5]
in his review. These values are shown in Figure 7 for both iDEP and eDEP studies, together with
an indication of the minimum value of ∇E2

m (3.5 × 1021 V2/m3) calculated according to Equation (9),
required to attain a DEP force that overcomes the dispersive forces of Brownian motion. The adjusted
minimum value (~4 × 1018 V2/m3) based on the empirical relationship described in Section 3.4 is also
shown in Figure 7.
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Figure 3. Insulator-based (iDEP) and electrode-based (eDEP) studies reported for bovine serum
albumin (BSA). Most groups observed positive DEP, but two cases of negative iDEP have also been
reported [17,25]. Cao et al. [26] report a DEP cross-over frequency between 1~10 MHz.
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other than BSA. (HRP: horse radish peroxidase; PSA: prostate specific antigen; eGFP: enhanced green
fluorescent protein; TnI-Ab: troponin I antibody).
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3.2. Bovine Serum Albumin (BSA)

BSA is a well-studied, water soluble, protein. It has a molecular weight of 66.5 kDa; is composed
of 583 amino acid residues (54% of which form six α-helices); takes the form of a prolate ellipsoid of
dimensions 14 nm × 4 nm × 4 nm; has an isoelectric point in water of 4.7 at 25 ◦C [43,44]. Most DEP
experiments on BSA have employed pH buffers to maintain a pH of 7.4 or higher. For such studies the
protein molecules were thus negatively charged (the number of ionized acidic side-groups exceeded
that of basic ones). Unbuffered solutions of 0.1 mM concentration and lower typically have a pH
of 5.0–6.0 and are less negatively charged, close to having an equal number of, but not uniformly
distributed, ionized acidic and basic groups. The BSA monomer contains 17 disulphide bridges between
adjacent cysteine groups of its polypeptide chain, whilst bonding of the one free cysteine (Cys34)
between interacting monomers leads to the formation of a dimer. BSA adopts its normal globular
form between pH 4.5 and 7.0, but partially unfolds as the pH approaches the range 8.0–9.0 [45,46].
This unfolding involves the breaking and rearrangement of disulphide bonds, which is temperature
sensitive and can lead to a loss of α-helix content [47,48] and irreversible self-aggregation [49]. It
should also be noted that monomer, dimer and other aggregates typically exist in commercial samples
of BSA [50]. Proteins in general follow first and second order aggregation kinetics [51]. Conformational
change is the rate limiting step in the first order kinetics, making the rate of reaction independent of
initial protein concentration. The second order reaction rate does depend on concentration, because
molecular collision frequency limits formation of dimers, trimers, etc., and heat-induced aggregation.
The suggestion by Nakano et al. [19] that ‘most iDEP manipulations of proteins may require the
control of protein aggregation’ is well-founded, and as discussed in Section 3.4 may be of relevance to
understanding the two conspicuous cases [17,26] of negative iDEP observed for BSA (Figure 3).

3.3. The Dielectric β-Dispersion

Of particular relevance to protein DEP is the fact that globular proteins possess an intrinsic
dipole moment. The magnitude of this moment is given by the resultant of the moments of the
amino acids in the polypeptide chain (especially the additive effect of those forming α-helices), the
moments of the charged acidic and basic groups about the molecule’s hydrodynamic center, and
polarizations of the surrounding water molecules [52]. If the protein molecule is free to rotate about
its prolate major and minor axes, this dipole moment manifests itself as a large dielectric dispersion
(known as the β-dispersion)—the form of which for BSA is shown in Figure 8. By analyzing this
dispersion, Moser et al. [53] computed dipole moment values for the BSA monomer and dimer as
384 D (1.28 × 10−27 Cm) and 636 D (2.12 × 10−27 Cm), respectively. The angle between the dipole
moment and the long axis of the monomer was determined to be 50◦. Moser et al. [53] performed
dielectric and transient birefringence measurements on BSA solutions of concentrations in the range
0.2–1.4 mM and observed the effect of strong intermolecular interactions. In their measurement of the
β-dispersion, Grant et al. [54] considered that the BSA concentrations (0.6–5.5 mM) were “high enough
to permit molecular interaction”.

3.4. Empirical Relationship Connecting Clausius–Mossotti (CM) and the β-Dispersion

For dielectric and impedance spectroscopy measurements on cell suspensions of sufficiently low
volume concentrations cv, the dielectric increment ∆ε depicted in Figure 8, as well as the conductivity
increment ∆σ characterizing this dispersion in terms of the increase of conductivity of the suspension
with increasing frequency, are given by:

∆ε = 3cvεmCM; ∆σ =
1
τ

∆ε (10)

The relationship between ∆ε and ∆σ results from application of the Kramers–Kronig transforms,
where τ is the characteristic relaxation time of the Maxwell-Wagner interfacial polarization giving rise to
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the β-dispersion [4] (Chapter 9). Equation (10) can be extended to accommodate larger values of cv and
to derive multi-shell models for analyzing impedance and DEP measurements on cell suspensions [4].
However, as stated elsewhere [9] (without the following explanation), Equation (10) is not applicable
to protein suspensions. According to the Maxwell–Wagner mixture theory for particle suspensions,
the measured effective permittivity εeff of a dilute particle suspension is given by [4] (pp. 222–223):

εe f f − εm

εe f f + 2εm
= cv

εp − εm

εp + 2εm
(11)

with εp and εm the particle and medium relative permittivity, respectively. The term effective permittivity
is used to signify that a defined volume of a particle suspension may be replaced conceptually with an
equal volume of a homogeneous medium of smeared-out bulk properties.
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Figure 8. The β-dispersion and δ-dispersion, arising from orientation polarization of the protein
and protein-bound water, respectively, exhibited by 0.18 mM BSA (based on Moser et al. [50] and
Grant et al. [51]). The radian frequency of orientation relaxation for BSA is given by the reciprocal
of its relaxation time τ. For frequencies below f xo (~1 MHz) the relative permittivity εr of the BSA
solution exceeds that of pure water, and is less than this above f xo. According to Equation (11) the
dielectric increment ∆ε+ and decrement ∆ε−, respectively, specify the frequency ranges where positive
and negative DEP, respectively, should be observed for monomer BSA in aqueous solution.

Substitution of one volume with the other is assumed to not alter the electric field in the surrounding
medium. The assumption is thus made that εeff ≈ εm, implying that for a sufficiently large observation
scale a heterogeneous compound material can be considered as a homogeneous one. Inserting this
approximation into the denominator of the left-hand side of Equation (11) leads to the expression for
∆ε in Equations (10). However, an instructive result is obtained if this is applied to form a relationship
between the Clausius–Mossotti factor CM and the dielectric increments depicted in Figure 8. For a
dilute protein suspension, this relationship should thus be of the form:

CM =
∆ε

3cvεm
=

∆ε
3εm

(
Cwρp

Cpρw

)
(12)

where Cw and Cp, ρw and ρp, respectively, are the molar concentration and mass density of pure
water and the protein, respectively. The concentration Cw of pure water is taken as 55.5 M (1000 g/L
divided by its molecular weight of 18 g/mol), and protein density values can be derived using the
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molecular-weight-depending function derived by Fischer et al. [55]. Equation (12) qualitatively
predicts that in a frequency range where there is a dielectric increment ∆ε+ a positive value for CM
and a positive DEP response will result. As indicated in Figure 8 the opposite case should also hold
for the high-frequency range where a dielectric decrement is exhibited. But can the CM-factor of
Equation (12) simply be inserted into Equation (5) to describe protein DEP? Moser et al. [53] obtained
∆ε/Cp = 1.11 per mM for a BSA monomer concentration, so that with εm, = 78.4 and ρp = 1.41 gm/cm3,
Equation (12) yields the result CM = 369. This is not possible according to the definition and limited
range of values (1.0 > CM > −0.5) of the macroscopic CM factor derived from Equation (2) for the
induced polarization Pp per unit volume of a particle. Furthermore, based on the work of Takashima
and Asami [56] who obtained values for ∆ε (per mM protein concentration) of 5.06 and 37.24 for
cytochrome-c and carboxypeptidase, respectively, the corresponding values obtained for CM are
1745 and 12,480, respectively! This is the basis for stating [9] that the macroscopic theory leading to
Equation (10) cannot be employed at the molecular level.

If, instead of the assumption εeff ≈ εm, the identity εeff = κεm is inserted into the denominator of
the left-hand side of Equation (11) we obtain the relationship:

(κ+ 2)CM =
∆ε
εm

(
Cwρp

Cpρw

)
(13)

Values for the parameter (κ + 2)CM are given in Table 1, based on values of ∆ε/Cp obtained
experimentally [56–62] for a range of globular proteins. No obvious relationship can be seen to link the
value of a protein’s effective polarization factor (κ + 2)CM (per unit volume) with its molecular weight.
Based on Equations (10) and (13) and the data given in Table 1, the following empirical relationship is
proposed that links the molecular- (micro-) and macro-scales:

CMmicro = (κ + 2)CMmacro (14)

For the DEP of macro-particles, such as mammalian cells and bacteria, the plane of hydrodynamic
shear of the particle, as it undergoes DEP through its suspending medium, can be considered to
coincide with its ‘mathematical’ boundary at the particle–medium interface. At the molecular scale
applicable to protein DEP, however, the situation is far more complicated. The plane of shear is most
likely to lie within the outer boundary of the protein’s hydration shell, whose total extent is defined
when the protein is stationary. We have, as shown schematically in Figure 9, the equivalent of a
molecular ‘Russian doll’. The protein with its permanent dipole moment and most strongly ‘attached’
water that can rotate with it, occupies the inner cavity. The protein’s dipole field extends beyond an
outer ‘macroscopic’ boundary at which the macroscopic boundary conditions of classical electrostatics
can be applied. The medium polarization Pm must be uniform right up to this boundary. Located
within this mathematical boundary is the hydrodynamic plane of shear (defining the zeta-potential
determined by electrophoresis) and the protein’s outer hydration sheath. It is tempting to propose a
conceptual equivalence of Equation (14) in terms of the ratio of two polarizations and interfacial dipole
moment free energies:

Pi
Pm
≡

χiEi
χmEm

≡
〈Mi〉 · Ei
〈Mm〉 · Em

∝ (κ+ 2)CMmacro (15)

where suffices i, m identify the polarization, susceptibility, induced moment and local field in the
protein cavity and bulk medium, respectively. These ratios will be sensitive to the physico-chemical
attributes of a particular protein (e.g., peptide chain folding, net charge and the distribution of polar
and hydrophobic groups on the protein surface) and could explain the very wide range of values of
the parameter (κ + 2)CM given in Table 1. At this stage it is of interest to note that the large values
given for ribonuclease (7000–11,000) and concanavalin (~15,000) would place these proteins above the
minimum required level indicated in Figure 7 for BSA. DEP measurements for the other proteins cited
in Table 1 would be of considerable value in this speculative argument.
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Figure 9. Schematic of a ‘Russian doll’ model for a protein with a permanent dipole moment Mp,
which occupies the innermost cavity together with its strongly bound water molecules. The protein’s
dipole field extends beyond an outer macroscopic, ‘mathematical’, surface where the classical boundary
conditions of electrostatics can be applied. Within this mathematical surface is a boundary that
contains the protein’s outer hydration sheath, and the hydrodynamic plane of shear that defines the
zeta-potential within the protein’s diffuse electrical double-layer.

Table 1. Values of the factor (κ + 2) CM given by Equation (13) for various globular proteins, derived
from reported ∆ε and corresponding protein concentration values. The protein density values were
derived from the weight-depending function given by Fischer et al. [55].

Protein Mol. Wt. Density
(g/cm3)

∆ε/cp
(cp: mM)

(κ + 2)CM
Equation (13) Reference

Ubiquitin 8600 1.49 3.82 4020 [58]
RNAse SA 10,500 1.48 15.00 15,720 [57]

Phospholipase 13,000 1.46 1.82 189 [56]
Cytochrome-c 13,000 1.46 5.06 5240 [56]

Ribonuclease 13,700 1.46
11.0 11,400 [59]
7.12 7350 [56]

Lysozyme 14,300 1.46 1.34 1390 [56]

Myoglobin 17,000 1.45
0.07 2090 [60]
1.79 1440 [61]

Trypsin 23,000 1.43 6.74 6810 [56]
Carboxypeptidase 34,000 1.42 37.24 37,440 [56]

Hemoglobin 64,000 1.41 1.29 1290 [62]
BSA 66,000 1.41 1.11 1110 [53]

Concanavaline 102,000 1.41 15.31 15,270 [56]
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3.5. The β-Dispersion and Dipole Moment Density

The β-dispersion can also conceptually be linked to the DEP frequency response of the BSA
monomer in terms of the polarization (dipole moment density) of the medium and protein molecule.
Two approaches can be adopted. The first involves the ‘book-keeping’ exercise of calculating the
change ∆U of free energy stored in the field as a result of the following three actions: (i) Increase the
field Em from zero (where Dm = 0) to its final value (Dm = εoεrEm) in the medium, that has a total
volume Vm; (ii) reduce Dm by removing from the medium a cavity of volume vp large enough to contain
the hydrated protein molecule; (iii) account for the incremental change (either positive or negative)
of the medium polarization resulting from its interaction with the field of the protein’s induced and
permanent dipole moment. These three actions can be expressed in the form [4] (pp. 87–89):

∆U =
1
2

∫
Vm

∫ D

0
Em · δDdv−

1
2

∫
vp

Em ·Dmdv− δU (16)

Volume Vm is very much larger than vp and so the first integral in Equation (16) represents a
significantly larger contribution to ∆U than the second integral. The δU term thus plays a significant
role. In the macroscopic derivation of the Maxwell–Wagner mixture theory that leads to Equation (10)
the assumption is made that εeff ≈ εm. This effectively removes the requirement for calculating the
δU term in Equation (16), which at a molecular scale is a significant weakness. Evaluation of δU can
conceptually, for our present purpose, be accomplished by assuming the applicability of the boundary
condition regarding continuity of the normal component of displacement flux (D = εrεoEm) across the
interface between the solvated protein and the bulk medium. The free energy change δU is then given
by an integral of the following form [4] (p. 89), taken over the protein’s effective cavity volume υp:

δU =
1
2

∫
νp

(
εm − εp

)
Ei · Emdv (17)

For the frequency range where the dielectric increment ∆ε+ has a finite value in Figure 8, the
protein’s effective permittivity εp can be regarded as being greater than εm. The integral in Equation (14)
thus yields a negative value for δU. According to the work-energy theorem, for frequencies lower than
f xo, work will be required on the particle by the field to withdraw it from the medium. Furthermore,
this free energy is further reduced if the field Em increases. The protein monomer or dimer will attempt
to minimize its electrostatic free energy by moving up a field gradient to a maximum value of this
gradient. This describes the action of positive DEP. For frequencies lower than f xo (i.e., where the
dielectric decrement ∆ε− has a finite value), the protein’s effective permittivity is less than that of the
medium. The protein will move down a field gradient to search for a field minimum. Work is required
by the field to insert the protein into the medium. This describes negative DEP. It is tempting to consider
the cross-over of DEP polarity at 1–10 MHz for BSA, observed by Cao et al. [26], as experimental
evidence for this scenario, because such cross-over is expected from inspection of the β-dispersion
shown in Figure 8.

A second approach to linking the β-dispersion to protein DEP is to consider the time-averaged
potential energy of the polarized protein particle in terms of its polarizability α per unit volume in
unit field [4] (p. 89): 〈U〉 = − 1

2αE2
m (per unit volume). From the fundamental relationships between

the fields E, D, P and the dipole moment M per unit volume (see Figure 1) we have the following
expression for δU in terms of the surface polarization P and induced dipole moment Mp of the solvated
protein:

δU =
1
2

〈
Mp

〉
· Em, where Mp =

∫
vp

Ps · n̂dv (18)

The magnitude of Mp will give the strength of the DEP force, whilst its polarity will also define
the FDEP polarity. A negative value for Mp will indicate it is directed against the direction of Em. Work
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will be required to insert the polarized particle into the field Em within the aqueous medium. This
describes negative DEP. A polarized protein possessing a positive value for Mp will be aligned with Em

and exhibit positive DEP.
Defining the protein’s effective cavity volume vp to be used in the integrals of Equations (17) and

(15) is not straightforward. Different protein molecules have from 0.20 to 0.70 g strongly associated
(bound) water per g protein, contributing to its effective radius of rotation by up to one to two water
molecule diameters [63]. From their studies, Moser et al. [53] determined a hydration of 0.64 g of H2O
per g of BSA. Grant et al. [54] confirmed the existence of a subsidiary dispersion (δ-dispersion) in the
frequency range 200–2000 MHz, and concluded that this dispersion is probably due to the rotational
relaxation of water ‘bound’ to the protein. The term ‘bound water’ is taken to mean water bound to
the protein by bonding of greater strength than the water–water bonding that exists in pure bulk water.
This characteristic water structure that is formed near the surfaces of solvated proteins arises not only
through hydrogen bonding of the water molecules to available proton donor and proton acceptor sites
on the protein surface, but also through electrostatic forces associated with the water molecule’s electric
dipole moment. The protein molecule and the water around it thus form a strongly coupled system,
involving mechanical damping of the protein motion by adsorbed water, together with a dynamic
electrical coupling between the tumbling electric dipole of the protein and the fluctuating dipoles of
the adsorbed and bulk water. With such heterogeneity of the dielectric medium and also possibly of Ei
within the effective volume υp, computation of the integrals in Equations (17) and (18) thus involves
some ‘interesting’ challenges. Not least of which is defining the effective volume υp of the protein, and
how the normal components of displacement flux D and polarization P vary within the heterogeneous
boundary between the protein’s surface and the bulk aqueous medium.

3.6. Interfacial Polarizations

The formation of defect dipoles in both amorphous and crystalline polymers is known to influence
their dielectric properties [64]. Examples of possible relevance to protein DEP are depicted in Figure 10.
These are suggested examples where the standard boundary conditions of Maxwell-based electrostatics
may not apply—the implications of which have been described by Martin et al. for the specific
case of a ‘Rossky cavity’ [65]. The example shown in Figure 10a could, for example, depict the
disruption of the network of hydrogen bonds at a protein–water interface—possibly resulting in the
creation of nanodomains that have the capability of dynamically freezing into a ferroelectric glass [66].
Ferroelectric materials are known to develop structures with curls on their faces where the field is no
longer conservative [67]. This of relevance to Equation (4) in which Em is assumed to be irrotational.
Boundaries of the form depicted in Figure 10b between dielectrics of different permittivity have been
shown, through theory and classical molecular dynamics simulations of hydrated cytochrome c, to
exist in the hydration shells of proteins [68]. The large dispersion strength (∆ε ~ 2400) shown in
Figure 10c for a suspension of polystyrene microspheres was analyzed and determined not to arise
from classical Maxwell–Wagner interfacial polarization, electrophoretic particle acceleration, or the
presence of a frequency-independent surface conductance [69]. The most likely origin was considered
to be a frequency-dependent surface conductance that varies with the ionic strength of the suspending
aqueous electrolyte. Interfacial polarizations of these types should be included in the exercise to
find a molecular-based DEP theory. It is also pertinent to mention that excised samples of biological
tissue can exhibit large ∆ε values [52], a good example being skeletal muscle with measured relative
permittivity εr ≈ 107 at 10 Hz [70]. This is known as the α-dispersion and, according to the convention
used in assigning Greek letters to dielectric dispersions, occurs in a frequency range below that of the
β-dispersion.
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suspension of polystyrene nanospheres (R = 94 nm) (based on Schwan et al. [69]). 

3.7. Protein Dipole Polarization 

Other paths to formulation of the DEP force acting on a protein permanent dipole are through 
either Equation (4) or, as follows, the relationship between UDEP and FDEP given by Equation (7). In the 
absence of an electric field, the orientations of the dipole moments of proteins in solution will on 
average be distributed with the same probability over all directions. On average their net dipole 
moment in any specific direction is zero. On application of a field each dipole will experience a field 
alignment torque m  Ei, so that net polarization results. The electrical potential energy U of each dipole 
is given by U = −(mEicosθ), where θ is the angle between the dipole moment and the local field vector 
Ei. From Boltzmann–Maxwell statistics the probability of finding a dipole oriented in an element of 
solid angle d is proportional to exp(−U/kT), with k the Boltzmann constant and T in kelvin. A moment 
pointing in the same direction as d has a component (mcosθ) in the direction of Ei. As detailed 
elsewhere [4,9] the thermal average of cos is given by the derivation of the so-called Langevin 
function:  

ݏܿ⟩  ⟨ߠ = ∫ ௫(ି/்) ௦ ఏௗఆ
∫ ௫(ି/்)ௗఆ

= 
ଷ்

൬1 − ଵ
ଵହ

ቀா
்

ቁ
ଶ

൰ (19) 

For a monomer BSA dipole moment of m = 384 D and Ei  3  105 V/m (e.g., Lapizco-Encinas et al. [17], 
assuming Ei  Eo) the factor (mEi/kT)  0.01. So, to a good approximation ݉⟨ܿݏ ⟨ߠ = ݉ଶܧ/3݇ܶ. For Ei > 
3  107 V/m (e.g., Cao et al. [26]) the full expression for the thermal average of cos should be used. 
With an applied field less than 106 V/m, then through Equation (7) the average orientational DEP force 
(FoDEP) acting on a protein’s dipole is given by:  

ாܨ  = ாܷߘ− = ݏܿ⟩݉) ⟨ߠ ⋅ ܧ(ߘ = మ

ଷ்
ܧ) ⋅ ܧ(ߘ = మ

்
ܧߘ

ଶ (20) 

This expression for FoDEP, which also follows from Equation (4), has two important features. The first is 
that the DEP force exerted on a polarized protein molecule possessing a permanent dipole moment is 
directly proportional to ∇E2. Previously, one of the authors [9] has concluded that for frequencies below 

Figure 10. (a) Schematic of a dipole formed at the site of a structural defect in a molecular lattice.
An example could be the disruption of the hydrogen bond network in bulk water at a protein–water
interface—with the possible creation of ferroelectric nanodomains [66]. (b) Dipole polarization at a
boundary of dielectric inhomogeneity. A solvated protein, with its bound water and surrounding bulk
water, represents an inhomogeneous dielectric [68]. (c) Dielectric dispersion exhibited by an aqueous
suspension of polystyrene nanospheres (R = 94 nm) (based on Schwan et al. [69]).

3.7. Protein Dipole Polarization

Other paths to formulation of the DEP force acting on a protein permanent dipole are through
either Equation (4) or, as follows, the relationship between UDEP and FDEP given by Equation (7). In
the absence of an electric field, the orientations of the dipole moments of proteins in solution will
on average be distributed with the same probability over all directions. On average their net dipole
moment in any specific direction is zero. On application of a field each dipole will experience a field
alignment torque m × Ei, so that net polarization results. The electrical potential energy U of each
dipole is given by U = −(mEicosθ), where θ is the angle between the dipole moment and the local
field vector Ei. From Boltzmann–Maxwell statistics the probability of finding a dipole oriented in
an element of solid angle dΩ is proportional to exp(−U/kT), with k the Boltzmann constant and T in
kelvin. A moment pointing in the same direction as dΩ has a component (mcosθ) in the direction of
Ei. As detailed elsewhere [4,9] the thermal average of cosθ is given by the derivation of the so-called
Langevin function:

〈cosθ〉 =

∫
exp(−U/kT)cosθdΩ∫

exp(−U/kT)dΩ
=

m
3kT

(
1−

1
15

(mEi
kT

)2)
(19)

For a monomer BSA dipole moment of m = 384 D and Ei ≈ 3 × 105 V/m (e.g.,
Lapizco-Encinas et al. [17], assuming Ei ≈ Eo) the factor (mEi/kT) ≈ 0.01. So, to a good approximation
m〈cosθ〉 = m2Ei/3kT. For Ei > 3 × 107 V/m (e.g., Cao et al. [26]) the full expression for the thermal
average of cosθ should be used. With an applied field less than 106 V/m, then through Equation (7) the
average orientational DEP force (FoDEP) acting on a protein’s dipole is given by:

FoDEP = −∇UDEP = (m〈cosθ〉 · ∇)Ei =
m2

3kT
(Ei · ∇)Ei =

m2

6kT
∇E2

i (20)

This expression for FoDEP, which also follows from Equation (4), has two important features. The
first is that the DEP force exerted on a polarized protein molecule possessing a permanent dipole
moment is directly proportional to ∇E2. Previously, one of the authors [9] has concluded that for
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frequencies below f xo (see Figure 8) proteins with a permanent dipole should exhibit positive DEP
directly proportional to ∇E, and not ∇E2, whereas negative DEP should be expected solely above
f xo and have a ∇E2 dependence. This conclusion is only valid for a ‘rigid’ protein molecule whose
dipole is constrained from responding to the alignment torque m×Ei, or where the relaxation time of
the protein’s permanent dipole is too slow to respond to a high-frequency oscillating field. Based on
Equation (20) the ratio of the DEP force exerted on an orientationally polarized dipole moment to that
on an induced dipole moment (Equation (5)) is:

FoDEP(orientation)
FDEP(induced)

=
m2

12πR3kTεoεm[CM]
= 1.85× 1028 m2

R3
Ei
Em

(k = 1.38× 10−23 J·K−1; T = 300 K; εm = 80; CM = 0.5)
(21)

For monomer BSA (m = 1.28 × 10−27 Cm; R = 3.5 nm), and assuming Ei = Em, this gives near
equality of FoDEP and FDEP (FoDEP = 0.71 FDEP). This result indicates that unless Ei >> Em, Equation (20)
does not offer a theoretical basis to explain why the majority of experimental ∇E2 values shown in
Figure 7 fall well below the minimum requirement of ∇E2 > 3.5 × 1021 V2/m3. It also implies that
we require a better understanding of the relationship between the DEP force and the β-dispersion
shown in Figure 8. Qualitatively, a protein molecule will exhibit positive DEP if the polarization per
unit volume (i.e., total dipole moment) of the bulk water it displaces is less than that of the protein
and its associated water molecules of solvation. A quantitative understanding should include a
molecular-level description of short- and long-range interactions of the dipoles (protein–water and
water–water) and the nature of the interfacial and/or dipole charges that can create the situation
Ei >> Em. A route to this might be offered through the suggested empirical relationship given in
Equation (15), that relates the protein’s local cavity field and its polarization to the large values of the
effective polarization factor (κ + 2)CM given in Table 1. Of the proteins listed in Table 1, only three
(BSA, concanavalin, ribonuclease) appear to have been investigated for their DEP characteristics. It is
of interest to compare the locations of these proteins in the ∇E2 ‘ranking’ of Figure 7, with their relative
values of (κ + 2) CM given in Table 1 (~1000: BSA; ~11,000: ribonuclease; ~ 15,000: concanavalin). If
the macroscopic CM factor is replaced by the proposed microscopic version (κ + 1)CM in Equation (9),
then the DEP results cited for ribonuclease and concanavalin lie well above the ‘minimum required’
level in Figure 7.

3.8. Protein Stability

Concerning the interesting cases [17,25] of negative iDEP indicated for BSA in Figure 3, both
studies were carefully performed and analyzed, so there is no intent here to label their experiments
as ‘wrong’. It is often the case in biological work that the ‘odd’ finding is the very one to pursue
further. Lapizco-Encinas et al. [17]—the first to report protein iDEP—employed a BSA concentration
of 0.46 mM, buffered at high pH (8 and 9) and ionic conductivities (10 mS/m). This brings their
situation to within the bounds of protein conformational change and unfolding, as well as loss of
α-helix content and self-aggregation [45–49]. A concentration of 0.46 mM is also within the range
(0.2–0.6 mM) where dielectric studies [53,54] provided evidence of strong intermolecular interactions
(see also Figure 6). As a general rule, in an aqueous environment with a high ionic strength (i.e., high
conductivity) the solvated ions compete with the protein molecules in binding with water, to such an
extent that the protein molecules tend to associate with each other. This is because protein–protein
interactions become energetically more favorable than protein–solvent interaction [71]. The result is the
precipitation of the least soluble solute—namely the protein. This could easily have been interpreted
by Lapizco-Encinas et al. as collection of the protein by negative DEP. There is also the possibility
that true iDEP of aggregates, rather than precipitation, was observed. This would explain why a very
small field (~105 V/m) could be employed, and might also provide insights into the DEP behavior
of a test sample as it makes the transition from the molecular- to the macro-scale. In their studies,
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Zhang et al. [25] employed low sample concentrations (0.78 µM) but high conductivities (0.1 S/m). The
likelihood of molecular interactions and self-aggregation was thus low (Figure 6) but with such a high
ionic strength the precipitation of the BSA was likely.

3.9. Other Experimental Details

Comprehensive details of electrode and chamber designs for both iDEP and eDEP devices have
been reviewed elsewhere [5,7,72–74] and are not considered here. Also, for some studies thorough
consideration may not have been given to the possible confounding influence of electrothermal
effects. We consider these to be relatively minor considerations for the bigger picture. The following
experimental aspects are, however, suggested for further consideration.

For a quantitative interpretation of the published results one has to be aware that the reported
experimental parameters are often not given or might be somewhat uncertain. One reason for this is
the high surface-to-volume ratio of the microfluidic system. This is required because microscope-aided
observation of protein DEP calls for flat observation chambers with typical heights between 20 and
200 µm, ranging down to 2 µm [24,39] and even 200 nm [33,34]. This relatively large surface area can
result in uncertainties concerning conductivity, pH value and solute concentration. At initially low
ionic strength tiny amounts of contamination can lead to a substantial increase in conductivity. This
holds, to a lesser extent, also for the pH value. Depending on the experimental arrangement, diffusion
of CO2 from the environment can lead to an increased conductivity and lowered pH value. In DC-DEP,
artificial pH gradients might also be generated in a way similar to the preparation of pH gradients
for isoelectric focusing. Due to adsorption at the surface of the measuring chamber, as well as within
fluidic tubing, solute concentrations can decrease even in the course of the actual experiment. Often,
counter-measures are taken using buffers or surface modifications [19,32]. Published results should
thus be compared and interpreted carefully.

Another cause of uncertainty is the determination of electrical parameters. Sometimes it is not
clear whether voltages are given as peak-to-peak or as root-mean-square (rms) values. In about half
the work on protein DEP, values of either |E| or ∇ |E|2 are calculated. Both values are given for only a
few of the studies cited here [16,20,38]. The spatial distribution of just |E| is given by Agastin et al. [18],
that of ∇ |E|2 in rather more cases [20,22,26,28,32,37] and sometimes the distribution of both values is
given [22,26,38]. Owing to experimental limitations actual measurements of |E| or ∇ |E|2 have not been
carried out in any of these works. All calculations have been performed numerically by commercial
software based on finite-element-methods (FEM). Although this is not specified by any of the authors,
it is very probable that the spatial models of these simulations were based on simple geometrical bodies
like cuboids and cylinders. This means that in essence the edges are modelled with infinitesimal radius
of curvature. This should lead to infinite values of both |E| and ∇ |E|2 since both are calculated as
spatial derivatives of the potential distribution. In practice, this is not the case because the calculations
are performed on a mesh or grid with finite resolution. This means that the field distributions are
qualitatively correct. However, the maximal values of |E| and ∇ |E|2 are now dependent on the spatial
resolution of the mesh. It might well be that in several cases the resolution is not known because
the software automatically adapts the mesh locally. In only two reports have the resolutions been
given—namely, values of 50 nm3 [38] and 100 nm3 [23]. In order to determine the impact of the chosen
resolution we have calculated the field distribution for two basic electrode arrangements, i.e., for
co-planar interdigitated electrodes and for arrays of cylindrical pins. Using the FEM software Maze
(Field Precision, Albuquerque, USA) the resolution of the Cartesian grid was varied from 120 nm
down to 12 nm. This produced a roughly linear increase of both |E| and ∇ |E|2 (data not shown) with
resolution (i.e., with the inverse of the linear voxel dimensions). For interdigitated electrodes |E| and ∇
|E|2 increase by a factor of 4 and 10, respectively, whilst for cylindrical arrays these factors amount to 2
and 60, respectively. As a consequence, the currently available data on |E| and ∇ |E|2 should only serve
as a more or less rough estimate when comparing them with physical theory.
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4. Concluding Comments

Commencing with the first reported studies in 1994 of the DEP responses of avidin,
chymotripsinogen, concanavalin and ribonuclease [2] at least 22 different globular proteins have
now been investigated for their DEP responses [2,14–42]. Aspects of this work are examined here,
covering details not encompassed in previous reviews [1,3–7] of protein DEP. Apart from a few cases,
whether through insulator-based (iDEP), electrode-based (eDEP) investigations, at DC or with applied
field frequencies ranging from 20 Hz to 30 MHz, the reported results are largely consistent. In their
DEP analyses all the authors employ the standard induced-dipole moment theory that employs the
Clausius-Mossotti (CM) factor derived from macroscopic electrostatics. However, apart from the three
studies of Laux et al. [23], Zhang et al. [25] and Cao et al. [26], none of the reported DEP responses
can be explained in terms of the limitations set by this classical theory. As shown in Figure 7, only
these three studies employed a gradient field factor ∇E2

m > 3.5 × 1021 V2/m3 required, according to
Equation (9), to overcome the dispersive forces associated with the Brownian motion of the protein
molecules. All of the other studies fell far short of this requirement. In one reported DEP manipulation
of BSA, a value of 1012 V2/m3 is cited [17].

Of particular relevance to protein DEP is the fact that globular proteins possess an intrinsic dipole
moment. If the protein molecule is not rigid, but free to rotate about a major or minor axis when
subjected to an applied AC field, this dipole moment manifests itself as a large dielectric dispersion
known as the β-dispersion. The form of this dispersion for BSA is shown in Figure 8. For the frequency
range where the β-dispersion exhibits a dielectric increment ∆ε+, the protein’s effective permittivity
εp can be regarded as being greater than the value εm for the surrounding medium. This should
result in a positive DEP response. A negative DEP response should then be exhibited on increasing
the field frequency to the part of the β-dispersion where a dielectric decrement occurs, as shown
in Figure 8. There are three examples where a DEP cross-over (transition from positive to negative
DEP with increasing frequency) has been observed at 1–10 MHz, namely: that reported for BSA by
Cao et al. [26] as shown in Figure 3; for avidin (Bakewell et al. [27]) and PSA (Kim et al. [37]) as shown
in Figure 5. This is consistent with the DEP responses of these proteins resulting from polarization of
their permanent dipole moment, and not only as the result of an induced dipole moment.

The DEP force arising from a permanent dipole moment is given by Equation (20), and is shown
to be directly proportional to ∇E2. This corrects a previous conclusion [9], based on the presumption of
a rigid rather than rotationally free permanent dipole, that the DEP force arising from a permanent
dipole would be proportional to ∇E. However, as shown by Equation (21), the contribution of the
DEP force expected for a BSA from its permanent dipole moment is predicted (according to current
accepted theory) to be slightly less than the contribution of its induced moment. This indicates that,
unless the ‘cavity’ field experienced by the protein molecule is very much larger than the field existing
within the surrounding bulk medium, we have is no explanation in terms of the standard DEP theory
(even if modified to encompass both an induced plus a permanent dipole moment) why the majority
of experimental ∇E2 values shown in Figure 7 fall well below the minimum requirement of ∇E2 >

3.5 × 1021 V2/m3 to overcome thermal dispersion effects. As shown in Figure 7, the minimum required
∇E2 value is lowered by a factor of ~1000-fold for BSA, if the macroscopic CM-factor is replaced in
Equations (5) and (9) by the empirically based molecular version CMmicro = (κ + 2)CMmacro formulated
in Section 3.4, and tabulated for various proteins in Table 1. Of the proteins listed in Table 1, only
three (BSA, concanavalin, ribonuclease) are cited in Figure 7. The location of these proteins in the ∇E2

‘ranking’ of Figure 7 is significant. Their relative values of (κ + 2)CM given in Table 1, namely: ~11,000
for ribonuclease and ~15,000 for concanavalin, would place them above the minimum requirement
level indicated in Figure 7 for BSA. It would clearly be of value to populate Table 1 with as yet
unavailable dielectric spectroscopy data for the other proteins cited in Figure 5, and vice versa. With
this information protocols could be developed to spatially manipulate or selectively sort targeted
protein molecules, so bringing protein DEP in line with the achievements and promise enjoyed by the
more established DEP of cells and bacteria, for example [75].
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Finally, Equation (15) is offered for the following relationships between the ratios of the polarization
of a protein in its cavity field and of the surrounding medium:

Pi
Pm
≡

χiEi
χmEm

≡
〈Mi〉 · Ei
〈Mm〉 · Em

∝ (κ+ 2)CMmacro

These ratios will be sensitive to the physico-chemical attributes of a particular protein (e.g., peptide
chain folding, net charge, and the distribution of polar and hydrophobic groups on the protein surface)
and could explain the very wide range of values for the parameter (κ + 2)CM given in Table 1. This
empirical-based suggestion mirrors various theoretical findings of Matyushov and co-workers [8,10].
The possible significance of this for further development of a robust theory for protein DEP is discussed
in an accompanying paper [11].
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