The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria in RSP Literature
- Technical attributes, including all the factors that refer to robot performance and technical characteristics;
- Economic attributes, referring to cost evaluations;
- Management attributes, collecting all the factors related to further characteristics or services.
2.2. PKM Mini-Manipulators
2.2.1. Spider Mini-Manipulator
2.2.2. Tripod Mini-Manipulator
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. RSP Literature Review
Authors | Year | Selection Attributes | ||
---|---|---|---|---|
Technical | Economic | Management | ||
Graves and Whitney [39] | 1979 | X | X | |
Knott and Getto [40] | 1982 | X | X | |
Nof and Lechtman [5] | 1982 | X | ||
Huang and Ghandforoush [41] | 1984 | X | X | |
Seidmann et al. [42] | 1984 | X | ||
Nnaji [43] | 1986 | X | ||
Offodile et al. [44] | 1987 | X | ||
Booth et al. [45] | 1993 | X | ||
Liang and Wang [8] | 1993 | X | ||
Cook [12] | 1994 | X | X | |
Khouja [46] | 1995 | X | ||
Khouja and Booth [47] | 1995 | X | ||
Pandey [14] | 1995 | X | X | X |
Baker and Talluri [48] | 1996 | X | ||
Goh et al. [49] | 1996 | X | ||
Goh [50] | 1997 | X | X | |
Braglia and Petroni [51] | 1999 | X | X | |
Parkan and Wu [52] | 1999 | X | X | |
Khouja et al. [53] | 2000 | X | ||
Layek and Lars [54] | 2000 | X | X | X |
Bhangale et al. [55] | 2003 | X | ||
Chu and Lin [56] | 2003 | X | X | X |
Bhangale et al. [57] | 2004 | X | ||
Bhangale et al. [58] | 2004 | X | ||
McCrea and Navon [59] | 2004 | X | ||
Bhattacharya et al. [60] | 2005 | X | X | X |
Kapoor and Tak [61] | 2005 | X | X | |
Karsak [62] | 2005 | X | ||
Rao and Padmanabhan [63] | 2006 | X | ||
Yu et al. [20] | 2007 | X | ||
Almannai et al. [64] | 2008 | X | ||
Karsak [65] | 2008 | X | ||
Chatterjee et al. [66] | 2010 | X | X | X |
Kumar and Garg [67] | 2010 | X | ||
Devi [68] | 2011 | X | X | X |
Koulouriotis and Ketipi [69] | 2011 | X | X | |
Rao et al. [70] | 2011 | X | X | |
Samantra et al. [16] | 2011 | X | X | X |
Vahdani et al. [71] | 2011 | X | X | |
Athawale et al. [72] | 2012 | X | ||
Karsak [73] | 2012 | X | X | |
Tao et al. [74] | 2012 | X | X | |
Bairagi et al. [10] | 2014 | X | X | X |
Honarmande et al. [75] | 2014 | X | X | |
Liu et al. [76] | 2014 | X | X | X |
Vahdani et al. [77] | 2014 | X | X | X |
Keshavarz [78] | 2016 | X | X | |
Sen et al. [18] | 2016 | X | ||
Xue et al. [79] | 2016 | X | X | |
Wang et al. [80] | 2018 | X |
References
- Erdman, A.G.; Thompson, T.; Riley, D.R. Type Selection of Robot and Gripper Kinematic Topology Using Expert Systems. Int. J. Robot. Res. 1986, 5, 183–189. [Google Scholar] [CrossRef]
- Khouja, M.; Offodile, O.F. The industrial robots selection problem: Literature review and directions for future research. IIE Trans. (Inst. Ind. Eng.) 1994, 26, 50–61. [Google Scholar] [CrossRef]
- Tansel Iç, Y.; Yurdakul, M.; Dengiz, B. Development of a decision support system for robot selection. Robot. Comput.-Integr. Manuf. 2013, 29, 142–157. [Google Scholar] [CrossRef]
- Koulouriotis, D.E.; Ketipi, M.K. Robot evaluation and selection Part A: An integrated review and annotated taxonomy. Int. J. Adv. Manuf. Technol. 2014, 71, 1371–1394. [Google Scholar] [CrossRef]
- Nof, S.Y.; Lechtman, H. Robot time and motion provides means for evaluating alternative work methods. Ind. Eng. 1982, 14, 38–48. [Google Scholar]
- Athawale, V.M.; Chakraborty, S. A comparative study on the ranking performance of some multi-criteria decision-making methods for industrial robot selection. Int. J. Ind. Eng. Comput. 2011, 2, 831–850. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Praveen Kumar, S.; Saravanakumar, K. An integrated fuzzy MCDM based approach for robot selection considering objective and subjective criteria. Appl. Soft Comput. J. 2015, 26, 31–41. [Google Scholar] [CrossRef]
- Liang, G.S.; Wang, M.J.J. A fuzzy multi-criteria decision-making approach for robot selection. Robot. Comput. Integr. Manuf. 1993, 10, 267–274. [Google Scholar] [CrossRef]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 2011, 54, 1155–1166. [Google Scholar] [CrossRef]
- Bairagi, B.; Dey, B.; Sarkar, B.; Sanyal, S. Selection of robot for automated foundry operations using fuzzy multi-criteria decision making approaches. Int. J. Manag. Sci. Eng. Manag. 2014, 9, 221–232. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Bepari, B.; Bhaumik, S. Selection of robotic grippers under MCDM environment: An optimized trade Off technique. Stud. Comput. Intell. 2014, 543, 141–158. [Google Scholar] [CrossRef]
- Cook, J.S.; Han, B.T. Optimal Robot Selection and Work Station Assignment for a CIM System. IEEE Trans. Robot. Autom. 1994, 10, 210–219. [Google Scholar] [CrossRef]
- Karsak, E.E.; Ahiska, S.S. Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection. Int. J. Prod. Res. 2005, 43, 1537–1554. [Google Scholar] [CrossRef]
- Pandey, P.C.; Kengpol, A. Selection of an automated inspection system using multiattribute decision analysis. Int. J. Prod. Econ. 1995, 39, 289–298. [Google Scholar] [CrossRef]
- Rodamilans, G.B.; Villani, E.; Trabasso, L.G.; De Oliveira, W.R.; Suterio, R. A comparison of industrial robots interface: Force guidance system and teach pendant operation. Ind. Robot. 2016, 43, 552–562. [Google Scholar] [CrossRef]
- Samantra, C.; Datta, S.; Mahapatra, S.S. Selection of industrial robot using interval-valued trapezoidal fuzzy numbers set combined with VIKOR method. Int. J. Technol. Intell. Plan. 2011, 7, 344–360. [Google Scholar] [CrossRef]
- Sen, D.K.; Datta, S.; Patel, S.K.; Mahapatra, S.S. Multi-criteria decision making towards selection of industrial robot: Exploration of PROMETHEE II method. Benchmarking 2015, 22, 465–487. [Google Scholar] [CrossRef]
- Sen, D.K.; Datta, S.; Mahapatra, S.S. Application of TODIM (Tomada de Decisión Inerativa Multicritero) for industrial robot selection. Benchmarking 2016, 23, 1818–1833. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Wang, H.; Lin, Z. Optimum selection of mechanism type for heavy manipulators based on particle swarm optimization method. Chin. J. Mech. Eng. 2013, 26, 763–770. [Google Scholar] [CrossRef]
- Yu, S.N.; Lee, S.Y.; Han, C.S. Methodology for the kinematical selection of a manipulator for a specified task. Auton. Robot. 2007, 22, 243–253. [Google Scholar] [CrossRef]
- Singh, S.; Singla, A.; Singla, E. Modular manipulators for cluttered environments: A task-based configuration design approach. J. Mech. Robot. 2018, 10. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Alipour, K.; Xue, K.; Gao, X.Z. Prototypes selection by multi-objective optimal design: Application to a reconfigurable robot in sandy terrain. Ind. Robot. 2011, 38, 599–613. [Google Scholar] [CrossRef]
- Borboni, A.; Serpelloni, M.; Borghetti, M.; Amici, C.; Aggogeri, F.; Fausti, D.; Antonini, M.; Mor, M.; Sardini, E.; Faglia, R. Hand robotic rehabilitation: From hospital to home. In Mechanisms and Machine Science; Springer: Dordrecht, The Netherlands, 2018; Volume 49, pp. 877–884. [Google Scholar] [CrossRef]
- Cairone, F.; Gagliano, S.; Bucolo, M. Experimental study on the slug flow in a serpentine microchannel. Exp. Therm. Fluid Sci. 2016, 76, 34–44. [Google Scholar] [CrossRef]
- Sher, E.; Sher, I. Theoretical limits of scaling-down internal combustion engines. Chem. Eng. Sci. 2011, 66, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.d.O.; Yang, J. A review of magnetically actuated milli/micro-scale robots locomotion and features. Crit. Rev. Biomed. Eng. 2019, 47, 379–394. [Google Scholar] [CrossRef]
- Thoesen, A.; McBryan, T.; Green, M.; Mick, D.; Martia, J.; Marvi, H. Revisiting Scaling Laws for Robotic Mobility in Granular Media. IEEE Robot. Autom. Lett. 2020, 5, 1319–1325. [Google Scholar] [CrossRef]
- Amici, C.; Borboni, A.; Faglia, R. A compliant PKM mesomanipulator: Kinematic and dynamic analyses. Adv. Mech. Eng. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Borboni, A.; Aggogeri, F.; Merlo, A.; Pellegrini, N.; Amici, C. PKM mechatronic clamping adaptive device. Int. J. Adv. Robot. Syst. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and dynamics—I. Theory. Mech. Mach. Theory 1996. [Google Scholar] [CrossRef]
- Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and dynamics—II. Applications to chains of rigid bodies and serial manipulators. Mech. Mach. Theory 1996. [Google Scholar] [CrossRef]
- Bernhard, B.; Angelo, M.; Klaus, O.; Donato, R.; Thomas, S. Arrangement for Active Vibration Damping. EP1857220A1, 21 November 2007. [Google Scholar]
- Monsarrat, B.; Gosselin, C.M. Workspace analysis and optimal design of a 3-Leg 6-DOF parallel platform mechanism. IEEE Trans. Robot. Autom. 2003, 19, 954–966. [Google Scholar] [CrossRef]
- Bonev, I.A.; Gosselin, C.M. Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Trans. Robot. 2006, 22, 1011–1017. [Google Scholar] [CrossRef]
- Conti, A.; Azzalini, E.; Amici, C.; Cappellini, V.; Faglia, R.; Delbon, P. An ethical reflection on the application of cyber technologies in the field of healthcare. Mech. Mach. Sci. 2018, 49, 870–876. [Google Scholar] [CrossRef]
- Amici, C.; Tiboni, M.; Ghidoni, M.; Ceresoli, F.; Gaffurini, P.; Bissolotti, L.; Mor, M.; Fausti, D.; Antonini, M.; Ragni, F. Preliminary Validation of a Device for the Upper and Lower Limb Robotic Rehabilitation; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Tiboni, M.; Borboni, A.; Mor, M.; Pomi, D. An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires: Design and analysis. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2011, 225, 443–451. [Google Scholar] [CrossRef]
- Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Tiboni, M. Design of a 3-DOFs parallel robotic device for miniaturized object machining. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Patras, Greece, 6–8 June 2018; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Graves, S.; Whitney, D. Mathematical programming procedure for equipment selection and system evaluation in programmable assembly. In Proceedings of the 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, Fort Lauderdale, FL, USA, 12–14 December 1979; Volume 1, pp. 531–536. [Google Scholar]
- Knott, K.; Getto, R.D., Jr. A model for evaluating alternative robot systems under uncertainty. Int. J. Prod. Res. 1982, 20, 155–165. [Google Scholar] [CrossRef]
- Huang, P.; Ghandforoush, P. Procedures given for evaluating, selecting robots. Ind. Eng. 1984, 16, 44–48. [Google Scholar]
- Seidmann, A.; Arbel, A.; Shapira, R. A two-phase analytic approach to robotic system design. Robot. Comput. Integr. Manuf. 1984, 1, 181–190. [Google Scholar] [CrossRef]
- Nnaji, B. Computer-Aided Design, Selection and Evaluation of Robots; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Offodile, O.; Lambert, B.; Dudek, R. Development of a computer aided robot selection procedure (CARSP). Int. J. Prod. Res. 1987, 25, 1109–1121. [Google Scholar]
- Booth, D.; Khouja, M.; Hu, M. A robust multivariate statistical procedure for evaluation and selection of industrial robots. Int. J. Oper. Prod. Manag. 1992, 12, 15–24. [Google Scholar] [CrossRef]
- Khouja, M. The use of data envelopment analysis for technology selection. Comput. Ind. Eng. 1995, 28, 123–132. [Google Scholar] [CrossRef]
- Khouja, M.; Booth, D. Fuzzy clustering procedure for evaluation and selection of industrial robots. J. Manuf. Syst. 1995, 14, 244–251. [Google Scholar] [CrossRef]
- Baker, R.; Talluri, S. A closer look at the use of data envelopment analysis for technology selection. Comput. Ind. Eng. 1997, 32, 101–108. [Google Scholar] [CrossRef]
- Goh, C.H.; Tung, Y.C.; Cheng, C.H. A revised weighted sum decision model for robot selection. Comput. Ind. Eng. 1996, 30, 193–199. [Google Scholar] [CrossRef]
- Goh, C.H. Analytic Hierarchy Process for Robot Selection. J. Manuf. Syst. 1997, 16, 381–386. [Google Scholar] [CrossRef]
- Braglia, M.; Petroni, A. Evaluating and selecting investments in industrial robots. Int. J. Prod. Res. 1999, 37, 4157–4178. [Google Scholar] [CrossRef]
- Parkan, C.; Wu, M.L. Decision-making and performance measurement models with applications to robot selection. Comput. Ind. Eng. 1999, 36, 503–523. [Google Scholar] [CrossRef]
- Khouja, M.; Booth, D.; Suh, M.; Mahaney, J.K., Jr. Statistical procedures for task assignment and robot selection in assembly cells. Int. J. Comput. Integr. Manuf. 2000, 13, 95–106. [Google Scholar] [CrossRef]
- Layek, A.; Lars, J. Algorithm based decision support system for the concerted selection of equipment in machining/assembly cells. Int. J. Prod. Res. 2000, 38, 323–339. [Google Scholar] [CrossRef]
- Bhangale, P.; Saha, S.; Agrawal, V. Robot selection using DeNOC-based dynamics. In Proceedings of the TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region, Bangalore, India, 15–17 October 2003; Volume 4, pp. 1544–1548. [Google Scholar]
- Chu, T.C.; Lin, Y.C. A fuzzy TOPSIS method for robot selection. Int. J. Adv. Manuf. Technol. 2003, 21, 284–290. [Google Scholar] [CrossRef]
- Bhangale, P.; Saha, S.; Agrawal, V. A dynamic model based robot arm selection criterion. Multibody Syst. Dyn. 2004, 12, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Bhangale, P.; Agrawal, V.; Saha, S. Attribute based specification, comparison and selection of a robot. Mech. Mach. Theory 2004, 39, 1345–1366. [Google Scholar] [CrossRef]
- McCrea, A.; Navon, R. Application of GA in optimal robot selection for bridge restoration. Autom. Constr. 2004, 13, 803–819. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sarkar, B.; Mukherjee, S. Integrating AHP with QFD for robot selection under requirement perspective. Int. J. Prod. Res. 2005, 43, 3671–3685. [Google Scholar] [CrossRef]
- Kapoor, V.; Tak, S. Fuzzy application to the analytic hierarchy process for robot selection. Fuzzy Optim. Decis. Mak. 2005, 4, 209–234. [Google Scholar] [CrossRef]
- Karsak, E. Choquet integral-based decision making approach for robot selection. Lect. Notes Comput. Sci. 2005, 3682 LNAI, 635–641. [Google Scholar]
- Rao, R.; Padmanabhan, K. Selection, identification and comparison of industrial robots using digraph and matrix methods. Robot. Comput.-Integr. Manuf. 2006, 22, 373–383. [Google Scholar] [CrossRef]
- Almannai, B.; Greenough, R.; Kay, J. A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies. Robot. Comput.-Integr. Manuf. 2008, 24, 501–507. [Google Scholar] [CrossRef]
- Karsak, E. Robot selection using an integrated approach based on quality function deployment and fuzzy regression. Int. J. Prod. Res. 2008, 46, 723–738. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Selection of industrial robots using compromise ranking and outranking methods. Robot. Comput.-Integr. Manuf. 2010, 26, 483–489. [Google Scholar] [CrossRef]
- Kumar, R.; Garg, R. Optimal selection of robots by using distance based approach method. Robot. Comput.-Integr. Manuf. 2010, 26, 500–506. [Google Scholar] [CrossRef]
- Devi, K. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl. 2011, 38, 14163–14168. [Google Scholar] [CrossRef]
- Koulouriotis, D.; Ketipi, M. A fuzzy digraph method for robot evaluation and selection. Expert Syst. Appl. 2011, 38, 11901–11910. [Google Scholar] [CrossRef]
- Rao, R.; Patel, B.; Parnichkun, M. Industrial robot selection using a novel decision making method considering objective and subjective preferences. Robot. Auton. Syst. 2011, 59, 367–375. [Google Scholar] [CrossRef]
- Vahdani, B.; Mousavi, S.; Tavakkoli-Moghaddam, R. Group decision making based on novel fuzzy modified TOPSIS method. Appl. Math. Model. 2011, 35, 4257–4269. [Google Scholar] [CrossRef]
- Athawale, V.M.; Chatterjee, P.; Chakraborty, S. Selection of industrial robots using compromise ranking method. Int. J. Ind. Syst. Eng. 2012, 11, 3–15. [Google Scholar] [CrossRef]
- Karsak, E.; Sener, Z.; Dursun, M. Robot selection using a fuzzy regression-based decision-making approach. Int. J. Prod. Res. 2012, 50, 6826–6834. [Google Scholar] [CrossRef]
- Tao, L.; Chen, Y.; Liu, X.; Wang, X. An integrated multiple criteria decision making model applying axiomatic fuzzy set theory. Appl. Math. Model. 2012, 36, 5046–5058. [Google Scholar] [CrossRef]
- Honarmande Azimi, M.; Taghizadeh, H.; Farahmand, N.F.H.; Pourmahmoud, J. Selection of industrial robots using the polygons area method. Int. J. Ind. Eng. Comput. 2014, 5, 631–646. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.C.; Ren, M.L.; Wu, J.; Lin, Q.L. An interval 2-tuple linguistic MCDM method for robot evaluation and selection. Int. J. Prod. Res. 2014, 52, 2867–2880. [Google Scholar] [CrossRef]
- Vahdani, B.; Mousavi, S.M.; Tavakkoli-Moghaddam, R.; Ghodratnama, A.; Mohammadi, M. Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. Int. J. Adv. Manuf. Technol. 2014, 73, 687–697. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M. Developing an MCDM method for robot selection with interval type-2 fuzzy sets. Robot. Comput.-Integr. Manuf. 2016, 37, 221–232. [Google Scholar] [CrossRef]
- Xue, Y.X.; You, J.X.; Zhao, X.; Liu, H.C. An integrated linguistic MCDM approach for robot evaluation and selection with incomplete weight information. Int. J. Prod. Res. 2016, 54, 5452–5467. [Google Scholar] [CrossRef]
- Wang, J.J.; Miao, Z.H.; Cui, F.B.; Liu, H.C. Robot Evaluation and Selection with Entropy-Based Combination Weighting and Cloud TODIM Approach. Entropy 2018, 20, 349. [Google Scholar] [CrossRef] [Green Version]
Actuation Type | Transmission Relation | Singularity Events |
---|---|---|
(a) | ||
(b) | ||
(c) | ||
(d) |
Angle Value | Solutions |
---|---|
no solutions for the characteristic equations system | |
Category | Attributes for Industrial and Biomedical Environment |
---|---|
Technological attributes | DoFs, actuation type, repeatability, accuracy, acceleration, load (torques, forces) capacity, compliance to non-idealities, materials, workspace/robot volume ratio, temperature range, programming flexibility, man-machine interface, power supply |
Economic attributes | Purchase costs, operation costs, return of investment |
Management attributes | vendor’s service contract, vendor’s service quality, supporting channel partner’s performance, training delivery period, software and services, consistency with infrastructure |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amici, C.; Pellegrini, N.; Tiboni, M. The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification. Micromachines 2020, 11, 711. https://doi.org/10.3390/mi11080711
Amici C, Pellegrini N, Tiboni M. The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification. Micromachines. 2020; 11(8):711. https://doi.org/10.3390/mi11080711
Chicago/Turabian StyleAmici, Cinzia, Nicola Pellegrini, and Monica Tiboni. 2020. "The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification" Micromachines 11, no. 8: 711. https://doi.org/10.3390/mi11080711
APA StyleAmici, C., Pellegrini, N., & Tiboni, M. (2020). The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification. Micromachines, 11(8), 711. https://doi.org/10.3390/mi11080711