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Abstract: Based on a solid orthotropic material with penalization (SOMP) and a double smoothing
and projection (DSP) approach, this work proposes a methodology to find an optimal structure design
which takes the hybrid deposition path (HDP) pattern and the anisotropic material properties into
consideration. The optimized structure consists of a boundary layer and a substrate. The substrate
domain is assumed to be filled with unidirectional zig-zag deposition paths and customized infill
patterns, while the boundary is made by the contour offset deposition paths. This HDP is the most
commonly employed path pattern for the fused deposition modeling (FDM) process. A critical
derivative of the sensitivity analysis is presented in this paper, which ensures the optimality of the
final design solutions. The effectiveness of the proposed method is validated through several 2D
numerical examples.

Keywords: solid orthotropic material with penalization; hybrid deposition paths; double smoothing
and projection; fused deposition modeling

1. Introduction

Additive manufacturing (AM) has gained fast development in research and industrial applications.
The layer-by-layer material deposition nature of AM could enable graded material compositions and
eliminate the design complexity constraints in conventional manufacturing methods [1]. AM breaks
the restrictions between design and manufacturing and makes the greatest design freedom possible.
Design for additive manufacturing (DfAM) has therefore attracted a great deal of attention [2,3].

Topology optimization has been widely treated as the main computational design method for
AM [1–4], because it explores a large design space and successfully applies in different physical
disciplines [5–8]. Diverse topology optimization methods have been proposed, including the
homogenization method [9,10], solid isotropic material with penalization (SIMP) [11,12], evolutionary
structural optimization (ESO) [13], the level set method (LSM) [14,15], the moving morphable component
(MMC) method [16], and some others.

However, there are new challenges introduced by AM [2,17], especially for the fused deposition
modeling (FDM) process [18,19]. As is widely recognized, AM produces anisotropic material properties
whose mechanical performance in the raster direction, the transverse direction, and the build direction
are evidently different [20–22]. It means that the deposition direction of the material significantly
affects the structural performance. Focusing on this point, build direction has recently been explored as
an optimization variable to improve structural performance [23–27]. In reality, most fused deposition
modeling (FDM) machines only support the hybrid deposition path (HDP) pattern, i.e., external contour
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profile offsets through a constant distance T, where the deposition path is assumed to be distributing
along the outer profile and the interior substrate structure is filled with fixed deposition paths of
angle θ (Figure 1). Under this scenario, to better close the practice, a level set-based method was
proposed by Liu et al. to take the HDP pattern into account to address the material anisotropy topology
optimization [28]. Besides, the field of fiber reinforcement composites is also highly relevant to additive
manufacturing-oriented topology optimization [29,30]. An interdependent two-level optimization
approach was proposed by Humberto et al. to optimize both fiber angle and intrinsic thickness, and
producible results could be obtained by this method [31]. A novel framework for the optimized
topology and the fiber paths was developed in [32]; the optimized distribution of the material and the
fiber orientation are achieved by two methods: a density-based method and the level set method.
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Currently, interface technology, like coating, is widely used in designing structures with enhanced
functionalities and visual properties. To consider the interface issue from the view of structural
optimization, other than simply designing the substrate structures, much research attention has been
drawn to designing a mechanical system while considering the effect of the material interface by
topology optimization. Clausen et al. [33] proposed a double smoothing and projection (DSP) approach
to design the coated structure with an enhanced solid shell and a weak base structure. Luo et al. [34]
developed an erosion-based method to design shell–infill structures. Based on the level set method, a
topology optimization method, which considers bi-material coated structures, was proposed in [35].
Besides, a new density filter was developed by Yoon et al. [36] to conduct topology optimization,
considering the coating structure. More currently, using moving morphable sandwich bars, an explicit
topology optimization method for coated structures was developed in [37]. Note that the stress
constrained interface problem was also investigated by Yu et al. [38].

Inspired by the interface problem, a new algorithm based on solid orthotropic material with
penalization (SOMP) and DSP approaches is developed to find out an optimal structure design which
considers the HDP pattern and the anisotropic material properties. In this work, the external offset
contour (Figure 1) is assumed to be a uniform boundary layer structure which has a different material
from the substrate structure. In particular, the DSP method allows the identification of the boundary
layer and achieves the length control for it; the anisotropic material topology optimization could be
realized by the SOMP interposition model.
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The remainder of the paper is structured as follows: Section 2 presents the problem formulation.
This includes the material model and the corresponding interpolation scheme, as well as the optimization
problem and the sensitivity analysis. Section 3 presents the numerical implementation. Several
numerical results are presented and discussed Section 4. Section 5 concludes the paper.

2. Problem Formulation

In this section, the optimization problem is defined. This includes defining an appropriate material
model, formally defining the optimization problem, and deriving sensitivities. The material model and
characteristic properties are derived analytically based on continuous versions of the design field and
filters. The energy-based SOMP method is used to determine the structural topology; the DSP approach
is adopted to distinguish the substrate structure and the boundary layer, whose implementation
process is shown in Figure 2.
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2.1. The Formulation for the Boundary Layer

According to the classical laminate theory, D0 is the laminae unrotated compliance tensor [39,40]:

D0 =


Ex

1−vxyvyx

vyxEx
1−vxyvyx

0

vyxEx
1−vxyvyx

Ey
1−vxyvyx

0

0 0 Gxy

, (1)

and D(θ) is the 2D orthotropic elasticity tensor given any angle θ:

D(θ) = T(θ)D0T(θ)T, (2)

with T(θ) being the transform matrix which is used to conduct the matrix coordinate transform:

T(θ) =


cos2 θ sin2 θ −2 sinθ cosθ
sin2 θ cos2 θ 2 sinθ cosθ

sinθ cosθ − sinθ cosθ cos2 θ− sin2 θ

 (3)

In this work, the local fiber orientation θ could be analytically expressed by Equation (3) and
counted in the counter-clockwise direction, as shown in Figure 3.

θ =
π
2
+ arctan


∂ϕ̂
∂y

∂ϕ̂
∂x

 (4)

∂ϕ̂
∂y and ∂ϕ̂

∂x are the spatial gradients of the filtered design field ϕ̂, and their derivations could refer to
later content.
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Thus, the element stiffness matrix could be written as:

Ke = δ(D) (5)

where δ(∗) is the element stiffness matrix assembly operator.

2.2. The Optimization Model

In this paper, a standard compliance minimization problem, subject to mass constraint, is studied.
The optimization problem is formulated as:
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Find : µE (E = 1, 2, . . . , N)

Minimize : C = UTKU

Subject to :


KU = F
G ≤Md

0 < µmin ≤ µE ≤ 1

(6)

where µE is the design variable and the Eth element density and N is the total number of elements. K,
U, and F are the global stiffness matrix, displacement vector, and force vector, respectively. µmin is a
small number to avoid matrix singularity. G is the mass fraction constrained by the maximum mass
fraction Md. Note that the detail expression of G could refer to later content.

2.3. Material Interpolation Strategy

Based on the SOMP, the element stiffness matrix and physical density interposition of the element
E are defined as an interpolation of ϕE and ‖∇ϕ̂E‖α:

KE

(
ϕE, ‖∇ϕ̂E‖α

)
= (ϕE)

p
·Ke2 +

(
‖∇ϕ̂E‖α

)p
·Ke1,E − (ϕE)

p
·

(
‖∇ϕ̂E‖α

)p
·Ke2

ρE

(
ϕE, ‖∇ϕ̂E‖α

)
= ρS·ϕE + ρB·(1− ρS·ϕE)·

(
‖∇ϕ̂‖α

)
E

(7)

where the Ke1,E is the stiffness matrix of the mth element that belongs to the boundary layer, Ke2 is the
element stiffness matrix for the substrate material. p is employed to penalize the intermediate densities,
so as to derive the black and white solution. Note that when ‖∇ϕ̂E‖α approaches zero, i.e., when going
away from the boundary layer, the expressions reduce to:

KE(ϕE, 0) = (ϕE)
p
·Ke2

ρE(ϕE, 0) = ρS·ϕE
(8)

where ρS is the element density in the substrate domain.
Meanwhile, at the other extreme, when ‖∇ϕ̂E‖α approaches 1, i.e., at the boundary layer region,

the expressions could be expressed as:

KE(ϕE, 1) = Ke1,E
ρE(ϕE, 1) = ρB

(9)

where ρB is the element density in the boundary area.
In conclusion, both the physical density and stiffness are interpolated based on the projected

design variable field, ϕE, and the normalized gradient of the filtered field ‖∇ϕ̂E‖α.

2.4. Objective Function

The structural compliance is equal to the sum of the element strain energy, which could be
expressed as:

C =
N∑

E=1

QE (10)

where QE is the strain energy of the element E:

QE = UE
TKEUE (11)
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Substituting the element stiffness matrix interpolation in Equation (7) into Equation (11) will yield:

QE = (ϕE)
p
·

(
UE

TKe2UE
)
+

(
‖∇ϕ̂E‖α

)p
·

(
UE

TKe1,EUE
)

−(ϕE)
p
·

(
‖∇ϕ̂‖α

)
E

p
·

(
UE

TKe2UE
) (12)

For brevity, the following notation is introduced:

QE = ωS +ωG +ωSG = εS
E·Q2E + εG

E ·Q1E − ε
SG
E ·Q2E (13)

where εS
E, εG

E , and εSG
E could be treated as three penalized pseudo-density fields:

εS
E = (ϕE)

p

εG
E =

(
‖∇ϕ̂E‖α

)p

εSG
E = (ϕE)

p
·

(
‖∇ϕ̂E‖α

)p
(14)

Q2E is the element strain energy for the substrate element and Q1E is treated as the modified
element strain energy for the boundary layer element:{

Q1E = UE
TKe1,EUE

Q2E = UE
TKe2UE

(15)

2.5. Mass Constraint

In this paper, the mass constraint function could be written as:

G =
N∑

E=1

GE (16)

where GE is the mass of the element E:

GE = M0·ρE = M0·
[
ρS·ϕE + ρB·(1− ρS·ϕE)·

(
‖∇ϕ̂‖α

)
E

]
(17)

It is evident that the macroscale volume constraint considers both the substrate and coating
materials. Like the notation form used in the last subsection, the following expression is introduced:

GE = M0·
(
εS

E + εG
E − ε

SG
E

)
(18)

where M0 is the design element standard mass; εS
E, εG

E , and εSG
E are the three non-penalized

pseudo-design fields, as follows: 
εS

E = ρS·ϕE

εG
E = ρB·‖∇ϕ̂E‖α

εSG
E = ρS·ρB·ϕE·‖∇ϕ̂E‖α

(19)

2.6. Sensitivity Analysis

The updates of the design variables are performed based on sensitivity analysis using the Method
of Moving Asymptote (MMA) algorithm, which requires first order sensitivity information of the
constraints and the objective function. In this subsection, a critical derivative of the sensitivity analysis
is presented.
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2.6.1. Sensitivity Analysis for Objective Function

Recalling Equation (13), ∂QE
∂µE

could be written in the following form:

∂QE

∂µE
=
∂ωS
∂µE

+
∂ωG
∂µE

+
∂ωSG
∂µE

(20)

The first derivative term could be obtained using the chain rule:

∂ωS
∂µE

=
∂εS

E
∂µE
·Q2E =

∂(ϕE)
p

∂µE
·Q2E = p·ϕE

p−1
·
∂ϕE

∂µ̂E
·
∂µ̂E

∂µE
·Q2E (21)

The term ∂ϕE
∂µ̂E

represents the standard modification of sensitivities due to projection and the

detail expression can be found in [41]. ∂µ̂E
∂µE

is the standard modification of the smoothing filter and its
derivative will be discussed in a later subsection.

The second derivative term of Equation (20) is given by:

∂ωG
∂µE

=
∂εG

E
∂µE
·Q1E +

∂Q1E

∂µE
·εG

E (22)

and the first derivative term could be written as the following form:

∂εG
E

∂µE
=
∂εG

E

∂ϕ̂N
·
∂ϕ̂N

∂ϕN
·
∂ϕN

∂ϕE
·
∂ϕE

∂µ̂E
·
∂µ̂E

∂µE
(23)

where

∂εG
E

∂ϕ̂N
= p·

(
‖∇ϕ̂E‖α

)p−1
·

∂
(
‖∇ϕ̂E‖α

)
∂ϕ̂N

= p·
(
‖∇ϕ̂E‖α

)p−1
·

∂
(
‖∇ϕ̂E‖α

)
∂
(
‖∇ϕ̂E‖α

) ·∂(‖∇ϕ̂E‖α

)
∂ϕ̂N

(24)

in which the term
∂
(
‖∇ϕ̂E‖α

)
∂(‖∇ϕ̂E‖α)

indicates the standard modification of sensitivities due to the projection of

the ‖∇ϕ̂E‖α field. The derivative of the normalized gradient norm
∂(‖∇ϕ̂E‖α)

∂ϕ̂N
could be written as:

∂
(
‖∇ϕ̂E‖α

)
∂ϕ̂N

=
α

‖∇ϕ̂‖
·

∂ϕ̂E

∂x
∂
∂ϕ̂E
∂x

∂ϕ̂N
+
∂ϕ̂E

∂y

∂
∂ϕ̂E
∂y

∂ϕ̂N

 (25)

in which:
∂ϕ̂E
∂x =

∂(NTϕ̂N)
∂x = Bxϕ̂N

∂ϕ̂E
∂y =

∂(NTϕ̂N)
∂y = Byϕ̂N

(26)

where N is a vector of the four shape functions relating nodal variable ϕ̂N with the elemental variable
ϕ̂E; Bx and By are the gradient computation matrices for N in the x and y directions, respectively, and
are independent from the design variables. Therefore, we have:

∂
∂ϕ̂E
∂x

∂ϕ̂N
=

∂(Bxϕ̂N)

∂ϕ̂N
= Bx

∂
∂ϕ̂E
∂y

∂ϕ̂N
=

∂(Byϕ̂N)
∂ϕ̂N

= By

(27)
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Thus,

∂εG
E

∂ϕ̂N
= p·

(
‖∇ϕ̂E‖α

)p−1
·

∂
(
‖∇ϕ̂E‖α

)
∂
(
‖∇ϕ̂E‖α

) · α

‖∇ϕ̂‖
·

(
∂ϕ̂E

∂x
Bx +

∂ϕ̂E

∂y
By

)
(28)

and the following notation of Equation (28) is introduced:

∂εG
E

∂ϕ̂N
= ME

xBx + ME
yBy (29)

where

ME
x = p·

(
‖∇ϕ̂E‖α

)p−1
·

∂
(
‖∇ϕ̂E‖α

)
∂(‖∇ϕ̂E‖α)

·
α
‖∇ϕ̂‖
·
∂ϕ̂E
∂x

ME
y = p·

(
‖∇ϕ̂E‖α

)p−1
·

∂
(
‖∇ϕ̂E‖α

)
∂(‖∇ϕ̂E‖α)

·
α
‖∇ϕ̂‖
·
∂ϕ̂E
∂y

(30)

For the term ∂Q1E
∂µE

, it could have following form:

∂Q1E

∂µE
=
∂Q1E

∂θE
·
∂θE

∂ϕ̂N
·
∂ϕ̂N

∂ϕN
·
∂ϕN

∂ϕE
·
∂ϕE

∂µ̂E
·
∂µ̂E

∂µE
(31)

where
∂Q1E

∂θE
=
∂
(
UE

TKe1,EUE
)

∂θE
= UE

Tδ

(
∂DE

∂θE

)
UE (32)

Substituting the material interpolation of Equation (2) into the term ∂DE
∂θE

will yield:

∂DE

∂θE
= UE

Tδ

∂
(
T(θ)D0T(θ)T

)
∂θE

UE (33)

The elastic tensor of matrix material D0 is independent of µE. Using the chain rule again, we could
arrive at:

∂
(
T(θ)D0T(θ)T

)
∂θE

=
∂T(θE)

∂θE
D0T(θE)

T + T(θE)D0
∂T(θE)

T

∂θE
(34)

where

∂T(θE)

∂θE
=


−2· sinθ· cosθ sin 2θ −2· cos 2θ

sin 2θ −2 sinθ· cosθ 2· cos 2θ
cos 2θ − cos 2θ −2· sinθ· cosθ− sin 2θ

 (35)

Then, the derivative of ∂θE
∂ϕ̂N

is obtained as:

∂θE

∂ϕ̂N
=

1

1 +
(
∂ϕ̂E
∂y

)2
·

(
∂ϕ̂E
∂x

)−2 ·

∂ϕ̂E
∂x ·By −

∂ϕ̂E
∂y ·Bx(

∂ϕ̂E
∂x

)2 (36)

Similarly, the following notation of Equation (36) is introduced:

∂θE

∂ϕ̂N
= ME

x
By + ME

y
Bx (37)
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where
ME

x
= 1

1+
(
∂ϕ̂E
∂y

)2
·

(
∂ϕ̂E
∂x

)−2 ·
1
∂ϕ̂E
∂x

ME
y
= 1

1+
(
∂ϕ̂E
∂y

)2
·

(
∂ϕ̂E
∂x

)−2 ·

∂ϕ̂E
∂y(

∂ϕ̂E
∂x

)2

(38)

The third derivative term of Equation (20) could be obtained simply by using the product rule
and all the terms already obtained above:

∂εSG
E

∂µE
·Q2E =

∂εS
E

∂µE
·εG

E ·Q2E +
∂εG

E
∂µE
·εS

E·Q2E (39)

2.6.2. Sensitivity Analysis for Mass Constraint

For the term ∂GE
∂µE

, it could be similarly elaborated by the following expressions:

∂GE

∂µE
= M0·

∂ρE

∂µE
= M0·

∂
(
εS

E + εG
E − ε

SG
E

)
∂µE

(40)

where, 

∂εS
E

∂µE
= ρS·

∂ϕE
∂µ̂E
·
∂µ̂E
∂µE

∂εG
E

∂µE
= ρB·

∂‖∇ϕ̂E‖α
∂µE

∂εSG
E

∂µE
= ρS·ρB·

(
∂εS

E
∂µE
·εG

E +
∂εG

E
∂µE
·εS

E

) (41)

All the derivative terms in Equation (41) could be obtained by the previous expressions.

2.6.3. Filtering Based on Helmholtz-Type Differential Equations

The smoothing filter adopted in this work could be implicitly represented by the solution of a
Helmholtz-type partial differential equation (PDE) [42]:

−R2
∇

2µ̂+ µ̂ = µ (42)

by imposing the homogeneous Neumann boundary conditions (∂µ̂∂n = 0) on the boundary of the design
domain. The solution of Equation (42) can be written in a convolution integral form, which has a
similar function to the classical filter [43]. In Equation (42), µ represents the unfiltered design field, and
µ̂ is the filtered field; the parameter R plays a similar role as the minimum filter radius (rmin) in the
classical filter [43]. An approximate relation between the length scales for the classical filter and the
PDE filter is given by [42]:

R =
rmin

2
√

3
(43)

Using the finite element method to discrete Equation (42):

Kxµ̂N = µN (44)

where Kx is the standard stiffness matrix in finite element method for the scalar problem corresponding
to Rx and µ̂N is the representation of the filtered nodal field. Thus, the derivative of the filtered
sensitives, with respect to the design variable, can be written as:

∂µ̂N

∂µN
= Kx

−1 (45)
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The element node representation of the field is obtained by:

µN = TFµ (46)

where TF is a matrix which maps the elemental values µ to a vector with nodal values µN. Similarly,
the element node representation of the filtered field could be expressed as:

µ̂ = TF
Tµ̂N (47)

and
∂µN

∂µ
= TF (48)

According to the above derivation, the filtered sensitivities of the term ωS can be calculated as:

∂ωS
∂µ

= TF
T
(
K1
−1

(
TF

(
p·ϕp−1

·
∂ϕ

∂µ̂
·Q2

)))
(49)

the filtered sensitivities of the term ωG could be rewritten as:

∂ωG
∂µ

=
∂ωG1

∂µ
+
∂ωG2

∂µ
(50)

The terms ∂ωG1
∂µ and ∂ωG2

∂µ can be computed as:

∂ωG1
∂µ = TF

T
(
K1
−1

(
TF

(
dc·∂ϕ

∂µ̂

)))
dc = TF

T
(
K2
−1

(
TF(Mx

·Q1)TBX
T + (My

·Q1)TBY
T
)) (51)

and
∂ωG2
∂µ = TF

T
(
K1
−1

(
TF

(
dc·∂ϕ

∂µ̂

)))
dc = TF

T
(
K2
−1

(
TF

((
M

x
·εG

)T
BX

T +
(
M

y
·εG

)T
BY

T
))) (52)

Again, the filtered derivative for the term ωSG and the filtered sensitivity analysis for the mass
constraint could be obtained in a similar way and are therefore omitted here.

3. Numerical Implementations

The proposed method is validated with several classical 2D benchmark cases in the next section.
Four-node quadrilateral elements are adopted in all numerical examples. For the MMA optimizer,
the default move limit is 0.3. Additionally, following the suggestion in Ref. [33], a continuation strategy
for projection is adopted, where the sharpness factor for the substrate projection is set as βS = 1 at
the beginning of optimization and gradually increased to 64 by doubling every 50 iterations (or at
convergence), while the sharpness factor for the boundary layer projection is initialized with βG = 4 to
ensure a sharp coating from the first iteration, and doubled every 50 iterations (or at convergence)
until it is increased to 128. A projection threshold of 0.5 is used for µS and µG. The iterative process
terminates when no further improvement in the objective function can be achieved, namely, when the
difference in the objective values between two adjacent iterations is less than 0.01 or the maximum
iterative number is exceeded. The whole process of the proposed method is shown in Figure 4.
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4. Case Studies

4.1. Messerschmidt–Bölkow–Blohm (MBB) Problem

4.1.1. The Fully Infilled Substate Problem

The MBB beam problem is investigated to minimize the structural compliance under the maximum
material volume ratio of 0.5, whose boundary condition is shown in Figure 5. The structural sizes are
defined with L = 30 and H = 10. Only one half of the structure is optimized due to the symmetry
condition. The MBB structure is loaded with a concentrated vertical force (F = 1) at the upper left
corner; the bottom right corner is supported on a roller; and the asymmetrical boundary condition is
applied to the left edge. The nodal displacement in the x-direction is restricted, while in the y-direction
it is free.
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A solid material with a Young’s Modulus of 2.0 GPa in the raster direction and 0.5 GPa in the
transverse direction is used. In addition, the Poisson’s ratio is 0.4, and the shear modulus is 0.35 GPa.
The substrate material is assumed to be fully infilled (ρS = ρB) and the direction and the rotation angle
θ of the raster direction is defined positively in the counter-clockwise direction (which is consistent
with the depiction in Figure 3).

The boundary layer width T = 4 (R1 = 14 and R2 = 10) is investigated in the first test. The raster
direction for the substrate material is assumed to be 0◦. In order to get a clear-cut solid structural
design within the solid area, ρE ≥ 0.95 indicates a clearly formed substrate domain, and ‖∇ϕ̂E‖α ≥ 0.5
represents a clearly formed boundary layer. The final compliance is 88.3850, and the optimization
terminates at the 320th iteration. The optimized result is shown in Figure 6.
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Figure 6. The optimized MBB beam.

From the convergence history graphs (Figure 7), it is seen that several sudden changes happen
after the update of βS and βG, but it gradually becomes stable and finally converges.

The detailed evolution of the topology of the substrate domain and boundary layer for the case in
Figure 6 is given in Figure 8. As can be observed, the approximated structural topology is formed
before the 200th iteration, and a clearer substate domain and boundary could be given in the last
120 iterations. Note that the boundary layer initially appears at the top left and bottom right corners,
because the boundary layer (or solid substrate material) is required at all loads and helps to overrule
the zero Dirichlet condition for the PDE filter [33].
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4.1.2. Comparing with the Result from the Non-Boundary Layer Structure

In comparison, the structure without the boundary layer, under the same condition, is optimized
in this test, and its optimized result is depicted in Figure 9. The raster direction of the substrate material
is defined as 0◦. To be specific, the filter radius (R2 = 15) is consistent with the case in Figure 6. Again,
within the solid area, ρE ≥ 0.95 indicates a clearly formed domain. It is clear to see that, under the
same raster direction, the optimization result with the boundary layer (c = 88.3850) is better than the
one without the boundary layer (c = 100.6204), and the compliance performance is 12.16% smaller
than the latter one.
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Figure 9. The optimized MBB beam without the boundary layer under the raster direction θ = 0◦

(c = 100.6204).

4.1.3. The Influence of Different Raster Directions

In order to investigate the influence of different raster directions, this example explores the
topology optimization with three designable raster directions (starting from 0◦, 90◦, and 45◦) with
the same boundary layer width (T = 4) and boundary condition. Correspondingly, the optimization
results are demonstrated in Figure 10.
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Figure 10. The optimized results with different raster directions: (a) θ = 90◦, c = 130.4545; (b) θ = 0◦,
c = 88.3850; (c) θ = 45◦, c = 132.0675.

The optimization results with the raster directions of 0◦, 90◦, and 45◦ have distinct structural
topologies and shapes, and their structural performance is also different. The optimization result
with the raster direction of 0◦ is better than the ones with the raster directions of 45◦ and 90◦. This is
reasonable from a mechanics point of view in sense that the principal stresses are distributed along the
horizontal direction of the beam in the presented MBB problem.

4.1.4. The Influence of Different Boundary Layer Widths

In Figure 11, the same design problem as above is solved with the raster direction θ = 0◦ under the
same conditions and varying boundary layer widths (T = 2, T = 4 and T = 6). The modeled boundary
layer width is clearly controlled by modifying the filter radius R2, and the compliance improves when
increasing the boundary layer width. In order to assure sufficiently wide features in the base structure,
the first smoothing radius R1 should be greater than or equal to the second smoothing radius R2 [33].
Note that, in this work, the length control function could be implicitly achieved through the application
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of smoothing and projection filters. Increasing R1 will lead to an increase in the minimum feature
length and thereby eliminate some small geometry features.
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4.1.5. The Mesh Independence

Figure 12 shows the optimized structure discretized by three different element side lengths: 0.05,
0.1, and 0.2, respectively. The same topology and similar shapes could be found in the three final
designs. The thickness of the boundary layer is almost independent of mesh size and highly uniform.
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4.2. Cantilever Problem

4.2.1. The Fully Infilled Substrate Problem

Next, the optimization of the cantilever problem is conducted. The boundary conditions are
presented in Figure 13; its left side is clamped and the middle point of the right side is loaded with a
constant force (F = 1 ). The structural sizes are defined by L = 30 and H = 15. The mesh is discretized
by 200× 100 elements. The maximum material volume ratio is 0.5 in this case.
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4.2.2. The Thick Boundary Problem

Finally, the structure with a thick boundary layer under the raster direction of 0◦ is investigated.
The optimized objective value is 32.0089, which is lower than the result in Figure 14a. In order to
guarantee a constant boundary layer thickness for the optimized structure, a relatively high minimum
feature size is needed, and the boundary layer thickness should be much smaller than the feature size
for the substrate structure. Besides, within our thick width results (Figure 15), we find the desired
interface width dictated by the mesh resolution. For example, under the coarse mesh resolution
(100× 50) adopted in the same case in Figure 15, it is impossible to identify a boundary layer that is
equal or above T = 10.
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Figure 15. The optimized cantilever with a thick boundary layer T = 10 under 200 × 100 elements:
θ = 0◦, c = 32.0089.

Figure 16 shows the boundary layer raster direction distribution. The arrow indicates the raster
direction for each boundary element. As can be seen in Figure 16, it is less prone to sudden orientation
changes in the boundary layer domain, and it is matched well with the boundary layer structure.Micromachines 2020, 11, x FOR PEER REVIEW 18 of 23 

 
Figure 16. The boundary layer raster direction distribution. 

4.3. Short Cantilever Problem 

4.3.1. The Fully Infilled Substrate Problem 

The third numerical test is a short cantilever beam illustrated in Figure 17, where the left side is 
clamped and the middle point of the right side is loaded with a constant force (𝐹 = 1 ). The 
structural sizes are defined as 𝐿 = 15  and 𝐻 = 30 . The whole design domain is meshed by 100 ×  200 elements.  

 
Figure 17. The short cantilever beam. 

Firstly, four fully infilled substrate materials with different raster directions (0°, 90°, and 45°) 
under a mass fraction constraint of 0.25 are considered in this subsection, and their optimized 
results are shown in Figure 18. 

Figure 16. The boundary layer raster direction distribution.

4.3. Short Cantilever Problem

4.3.1. The Fully Infilled Substrate Problem

The third numerical test is a short cantilever beam illustrated in Figure 17, where the left side is
clamped and the middle point of the right side is loaded with a constant force (F = 1 ). The structural
sizes are defined as L = 15 and H = 30. The whole design domain is meshed by 100× 200 elements.
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Firstly, four fully infilled substrate materials with different raster directions (0◦, 90◦, and 45◦)
under a mass fraction constraint of 0.25 are considered in this subsection, and their optimized results
are shown in Figure 18.Micromachines 2020, 11, x FOR PEER REVIEW 19 of 23 
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4.3.2. The Customized Infilled Pattern Problem

In this subsection, four customized infill patterns (wiggle, honeycomb, and two line infills) with
64.75%, 53.52%, 79.21%, and 79.10% density, respectively, are considered in this subsection. Their
effective elastic tensors are predicted through the energy-based homogenization method [44,45], and the
detail geometry structure, raster direction distribution, and effective elastic tensors are demonstrated
in Figure 19. The problem configuration and the material properties are the same as the previous
example, except the boundary layer width is T = 3.

The results are demonstrated in Figure 20, and the derived objective values are 41.4360, 14.6845,
27.5177, and 28.1572 for wiggle, honeycomb, 45◦ line, and −45◦ line, respectively.
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Finally, the computing time is briefly discussed. All the above cases were run on a desktop
computer with Intel Xeon W-2145 CPU and 64GB RAM. Then, for the cases with the mesh dimension
300 × 100, an average of 18s is taken for each iteration: the FEM part takes 63.16%, the sensitivity
analysis takes 18.42%, the MMA solver takes 15.79%, and the other parts take 2.63%. Meanwhile, for
the cases with 200× 100 elements, the algorithm takes 13s for each iteration on average: the FEM part
takes 56.92%, the sensitivity analysis takes 17.12%, the MMA solver takes 19.23%, and the other parts
take 6.73%. We could conclude that the FEM part takes more than half of the time in this method, and
its computational cost grows rapidly with an increase in the dimension of the mesh. Therefore, a high
efficiency FEM solver is demanded in this work.

5. Conclusions

The HDP pattern could be supported by most commercial tool path planning toolkits. Therefore,
the HDP-based structure optimization could get closer to practice. Compared with the work proposed
in [28] under the level set framework, based on solid SOMP and DSP approaches, this work proposes a
methodology to find an optimal structure design, which takes the HDP pattern and the anisotropic
material properties into consideration. The HDP pattern optimization here is assumed to be a structure
optimization problem including coated structures, and the anisotropic material topology optimization
is achieved by SOMP. The effectiveness of the proposed method are proven by several case studies,
and the influence of different substrate raster directions under different boundary layer thicknesses is
investigated. Note that the hybrid deposition paths produced in this work only provide the pattern
where the zig-zag domain plays a significant role.

However, a unidirectional zig-zag deposition path is defined inside the substrate domain for
the sake of simplicity. In fact, an optimized deposition path could achieve an even better design
performance. The authors also intend to extend the proposed methods to address 3D problems.
Besides, experimental validation is a must. These aspects will be explored in our future work as well.
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