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Abstract: It is commonly known that the performance of an electrostatic microelectromechanical
system (MEMS) device is limited to a specific range of the full gap distance due to the inherited
“pull-in instability” phenomenon. In this work, we design a controller to extend the stabilization range
of an electrostatic MEMS device and to enhance its performance. The interconnection and damping
assignment-passivity based control (IDA-PBC) method is used and the controller design involves
coordinate transformations and a coupling between the mechanical and electrical subsystems of the
device. The method deploys a design of a speed observer to estimate the speed, which cannot be
directly measured by sensors. The effectiveness of the dynamical controller is verified via numerical
simulations; it is evident by the extended travel range of the parallel plates as well as the improved
performance of the plates, even with a naturally lighter damping ratio.
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1. Introduction

The electrostatic actuator is commonly used in microelectromechanical system (MEMS)
applications such as microswitches [1], micromirrors [2], microvalves [3] and micropumps [4].
The actuator is characterized by the simplicity of its structure and the flexibility of the operation.
However, the performance of the electrostatic MEMS actuator is limited to a specific range. If an
open-loop control approach is used to control the position of the actuator, the stability is limited to
only one third of the full gap distance, which is called the pull-in or snap-through range [5]. Therefore,
the system suffers from instability issues by undergoing a saddle node bifurcation. Different advanced
closed-loop control strategies were proposed in the literature to extend the travel range of the actuator.

A linearization method was deployed in some works, as in [6], while in others nonlinear
control techniques were proposed, such as static and dynamic sliding mode control [7], backstepping
control [8,9], and differential flatness [10]. Nonlinear control approaches based on the passivity-based
control of MEMS have also been reported in the literature. In [11], this method has been used
to stabilize a one-degree of freedom actuator in the presence of parasitic capacitance. Moreover,
the passivity-based design has been proposed in [5] to stabilize and improve the performance of
an electrostatic actuator. Other works focused on other issues associated with this type of MEMS
including; eliminating the influence of the parasitic capacitance, which is a critical problem in MEMS
capacitive accelerometers [12]. The influence of the applied driving force was studied to evaluate the
measurement variations in resonant characteristics of electrostatically actuated MEMS resonators [13]
and the influence of the surface processing technology on the mechanical properties and behaviors of
the electrostatic MEMS devices [14].
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In addition to the works which have focused on the stability and controller design methods
for MEMS actuators, there have been several works reported in the literature investigating the
design, fabrication, and characterization of the electrostatic MEMS devices, aiming at improving the
modelling accuracy, counteracting the non-linear effects of pull-in instability to extend the range
of operation, and to create devices that yield good performance even under changing operational
conditions and environments [15]. Such works have dealt with the design, structure shape and
geometry of the device (mainly the electrodes), as well as taking into consideration some practical
considerations, such as the effect of fringing fields, deformation, buckling, nonlinear structural stiffness
(spring configuration), and stiction/adhesion. A comprehensive review that includes several proposed
approaches was reported in [1]. A noticeable structural design that solves the shortcomings of the
parallel plates type (including pull-in instability, displacement limitation and high voltage demands)
due to electrostatic spring softening nonlinearity is the curved electrodes (microbeams), arches or
buckled beams [16]. The curved electrodes offer large displacements for lower actuation voltages and
power dissipation. Additionally, the pull-in instability range is minimized, thus extending the stable
region while maintaining large electrostatic forces [15–18]. The curved electrodes were successfully
used in many applications reported in the literature, including fabricating curved silicon membranes.
They demonstrated their utility as MEMS actuators [15], curved electrode electrostatic actuators
in viscous dielectric media [16], for underwater bio-MEMS applications [17], and for microvalve
applications [18].

One of the passivity-based methods that has recently been used in many important control
applications is the interconnection and damping assignment passivity-based control (IDA-PBC)
approach. This method was introduced in [19] to control port-Hamiltonian systems by damping
injection and energy shaping. The IDA-PBC has been applied to different types of mechanical,
electrical and mechatronic systems such as quadrotors [20], rotary inverted pendulums [21], full bridge
rectifiers [22] and bond graphs [23]. In addition, this method was used in electrostatic MEMS actuators
to improve the stability and the behavior of the system. In [24,25], the IDA-PBC was used to control and
improve the performance of an electrostatic MEMS actuator which belongs to a class of weakly-coupled
electromechanical systems. As thoroughly discussed in [25], those systems are characterized by a lack
of effective coupling between the mechanical and electrical subsystems. By utilizing the coordinate
transformations and introducing integral control along with damping injection, stabilization and
performance enhancement as well as robustness of the system against disturbances are obtained.
Additionally, designing the controller by coordinate transformations was also used in the studies [26,27].
In [25], a coupling was introduced in the interconnection matrix in a magnetic levitation system to
enhance the coupling between the mechanical subsystem (the momentum coordinate) and the electrical
subsystem (the flux coordinate).

However, for the MEMS application, as it is difficult practically to involve speed measurements,
the coupling that leads to the appearance of momentum (speed) states in the controller has been
avoided. Motivated by these previous works and the wide applications of electrostatic-type MEMS,
the main contribution of this paper is to analyze this system focusing on its inherently nonlinear effect
called “pull-in instability”. We then introduce the dynamic IDA-PBC controller by enforcing a coupling
between the momentum coordinate and the charge coordinate in an electrostatic MEMS actuator to
improve the transient response of the system and extend its range of operation, i.e., beyond its pull-in
instability range. This requires the construction of a speed observer to estimate the speed (momentum)
of the PCH model, which is not achievable practically.

The rest of the paper is organized as follows: In Section 2, the mathematical model of the
electrostatic MEMS actuator is introduced. A full pull-in stability analysis of the system is discussed in
Section 3. Section 4 presents the port-Hamiltonian model of the system and the design of a dynamic
IDA-PBC controller along with the speed observer. The results of numerical simulations are shown in
Section 5. Finally, Section 6 gives concluding remarks.
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2. The Mathematical Model of the Electrostatic MEMS Actuator

The schematic of an electrostatic actuator is shown in Figure 1 The mechanical subsystem consists
of a linear spring with stiffness k, a damper with damping coefficient b and a movable plate with mass
m, while the other plate is fixed. The gap distance is q(t) and qz is the distance when the applied
voltage is zero. The electrical subsystem consists of a resistor R and a voltage source Vs to drive the
system. The mechanical subsystem equation can be found by applying Newton’s second law to the
mechanical parts [5,24]:

m
..
q(t) + b

.
q(t) + k(q(t) − qz) = −Felectric (1)

where Felectric is the electrostatic force which can be given by:

Felectric =
Q(t)2

2Aε
(2a)

where Q(t) is the electric charge, A is the area of the moving plate and ε is the electrical permittivity.
Using the actuator capacitance C = Aε/q and the relationship between the charge and voltage of
the parallel plate capacitor Q = CV, the electrostatic force can be also represented using voltage
representation as

Felectric = −
AεV2

s

2q2 (2b)

The electrical subsystem equation can be found by applying Kirchhoff’s voltage law to the
circuit [5,24]:

.
Q(t) =

1
R

(
Vs −

Q(t)q(t)
Aε

)
(3)

The equations of the system can be found by rearranging (1–3) and defining the states vector as
[q, p, Q]T =[x1, x2, x3]

T where p is the momentum. Thus, the equations can be rewritten as [24]:

.
x1 =

x2

m
(4a)

.
x2 = −k(x1 − qz) −

bx2

m
−

x2
3

2Aε
(4b)

.
x3 = −

x1x3

εRA
+

Vs

R
(4c)

In Equation (4c), Vs is the control input u. The position of the movable plate is controlled typically
via a voltage or charge control depending on the type of the electrical parameter (source) being applied
across the parallel plates (capacitor). A voltage-controlled electrostatic MEMS (Figure 1a) uses a voltage
source, while for a charged-controlled electrostatic MEMS (Figure 1b) the electrical source is a current
source that directly controls the amount of charge on the plates [28].

Here, we adopt the voltage-controlled method. Before proceeding with the analysis and controller
design, the equilibrium points of the system must be defined. The equilibria can be estimated by
setting (4) to zero, that is

.
x1 =

x2

m
= 0 ⇒ x2 = 0 (*a)

.
x2 = −k(x1 − qz) −

bx2

m
−

x2
3

2Aε
= 0 ⇒ x2

3 = 2Akε(qz − x1) (*b)

.
x3 =

−x1x3

εRA
+

u
R

= 0 ⇒ u =
x1x3

Aε
(*c)

As discussed in Remark 3.1 and [29], in such a system, which is in fact an underdetermined
system, the equilibria are called forced equilibria as the position of the plate can only be maintained by
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means of a bias voltage or drained current from the input source [30]. Therefore, for any given desired
equilibrium (position) x1d ∈ (0, qz) there is a corresponding desired input ud.

For the charge-controlled method, it can also be shown from Equation (*), the equilibrium for a
desired position x1d , given x2 = 0, x3d =

√
2Akε(qz − x1d) and ud = Vsd =

x1dx3d
Aε . When the system

is at rest, the voltage ud = Vsd = 0, which implies the charge (x3d = 0) and from (*b) ⇒ x1d = qz .
For the case of full-gap position when x1 = 0 and from (*b) ⇒ x3d =

√
2Akεqz . The equilibrium for

the voltage-controlled method is determined based on the pull-in stability phenomenon which will be
discussed in Section 3.
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Figure 1. Scheme of 1-DOF parallel-plate electrostatic actuator.

Remark 2.1. Another main difference between the charge and voltage-controlled methods is the type of energy
function used to define the generalized effort (electrostatic force) Felectric the energy function is used in the case of
the charge-controlled method while the co-energy function is used in the voltage-controlled method [31].

To avoid numerical problems, the equations can be normalized as in [5,7,21,24] by defining the
states of the system as [X1, X2, X3] = [ x1

α ,
.
x1
α , x3

β ], and α, β can be defined as [21]:

α = εσAR (5)

β = εσA
√

σmR (6)

v = σRβ (7)

where σ is the attenuation in the equation t = σt̂. The natural frequency ωn and the damping ratio ζ
can be defined as:

ωn =

√
k
m

(8)

2ζωn =
b
m

(9)

ω =
ωn

σ
(10)
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Using (5–10) the equations of the normalized system can be rewritten as [21]:

.
X1 = X2 (11a)

.
X2 = −2ζωX2 −ω

2(X1 − qz) −
X2

3

2
(11b)

.
X3 = −X1X3 + u. (11c)

3. The Pull-in Stability Analysis of the System

In this section we investigate the pull-in stability phenomena which is the main challenge in the
design and control of the electrostatic MEMS as thoroughly discussed in [1,21,31].

The kinetic energy (KE) of the system is:

K(x2) =
1

2m
x2

2 (12)

and the potential energy (PE) of the system comprises the elastic potential of the linear spring and the
electrostatic energy of the capacitor subject to a voltage Vs:

V(x1) =
1
2

k (x1 − qz)
2 +

AεV2
s

2x1
=

k
2
(x1 − qz)

2 +
x1x2

3

2Aε
(13)

First, we introduce the following remark [25]:

Remark 3.1. At the desired equilibrium of the EM system, the electrical energy—electrostatic (stored in
capacitor) or electromagnetic (stored in inductors)—is never zero as some current has to be drained from the
source to keep the mechanical coordinate at some nonzero value [29]. Therefore, the input voltage Vs determines
the force, which stretches the spring, thus determines the change in gap. As Vs increases, the charge x3 also
increases and the force of attraction between the plates increases, whereas the gap x1 decreases, and thus requires
the spring to be stretched from its rest position. Therefore, as shown in Figure 1, at the rest position we have
u = Vs = x3 = 0, while the spring is unstretched, in which case x1 = qz. Moreover, the stabilization of this system
at any point in the gap is achieved through the balance between the elastic restoring force k(x1 − qz) and the

electrostatic force
x2

3
2Aε . Thus, at any forced equilibrium position x1 = x1qq ∈ (0, qz) [31], with u(t) = Vseq(t)

the following must hold:
Fspring = Felectric

k
(
x1eq − qz

)
=

x2
3eq

2Aε
=

AεV2
seq

2x1eq2 (14)

At some critical voltage when a displacement of the top plate is equal to one-third of the
zero-voltage gap, the system becomes unstable and this movable top plate rapidly snaps down to
the fixed bottom plate, i.e., the gap collapses to zero. This phenomenon is called “snapthrough” or
“pull-in”. Pull-in instability is an inherently nonlinear and crucial undesirable effect. In this section,
we perform stability analysis of the MEMS device, and we will show using energy (Hamiltonian)
and linearization approaches why the equilibrium of this system is only stable within one-third of
the nominal gap. The stability of this actuator is achieved through the balance between the elastic
restoring force k(x1 − qz) and the electrostatic force (2), which must be equal at equilibrium position
x1eq ∈ (0, qz) as in (14). As discussed in [19], a Hamiltonian system is stable if the PE V (q) has an
isolated minimum at the desired equilibrium:

x1eq = argminV(q) (15)
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This is satisfied if both ∇x1V
∣∣∣
x1=x1eq

= 0 and ∇2
x1

V
∣∣∣
x1=x1eq

> 0 hold. The total PE of the system

comprises the elastic potential of the linear spring and the electrostatic energy

V(x1) =
1
2

k (x1 − qz)
2 +

AεV2
seq

2x1
(16)

Substituting V2
seq from (14) into (13), we obtain:

V(x1) =
1
2

k (x1 − qz)
2 +

kx2
1eq

(
x1eq − qz

)
x1

(17)

Therefore,

∇
2
x1

V
∣∣∣
x1=x1eq

= k

1 +
2
(
x1eq − qz

)
x1eq

 = k
(
3−

2qz

x1eq

)
> 0 → x1eq >

2
3

qz (18)

From (18), the Hessian is only positive if x1eq >
2
3 qz. Thus, the energy function has a local

minimum at x1eq >
2
3 qz, which is the upper one-third region of the gap.

The stability analysis of the MEMS device can also be shown using linearization. The equilibria
are determined by finding the solution so that the original state equations are zero, i.e., solving the
following set of equations:

.
x1 =

x2

m
= 0 (19a)

.
x2 = −k(x1 − qz) −

bx2

m
−

x2
3

2Aε
= 0 (19b)

.
x3 =

−x1x3

εRA
+

u
R

= 0 (19c)

Thus, we obtain:
x2 = 0 (20a)

x1 = qz −
x2

3

2Akε
(20b)

x3 =
u

Aεx1
(20c)

Substituting (20c) into (20b) yields:

x3
1 − qzx2

1 +
u2

c0
= 0; c0 = 2k(Aε)3 (21)

There are three solutions for (21); one is negative for positive input voltages and can thus be
ignored. The other two solutions are both positive. One of these equilibria is stable and the other is
unstable. The stability of the system can also be analyzed by applying Lyapunov’s indirect method [32]
to the system (4), which gives:

A =


0 1

m 0
−k −

b
m −

x3
Aε

−
x3

RAε 0 −
x1

RAε

 (22)

The eigenvalues of A are the solutions λi of∣∣∣∣∣∣∣∣∣
λ −

1
m 0

k λ+ b
m

x3
Aε

x3
RAε 0 λ+ x1

RAε

∣∣∣∣∣∣∣∣∣ = λ3 +

(
x1

RAε
+

b
m

)
λ2 +

(
bx1

RAεm
+

k
m

)
λ+

kx1

RAεm
−

x2
3

R(Aε)2m
= 0 (23)
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Substitute −x2
3 = 2kAε(x1 − qz) from (20b) into (23) gives:

λ3 +

(
x1

RAε
+

b
m

)
λ2 +

(
bx1

RAεm
+

k
m

)
λ+

k
RAεm

(3x1 − 2qz) = 0 (24)

As all parameters, thus coefficients, are positive, the condition for negative eigenvalues is that
3x1 − 2qz > 0, hence:

x1eq >
2
3

qz

i.e., the system is only stable within one third of its full gap and the region of stability is x1 ∈
(

2
3 qz, qz

)
.

The explanation of the “pull-in” phenomenon is that the stability of the system at equilibrium is
governed by two forces; the electrostatic force applied to the movable plate that pulls the plate down
and the elastic stiffness (spring force) that pulls the spring, thus the top plate, up. Therefore, (14) is
satisfied at the equilibrium. From (14) with the spring force constant k = 1 and using (21), we can
plot, as in Figure 2, the relationship between the spring force (straight line) and the electrostatic force
(curved line), for various values of the input voltage u.
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As shown, there are two intersections, which means two equilibria; one is stable, and one is
unstable (saddle-node) [5]. When the upper plate’s deflection q (x1) is less than one-third of the zero
voltage gap qz, and with small perturbation of the gap, the actuator returns to its equilibrium point as
the increase in the restoring force of the linear spring is greater than the increase in the electrostatic
force. As q ≥ 1

3 qz, any perturbation will result in the attractive electrostatic force being the dominant
force, hence causing the top plate to collapse to the fixed plate. For voltage values above the pull-in
limit, there is no equilibrium point (the curves never intersect).

Due to the pull-in instability which is inherited behavior of voltage-controlled actuators,
the equilibrium can be obtained once the desired stable position point (x1d = x1eq) is identified.
For a given position x1d along with its corresponding given constant voltage (Vsd), the charge is
obtained as:

x3eq = CVsd =
Aε
x1eq

Vsd

In this paper, we are interested in the stabilization of the system over the entire gap position, i.e.,
the forced equilibrium (

x1eq, x2eq,x3eq
)
=

(
x1d, 0,

Aε
x1d

Vsd

)
.
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4. Design of the Controller and the Observer for the MEMS Actuator

4.1. The Port-Hamiltonian Model of the System

The port-Hamiltonian of dynamic systems can be defined as [19]:

.
x = [J(x) −R(x)]∇H + g(x)u,

y = g(x)T
∇H (25)

where x ∈ Rn is the states vector, H is the Hamiltonian function H: Rn
→ R , ∇H is the gradient vector

of H, u is the control input of the system, J(X) is the interconnection matrix with J(x) = −J(x)T, R(x) is
the damping matrix with R(x) = R(x)T

≥ 0 and g(x) is the input matrix. The port-Hamiltonian model
of the MEMS system (4) can be defined as [24]:

.
x1
.
x2
.
x3

=


0 1 0
−1 −b 0
0 0 −

1
R



∇x1H
∇x2H
∇x3H

+


0
0
1
R

u (26)

y = g(x)T
∇H.

Moreover, the Hamiltonian (energy function) of the system is defined as:

H =
1
2

k(x1 − qz)
2 +

x2
2

2m
+

x1x2
3

2Aε
(27)

4.2. The Controller Design Based on IDA-PBC Method

The main target of IDA-PBC is to find the control law u by matching the open-loop system (26)
with the desired closed loop system which can be given by:

.
x = [Jd(x) −Rd(x)]∇Hd

yd = g(x)T
∇Hd (28)

The following can be designed to stabilize the system and to meet the required performance of
the system: Jd(x), Rd(x) and Hd are the desired interconnection matrix, the desired damping matrix
and the desired Hamiltonian, respectively. Here, we show the design of the controller based on [25],
but we add coupling between the momentum state and the charge state via the interconnection matrix
and state transformations as concluded in the following proposition:

Proposition 5.1. The electrostatic MEMS actuator model (26) can be controlled and stabilized at the equilibrium
point (x1eq, 0, x3eq by the following dynamic control law u:

u = RΓ
x3

−(
γx1
Aε +γK1)−

√
(
γx1
Aε +γK1)

2
+ 2

Aε

(
z4+

x2
3

2Aε

)
−1
Aε

+
Rγ2x1x2

mx3
+

Rx2γ
2K1Aε

mx3

+RAεKix2
mx3

+ x3x1
Aε

(29)

.
z4 = −Ki∇z2Hd,

with

Γ = (−γ 2x2
m −Kv

−(
γx1
Aε +γK1)−

√
(
γx1
Aε +γK1)

2
+ 2

Aε

(
z4+

x2
3

2Aε

)
−1
Aε

( x1
Aε + K1

)
+γx1Kv

( x1
Aε + K1

)
+ γK1AεKv

( x1
Aε + K1

)
,
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and the desired Hamiltonian of the system:

Hd=
1
2

k(z1 − qz)
2 +

z2
2

2m
+

z1z2
3

2Aε
+

1
2

K1z2
3 +

1
2

Ki
−1z2

4 (30)

where Ki > 0 is the integral term, and K1 > 0 is a constant to stabilize the system. The port-Hamiltonian
system of the closed loop system is given by:

.
z1
.
z2
.
z3
.
z4

 =


0 1
−1 −b

0 0
γ Ki

0 −γ
0 −Ki

−Kv 0
0 0



∇z1Hd
∇z2Hd
∇z3Hd
∇z4Hd

 (31)

where γ is a constant coupling term between the momentum and the electric charge, being the
essential difference between the interconnection matrix in this design and the interconnection matrix
in [25]. The term Kv > 0 is the damping term to asymptotically stabilize the system. The coordinate
transformations are defined by:

z1 = x1; z2 = x2;

z3 =

−

(γz1
Aε + γK1

)
−

√(γz1
Aε + γK1

)2
+ 2

Aε

(
z4 +

x2
3

2Aε

)
−1
Aε

(32)

Proof of Proposition 5.1. The desired Hamiltonian function (30) can be chosen as a Lyapunov candidate.
The time derivative of this function along the trajectories of (31) is given by:

.
Hd = ∇z1Hd

.
z1 +∇z2Hd

.
z2 +∇z3Hd

.
z3 +∇z4Hd

.
z4

= ∇z1Hd∇z2Hd +∇z2Hd(−∇z1Hd − b∇z2Hd + γ∇z3Hd + Ki∇z4Hd)

+∇z3Hd(−γ∇z2Hd −Kv∇z3Hd) +∇z4Hd(−Ki∇z2Hd)

= −b
∣∣∣∇z2Hd

∣∣∣2 −Kv
∣∣∣∇z3Hd

∣∣∣2
= −b

∣∣∣ z2
m

∣∣∣2 −Kv
∣∣∣ z1z3

Aε + K1z3
∣∣∣2 ≤ 0

(33)

which is negative semi-definite, i.e., the system is stable. Furthermore, asymptotic stability at the
desired equilibrium can be verified by imposing the following detectability condition [33]:

Condition 1:

The output yd =

[ z2
m

z1z3
Aε + K1z3

]
of the closed-loop system (31) is detectable. �

Applying the detectability Condition 1 and given (33), asymptotic stability is guaranteed.
The controller (29) is found using the transformation (32); that is, taking the derivate of the
second transformation:

.
x2 =

.
z2

−∇x1H − b∇x2H = −∇z1Hd − b∇z2Hd + γ∇z3Hd + Ki∇z4 Hd

− k(x1 − qz) −
x2

3

2Aε
−

bx2

m
= −k(z1 − qz) −

z2
3

2Aε
−

bz2

m
+ γ

(z1z3

Aε
+ K1z3

)
+ z4

z2
3

(
−1

2Aε

)
+ z3

(z1γ

Aε
+ K1γ

)
+

z4 +
x2

3

2Aε

 = 0 (34)
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This equation is quadratic in z3 and the solution can be found by the general law of
quadratic equations. By rearranging the third transformation and taking its derivate with respect to
time we get:

z3 =

−

(γz1
Aε + γK1

)
−

√(γz1
Aε + γK1

)2
+ 2

Aε

(
z4 +

x2
3

2Aε

)
−1
Aε

z3

Aε
=
γz1

Aε
+ γK1 +

√(γz1

Aε
+ γK1

)2
+

2
Aε

z4 +
x2

3

2Aε


( z3

Aε
−
γz1

Aε
− γK1

)2
=

(γz1

Aε
+ γK1

)2
+

2
Aε

z4 +
x2

3

2Aε


2
( z3

Aε
−
γz1

Aε
− γK1

)( .
z3

Aε
−
γ

.
z1

Aε

)
= 2

(γz1

Aε
+ γK1

)γ .
z1

Aε
+

2
.
z4

Aε
+

2x3
.
x3

A2ε2

z3
.
z3

A2ε2 −
γ

.
z1z3

A2ε2 −

.
z3γz1

A2ε2 +
γ2z1

.
z1

A2ε2 −

.
z3γK1

Aε
+

.
z1γ2K1

Aε
=
γ2z1

.
z1

A2ε2 +

.
z1γ2K1

Aε
+

.
z4

Aε
+

x3
.
x3

A2ε2

γ
.
z1z3 +

.
z3z3 − γ

.
z3z1 −

.
z3γK1Aε =

.
z4Aε+ x3

.
x3 (35)

− γ
.
z1z3 +

.
z3z3 − γ

.
z3z1 −

.
z3γK1Aε =

.
z4Aε+ x3

1
R

(
u−

x3x1

Aε

)
−γ z2

m z3 −
γz2z3

m − z3Kv
( z1z3

Aε + z3K1
)
+
γ2z1z2

m + γz1Kv
( z1z3

Aε + z3K1
)
+

z2γ
2K1Aε
m

+γK1AεKv
( z1z3

Aε + z3K1
)
= −Ki

z2
m Aε+ x3

1
R

(
u− x3x1

Aε

)
z3

(
−γ 2x2

m −Kv
( x1z3

Aε + z3K1
)
+ γx1Kv

( x1
Aε + K1

)
+ γK1AεKv

( x1
Aε + K1

))
+

γ2x1x2
m

+
x2γ

2K1Aε
m = −Ki

x2
m Aε+ x3

1
R

(
u− x3x1

Aε

)
By rearranging and compensating the transformations, we obtain the control law (29).

Remark 5.1. By comparing the proposed method with that in [25], we notice that in this method we obtain a
simpler control law and the transformation has been applied onto one coordinate (state): only on (x3). In [25],
the transformation has been applied onto all states (x1, x2, x3).

Remark 5.2. By inspecting the controller (29), we notice the presence of the momentum (speed) state (due to
a coupling which is another improvement) which is practically difficult to measure using special sensors [10].
In the following, we show the construction of the speed observer.

4.3. The Design of the Speed Observer

Finally, the speed (v) in the MEMS actuator is difficult to measure, so a speed observer can be used
to estimate the speed and then the momentum (the state in the port-controlled Hamiltonian formalism)
is found using

p = x2 = mv.

The form of the speed observer (O) is taken from [10] which is:

O = x2 − k2x1, (36)

where k2 is a constant. We take the derivative of both sides of (36) with respect to time:

.
O =

.
x2 − k2

.
x1 (37)
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Substituting the terms from (4) into (37), yields:

.
O = −k(x1 − qz) −

b(O + k2x1)

m
−

x2
3

2Aε
− k2

.
x1 (38)

The estimate of the O is formulated as

.
Ô = −k(x1 − qz) −

b
(
Ô + k2x1

)
m

−
x2

3

2Aε
− k2

.
x1 (39)

Finally, the estimate of the speed x2 is given by:

x̂2 = Ô + k2x1 (40)

5. Numerical Simulations

The obtained theoretical results were validated through two numerical simulation environments:
the MATLAB/Simulink environment was used to simulate the parallel plate MEMS actuator,
and Multiphysics modelling software COMSOL (5.5) was used to simulate the radio frequency
(RF) MEMS device.

5.1. Simulations Using MATLAB/Simulink environment

To test the proposed controller, we built a numerical model using the MATLAB/Simulink
environment and using normalized expressions. In these simulations, we chose the damping ratio
ζ = 0.5, the natural frequency ωn = 1, and the controller constants (gains) as K1 = 10, Kv = 10, k2 = 5
and Ki = 0.003. The results are shown in Figures 3–5 for different reference signals and for a coupling
term γ = 1. To show the advantage of the proposed controller, the results are compared to the same
model without the coupling constant, i.e., γ = 0.
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The figures demonstrate that both controllers stabilize the system throughout the full gap distance,
i.e., beyond the pull-in range. Also, the coupling improves the response by reducing the overshoot for
a step response. The estimated speed is shown in Figures 6–8 for different reference signals and for
γ = 1.
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Finally, to show the advantage and robustness of this method even if the system has a lighter
damping factor, the closed-loop system has been simulated with a damping factor of ζ = 0.01 as shown
in Figures 10–12.
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Figure 12. The normalized displacement with different coupling terms at a gap reference of 0.8 and
damping ratio ζ = 0.01.

The figures show that without coupling the system suffers from oscillation and overshoot above
its normalized limit (x1 = 1). The transient behavior of the system has been significantly improved by
introducing the coupling, which demonstrates the effectiveness of the proposed controller.

5.2. Simulations Using Multiphysics Modelling Software COMSOL

The results have also been demonstrated with numerical simulations on the RF MEMS device
using COMSOL software. We use the model example of [34] to illustrate our simulation results.
The schematic view of the RF MEMS device is shown in Figure 13. The device consists of square
parallel plates (electrodes), one grounded (fixed) and one movable plate formed from polysilicon
and suspended 0.9 µm above a 0.1 µm thick dielectric layer of silicon nitride. The device is actuated
electrostatically by applying a voltage signal. The parameters of the model are the same as in [34],
and are repeated here in Table 1 for ease of reference:

Table 1. Parameters of the RF MEMS device.

Parameter Value

Plate length L = 50 µm
Plate thickness t = 2 µm

Gap between the plates qz = 1.1 µm = 1.1 µm
Permittivity ε = 4.5 = 4.5

◦

Density ρ = 2320 kg/m3/m3

Damping ratio ζ = 1 × 10−6

Spring stiffness k = 128 N/m
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interpolation (best fit line) or as a polynomial formula. This formula is introduced to the COMSOL 
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Figure 13. Schematic view of the RF MEMS device.

For the sake of controller design aiming at producing the voltage input, the RF model has been
first simulated in the MATLAB/Simulink environment. We used the “simout” function, which allows
the definition of a voltage signal as an expression from a set of points either with linear interpolation
(best fit line) or as a polynomial formula. This formula is introduced to the COMSOL model as depicted
in Figure 14.
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Figures 15 and 16 show the simulation results for the RF MEMS device using COMSOL software.
Simulation results are obtained for displacements through the gap (0–1.01 µm). Figure 15 shows the
stabilization of the upper (movable) plate at the first one-third of the gap at 0.046 µm.
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Figure 16 shows the stabilization of the movable plate at 0.9 µm which is in the last third
of the full gap, i.e., beyond the pull-in instability range. Thus, the effectiveness of the proposed
controller is demonstrated by two sets of simulations, which both showed successful stabilizing of the
electrostatically MEMS device through the full range with improved performance.
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Finally, Figure 17 shows the voltage (electric potential (V)) as the control input that actuates the
RF MEMS device and moves the upper plate in the z coordinate towards the fixed plate (for the 2
positions above). As expected from the theory, a higher voltage signal (around 4.5 V) was needed to
move the plate to the 0.9 µm position (near the fixed plate) compared to around 2.5 V that was needed
to stabilize the movable plate at 0.046 µm (i.e., in the first-third of gap).
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6. Conclusions

In this paper, the IDA-PBC method was used to design a dynamic controller for stabilization and
improving the performance of an electrostatic MEMS actuator across the full gap distance. An improved
response was obtained by utilizing coordinate transformations and forcing a coupling between the
electric charge and the momentum in the interconnection matrix. A speed observer was also employed
to estimate the speed (momentum), which is hard to measure in real applications. Simulation results
of the electrostatic MEMS actuator suitably verified the proposed dynamic IDA-PBC controller and
the speed observer. The validation of the proposed control design method was obtained using two
simulation environments, namely: MATLAB/Simulink and COMSOL Multiphysics.
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