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Abstract: As piezoelectric pumps are used in more fields, they are gradually failing to meet
the application requirements due to their low output performance. Therefore, improving the output
performance of piezoelectric pumps helps to expand their applications. This paper argued that
the dynamic load of liquid in the inlet and outlet pipelines was an important factor that weakened
the performance of piezoelectric pumps. Therefore, in order to reduce the dynamic load, it was
proposed to replace the conventional piezoelectric pump inlet and outlet by an elastic inlet and outlet.
After introducing the structure and working principle of elastic inlet and outlet, the mechanism of
reducing the dynamic load by elastic inlet and outlet was analyzed. Then, the influence of the elastic
cavity height on the performance of the piezoelectric pump was studied from both fluid simulation
and theoretical analysis. Finally, several prototypes were made. The effectiveness of the elastic inlet
and outlet on improving the performance of the prototype and the effect of the elastic cavity height
on the performance of the prototype were tested, respectively. The test results showed that the elastic
inlet and outlet effectively improved the flow rate and output backpressure without increasing
the maximum output backpressure. The maximum flow rate of the pump system without load was
increased by 36%. In addition, the elastic cavity height adversely affected the flow rate and output
backpressure of the prototypes, but had no effect on the maximum output backpressure. In summary,
the elastic inlet and outlet can effectively increase the output performance of the piezoelectric pump,
but the design height should be appropriately reduced.

Keywords: piezoelectric pump; structure optimization; dynamic load; elastic inlet and outlet

1. Introduction

Piezoelectric pumps are microfluidic machinery. Piezoelectric pumps have the advantages
of simple structure, high driving strength, easy miniaturization, no magnetic influence and low
noise [1–5], etc. They can be applied to biomedical [6–8], microelectromechanical systems [9,10]
and fuel cells [11,12]. However, the current output performance of piezoelectric pumps is generally
low, which limits their application in many fields. Therefore, it is of great significance to improve
the performance of piezoelectric pumps for expanding their application fields.

In order to improve the output performance of piezoelectric pumps, a lot of research has been
undertaken by scholars. These studies can be grouped into the following five main research areas.
The first research area is how to improve the output performance of piezoelectric pump drive units.
Some researchers have improved the output of piezoelectric pumps by optimizing the structure
of the drive unit to improve the output displacement or output force of the drive unit. In 2015,
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Chen et al. [13] designed a U-shaped resonator to improve the performance of the piezoelectric pump.
The U-shaped structure improved the stress distribution and output displacement of the actuator.
In 2016, Wang et al. [14] proposed a rectangular piezoelectric vibrator that can effectively release
the vibrating constraints of the vibrator, and enlarge its center output displacement. In 2019,
Wang et al. [15] proposed a square piezoelectric vibrator with a flexible support that was used
as the driving unit of the pump. The vibrator with a flexible support increased the volume change of
the pump chamber, thus improving the performance of the piezoelectric pump. The second research
area is the optimization of check valves. Check valves have a hysterical response during high-frequency
operation, which results in a degradation of the output performance of piezoelectric pumps. In order
to reduce the impact of the hysteresis response of the check valve on the performance of piezoelectric
pumps, researchers have designed some high-frequency response check valves. In 2005, Li et al. [16]
proposed a robust passive high frequency high pressure micro check valve with novel cross-patterned
microvalve flap. The frequency of this valve reached 10 kHz. In 2006, Yang et al. [17] designed
planar micro-check valves exploiting large polymer compliance. Testing results show that the check
valves can achieve a diodicity up to 105. In 2018, Yang et al. [18] proposed a technique of check
valve improvement for high-frequency and high flow rate piezoelectric pumps. The high-frequency
performance of the valve was improved by adding in a blocking edge over polydimethylsiloxane
(PDMS) film check valve. At present, the existing research on high-frequency response check valves
has become mature. The third research area is the optimized design of valveless piezoelectric pumps.
The researchers designed some valveless piezoelectric pumps to eliminate the detrimental effect of
check valves on piezoelectric pumps, thus improving the performance of the piezoelectric pump.
In 2018, Munas et al. [19] designed a valveless piezoelectric pump with a cross junction. The cross
junction is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet
channels and an outlet channel, respectively. The structure of cross junction facilitated a complete
fluidic path throughout the system. In 2020, Van et al. [20] proposed a synthetic jet valveless pump
in which the pump chamber is sealed on one side and connected to an emitting nozzle at another
side. The valveless pump used a lead zirconate titanate (PZT) diaphragm to actuate a synthetic jet.
In 2019, Matteo et al. [21] proposed a predictive approach for synthetic jet formation, which can
help the designer to manufacture a synthetic jet pump having the desired performance. The fourth
research area is the structural optimization of pump chamber and check valve. Scholars have optimized
the structure of the pump chamber and check valve to reduce power loss and thus improve output
performance. In 2016, Zhang et al. [22] proposed a single active-chamber piezoelectric pump with
multiple passive check valves to prevent the backward flow of piezoelectric pumps. The pump
could provide accurate flow rate and improve the anti fatigue and wear of the check valve. In 2019,
Farshchi et al. [23] investigated the fluid dynamic response and the fluid–structure interaction during
different stages of the working cycle by means of a 3-D finite element (FE) model. Their research work
provides a reference for the structural optimization of piezoelectric pumps. To improve the stability
and reliability of the piezoelectric pump, in 2015, Chen et al. [24] analyzed the cause of the air block
phenomenon from the structure of a wheel check valve and the optimal combination of the wheel
check valve structure is obtained within the samples: as the thickness is 0.02 mm, the diameter ratio is
1.2, the wheel check valve opening height gets 252 µm, and within the given bubble volume, the air
block probability is less than 2%. The fifth research area is the joint application of several piezoelectric
pumps. The researchers connected several piezoelectric pumps in series or parallel and then controlled
them sequentially, greatly improving the output performance of the piezoelectric pump units [25–30].
It needs to be added that, in addition to these five main research directions, there are also many other
studies which have contributed to the performance improvement of piezoelectric pumps.

The aforementioned studies have made significant contributions to improving the output
performance of piezoelectric pumps. However, unlike the above studies, this paper attempts to
improve the output performance of piezoelectric pumps by reducing the dynamic loading of the liquid
in the inlet and outlet pipelines. In this paper, it is proposed that the dynamic load of the liquid in
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the inlet and outlet pipelines is one of the most important reasons for reducing the output performance
of piezoelectric pumps. When the piezoelectric pump is operating, the liquid in the inlet and outlet
pipelines is in a state of high-frequency vibration. This vibration is manifested in the pulsation of flow
velocity. The dynamic load of the liquid is the inertial force generated by the high-frequency vibration
of the liquid. Obviously, the dynamic load increases the power loss of the pump system, which is
an important factor affecting the output performance of the piezoelectric pump. In order to reduce
the dynamic load, the elastic cavity is added at the connection between the inlet pipeline and the pump
chamber as well as the connection between the outlet pipeline and the pump chamber. As a result,
the traditional rigid inlet and outlet are modified into the flexible inlet and outlet. The elastic cavity
can cut off the rigid connection between the liquid in the pump chamber and the liquid in the pipelines.
At this point, the elastic cavity is similar to the elastic damper in a mechanical vibration system,
which can effectively reduce vibration. So the amplitude of the liquid in the pipelines is reduced.
The elastic cavity smooths the flow rate of the liquid in the pipelines and reduces the dynamic load of
the liquid. The advantage of the scheme proposed in this paper is that it has a simple structure and can
effectively improve the output performance of the piezoelectric pump without increasing the input
power and volume of the piezoelectric pump.

In this paper, firstly, the structure and working principle of the elastic inlet and outlet were
introduced. Secondly, a theoretical analysis of the mechanism of the elastic inlet and outlet reducing
the dynamic load was carried out. Then, the effect of the elastic cavity height on the output performance
of the piezoelectric pump was studied from both fluid simulation and theoretical analysis. Finally,
several prototypes were made and tested.

2. Structure and Working Principle of the Elastic Inlet and Outlet

First, the working principle of the piezoelectric pump with traditional inlet and outlet is introduced.
The structural diagram of the piezoelectric pump with traditional inlet and outlet is shown in Figure 1a.
When the piezoelectric vibrator is driven upward by the voltage, the volume of pump chamber increases
and the chamber pressure decreases. At the same time, the outlet check valve is closed and the inlet
check valve is open. So the liquid in the inlet pipeline is drawn into the pump chamber. When
the piezoelectric vibrator is driven downward by the voltage, the volume of pump chamber decreases
and the chamber pressure increases. At the same time, the outlet check valve is open and the inlet
check valve is closed. So the liquid in the pump chamber is squeezed into the outlet pipeline. Due to
the high-frequency up and down motion of piezoelectric vibrator, the liquid in the inlet and outlet
pipelines vibrates synchronously with the liquid in the pump chamber.
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Figure 1. Schematic diagram of inlet and outlet structure optimization. (a) Piezoelectric pump with 
traditional inlet and outlet, (b) piezoelectric pump with elastic inlet and outlet. 
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can be approximated as sinusoidal vibration. Due to the role of the check valve, the liquid in the 
pipelines only vibrates in one direction. The elastic cavity is similar to the vibration buffer in the 
mechanical vibration system. The elastic cavity cuts off the rigid connection between the liquid in 
the pump chamber and the liquid in the pipelines. As a result, the velocity fluctuations of the liquid 
in the pipelines are suppressed. Vibration speed comparison curves of liquid in the pipelines of the 
traditional piezoelectric pump and the piezoelectric pump with elastic inlet and outlet are shown in 
Figure 3. The elastic cavity smooths the flow velocity of the liquid in the pipelines and reduces the 
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In this paper, the structural optimization of the inlet and outlet is to add an elastic cavity outside
the inlet and outlet check valves, respectively. As a result, the rigid structure of the inlet and outlet is
transformed into an elastic structure. This inlet and outlet are referred to as elastic inlet and outlet
in the paper. The structural diagram of the piezoelectric pump with elastic inlet and outlet is shown
in Figure 1b. The bottom structure of the elastic cavity should be an elastic diaphragm with high
elastic deformation capacity. In this paper, the elastic diaphragm material is silicone. The structure of
the elastic inlet and outlet is shown in Figure 2.
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Figure 2. The structure of piezoelectric pump with elastic inlet and outlet.

When a piezoelectric pump is working, the liquid in the pump chamber and pipelines is
driven by the piezoelectric vibrator to produce high-frequency vibration. According to the working
characteristics of the piezoelectric pump, the vibration of the liquid in pipelines and pump chamber can
be approximated as sinusoidal vibration. Due to the role of the check valve, the liquid in the pipelines
only vibrates in one direction. The elastic cavity is similar to the vibration buffer in the mechanical
vibration system. The elastic cavity cuts off the rigid connection between the liquid in the pump chamber
and the liquid in the pipelines. As a result, the velocity fluctuations of the liquid in the pipelines are
suppressed. Vibration speed comparison curves of liquid in the pipelines of the traditional piezoelectric
pump and the piezoelectric pump with elastic inlet and outlet are shown in Figure 3. The elastic cavity
smooths the flow velocity of the liquid in the pipelines and reduces the dynamic load of the liquid in
the pipelines.
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3. Mechanism Analysis of Elastic Inlet and Outlet to Reduce Liquid Dynamic Load

The dynamic load of liquid in the inlet pipeline follows the identical generation mechanism
to that in the outlet pipeline, so only the generation mechanism of the dynamic load of liquid in
the outlet pipeline is explained. In order to simplify the analysis process, we made some assumptions.
Assume that the liquid is incompressible and ignore the liquid flow resistance at the check valves.
So we regard the liquid in pump chamber and pipeline as rigid connection. The liquid in the pump
chamber was considered as the equivalent lumped mass. When the piezoelectric actuator is driven by
a sinusoidal signal with the frequency f, the vibration displacement of the liquid in the pump chamber
is defined as:

X1 = Φ1 sin(2π f t) (1)

In Equation (1), Φ1 is the maximum amplitude of the liquid in the pump chamber. Liquid in
the pump system is considered incompressible. When the piezoelectric pump without elastic inlet
and outlet discharges liquid, the liquid in the pump chamber and the outlet pipeline will be rigidly
connected. Thus, the vibration displacement of the liquid in the outlet pipeline is expressed as:

X2 = Φ2 sin(2π f t) (2)

In Equation (2), Φ2 denotes the maximum amplitude of the liquid in the outlet pipeline. The flow
of liquid from the pump chamber to the outlet pipeline fits the mass conservation theory, so X1 and X2

satisfy the following equation:
A1X1 = A2X2 (3)

In Equation (3), A1 denotes the cross-sectional area of the pump chamber, and A2 is
the cross-sectional area of the outlet pipeline. Thus, the dynamic load of the liquid in the outlet pipeline
is written as:

F2 = m2
••

X2 = m2
A1

A2
Φ1(2π f )2 sin(2π f ) (4)

In Equation (4), m2 denotes the mass of the liquid in the outlet pipeline. It should be noted that
the pipeline is often long, the liquid in the piezoelectric pump system is mainly distributed in the inlet
and outlet pipelines. Equation (4) suggests that the dynamic load of the liquid is proportional to
the square of the frequency f. Moreover, the dynamic load is also affected by liquid mass and liquid
vibration amplitude. Accordingly, at the high driving frequency of piezoelectric pump, the dynamic
load of liquid in the outlet pipeline will surge, thereby seriously reducing the output performance of
the piezoelectric pump.

When an elastic cavity is added outside the outlet check valve, the elastic cavity cuts off the rigid
connection between the liquid in the pump chamber and the liquid in the outlet pipeline. Accordingly,
when the piezoelectric pump with elastic inlet and outlet discharges liquid, the vibration model of
the pump system can be simplified to the model (Figure 4). The driving force of the piezoelectric
actuator is expressed as F, the liquid mass in the pump chamber is denoted as m1, and the liquid
mass in the outlet pipeline is m2. In the model shown in Figure 4, the elastic cavity is expressed by
elastic element kf and damping element cf. x1 refers to the vibration displacement of the liquid in
the pump chamber, and x2 denoted the vibration displacement of the liquid in the outlet pipeline.
As revealed from the force analysis of the liquid in the outlet pipeline, it is subject to elastic force of
the elastic element kf and damping force of the damping element cf. Following D’Alembert’s principle,
the motion differential equation of the liquid in the outlet pipeline is:

m2
••
x2 + c f (

•
x2 −

•
x1) + k f (x2 − x1) = 0 (5)
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Next, Equation (5) can be modified to:

m2
••
x2 + c f

•
x2 + k f x2 = k f x1 + c f

•
x1 (6)

The elastic cavity slightly impacts the vibration of the liquid in the pump chamber, so X1 = x1.
Equation (7) can be obtained by substituting Equation (1) into Equation (6).

m2
••
x2 + c f

•
x2 + k f x2 = k f Φ1 sin(2π f t) + c f Φ1(2π f ) cos(2π f t) (7)

According to the theory of vibration [31], the vibration expression of the liquid in the outlet
pipeline can be obtained from Equation (7):

x2 = Φ1H sin(2π f t−ϕ) (8)

where ζ =
c f

2m2
, λ =

f
fn

, fn =

√
k f
m2

, H =

√
1+(2ζλ)2

(1−λ2)
2
+(2ζλ)2 , φ = tg−1 2ζλ

1−λ2 − tg−1(2ζλ).

ζ is the damping ratio and λ is the frequency ratio. fn is the natural vibration frequency
of piezoelectric pump system. H is the amplitude amplification factor. ϕ is the lagging phase
angle.According to the theory of mechanical vibration, H < 1 when λ satisfies λ >

√
2. Equation (8)

shows that the vibration amplitude is reduced and the vibration has a delayed phase angle. Therefore,
the vibration of the liquid in the outlet pipeline is smoothed.

The dynamic load of the liquid in the outlet pipeline can be obtained from Equation (8):

F2 = m2
••
x2 = m2Φ1H(2π f )2 sin(2π f t−ϕ) (9)

By comparing Equations (4) and (9), the dynamic load reduction factor can be obtained:

F2

F2
=

A2

A1
H (10)

We can easily find that A2/A1 << 1. H is the amplitude amplification factor. According to
the theory of vibration mechanics and the design concept of the elastic cavity, we can know that
H < 1 in our paper. So the dynamic load reduction factor is much less than 1. This result shows that
the dynamic load is effectively reduced.

The frequency ratio λ satisfies λ >> 1 when the driving frequency f of piezoelectric actuator is high.
In this regard, the amplitude amplification factor satisfies H ≈ 1

λ2 . Equation (9) can be modified to:

F2 ≈ m2Φ1
1
λ2 (2π f )2 sin(2π f t−ϕ) = k f Φ1 sin(2π f t−ϕ) (11)

Equation (11) indicates that the dynamic load F2 is nearly unaffected by the mass m2 of the liquid in
the outlet pipeline and the driving frequency f. When the driving frequency f is high and the stiffness kf
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of the elastic element is small, there is F2 << F2. Thus, the elastic cavity effectively reduces the dynamic
load of the liquid in the outlet pipeline.

4. Effect of the Elastic Cavity Height on the Performance of Piezoelectric Pump

Since the height is an important structural parameter of the elastic cavity, choosing the right height
will help to give full play to the function of the elastic cavity. In this paper, the effect of the elastic cavity
height on the output performance of the piezoelectric pump is studied from both fluid simulation
and theoretical analysis.

4.1. Fluid Simulation

A two-dimensional fluid-structure coupling simulation of the fluid motion in the elastic cavity
was performed using COMSOL software. The two-dimensional simulation model is shown in Figure 5,
where port A is the connecting port between the elastic cavity and the check valve and port B is
the inlet and outlet of the pipeline. The fluid medium in the simulation is water. In the 2D model,
the parameters of the elastic diaphragm are 0.2 mm in thickness and 5 mm in diameter. Its material
was defined as silica gel. The two ends of the elastic diaphragm were fixedly connected with the inner
wall of the elastic cavity.

Micromachines 2020, 11, x 7 of 17 

 

m1m2
kf

cf x1x2

F

 
Figure 4. Simplified dynamic model of the piezoelectric pump with elastic inlet and outlet. 

4. Effect of the Elastic Cavity Height on the Performance of Piezoelectric Pump 

Since the height is an important structural parameter of the elastic cavity, choosing the right 
height will help to give full play to the function of the elastic cavity. In this paper, the effect of the 
elastic cavity height on the output performance of the piezoelectric pump is studied from both fluid 
simulation and theoretical analysis. 

4.1. Fluid Simulation 

A two-dimensional fluid-structure coupling simulation of the fluid motion in the elastic cavity 
was performed using COMSOL software. The two-dimensional simulation model is shown in 
Figure 5, where port A is the connecting port between the elastic cavity and the check valve and 
port B is the inlet and outlet of the pipeline. The fluid medium in the simulation is water. In the 2D 
model, the parameters of the elastic diaphragm are 0.2 mm in thickness and 5 mm in diameter. Its 
material was defined as silica gel. The two ends of the elastic diaphragm were fixedly connected 
with the inner wall of the elastic cavity. 

To simplify the simulation, the pressure of port A and port B are assumed to be constant. 

Port A

Port B

Elastic cavity

Elastic diaphragmPipeline  
Figure 5. The two-dimensional simulation models. 

First, the fluid motion within the elastic inlet cavity was simulated. Port A in the 2D model was 
defined as the fluid outlet of the elastic inlet cavity. And port B in the 2D model was defined as the 
fluid inlet of the inlet pipeline. Since the pump chamber draws fluid from the elastic inlet cavity, the 
pressure at port A should be negative. In the simulation, the pressure at port A was set to −15 kPa. 
This simulation is only a qualitative simulation of fluid motion trend, so the pressure at port A can 
also be set to another negative value. Since the inlet pipeline directly absorbs water from the open 
water tank, the pressure at port B should be 0. The material of the elastic diaphragm was defined as 
silicone rubber. The fluid medium was defined as pure, incompressible water. Fluid-structure 
coupling simulations were performed for elastic inlet cavity with heights of 2 mm, 3 mm, 4 mm, 
and 5 mm, respectively. The simulation results are shown in Figure 6. The simulation results show 
the flow velocity and streamline of the liquid, as well as the deformation and stress of the elastic 
diaphragm. Based on the velocity cloud in Figure 6, the flow rate at port A was calculated and is 
shown in Figure 7. Figure 7 shows that the flow rate at port A decreases as the height of the elastic 
inlet cavity increases. Considering that the pressure boundary conditions at ports A and B are 
constant, Figure 7 indicates that the head loss in the elastic inlet cavity increases with the increase of 
cavity height. Therefore, increasing the height of the elastic inlet cavity is not conducive to the 
pump to absorb water. 

Figure 5. The two-dimensional simulation models.

To simplify the simulation, the pressure of port A and port B are assumed to be constant.
First, the fluid motion within the elastic inlet cavity was simulated. Port A in the 2D model

was defined as the fluid outlet of the elastic inlet cavity. And port B in the 2D model was defined as
the fluid inlet of the inlet pipeline. Since the pump chamber draws fluid from the elastic inlet cavity,
the pressure at port A should be negative. In the simulation, the pressure at port A was set to −15 kPa.
This simulation is only a qualitative simulation of fluid motion trend, so the pressure at port A can
also be set to another negative value. Since the inlet pipeline directly absorbs water from the open
water tank, the pressure at port B should be 0. The material of the elastic diaphragm was defined as
silicone rubber. The fluid medium was defined as pure, incompressible water. Fluid-structure coupling
simulations were performed for elastic inlet cavity with heights of 2 mm, 3 mm, 4 mm, and 5 mm,
respectively. The simulation results are shown in Figure 6. The simulation results show the flow
velocity and streamline of the liquid, as well as the deformation and stress of the elastic diaphragm.
Based on the velocity cloud in Figure 6, the flow rate at port A was calculated and is shown in Figure 7.
Figure 7 shows that the flow rate at port A decreases as the height of the elastic inlet cavity increases.
Considering that the pressure boundary conditions at ports A and B are constant, Figure 7 indicates
that the head loss in the elastic inlet cavity increases with the increase of cavity height. Therefore,
increasing the height of the elastic inlet cavity is not conducive to the pump to absorb water.
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medium were the same as those in the simulation of the elastic inlet cavity. Fluid-structure coupling 
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mm, respectively. The simulation results are shown in Figure 8. The flow rate at port B was 
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The fluid motion within the elastic outlet cavity was then simulated. Port A and port B were
defined as the fluid inlet and fluid outlet of the 2D model, respectively. Taking into account the inflow
and outflow characteristics of the water in the elastic outlet cavity, the pressure at port A and port
B should be set to positive pressure and zero pressure, respectively. We set the pressure at port A
and port B to 15 kPa and 0, respectively. The settings of the elastic diaphragm and the fluid medium
were the same as those in the simulation of the elastic inlet cavity. Fluid-structure coupling simulations
were performed for the elastic outlet cavity with heights of 2 mm, 3 mm, 4 mm, and 5 mm, respectively.
The simulation results are shown in Figure 8. The flow rate at port B was calculated as shown in
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Figure 9. Figure 9 shows that the flow rate at port B decreases with the height of elastic outlet cavity.
The test result indicates that the head loss in the elastic outlet cavity increases with the cavity height.
As a result, the output performance of the piezoelectric pump decreases as the height of the elastic outlet
chamber increases. It should be noted that there is no special consideration for setting the pressure at
port A to 15 kPa, and its value can also be set to another positive value.
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Figure 8. The simulation results of elastic outlet cavity. (a) Elastic outlet cavity with height of 2 mm, 
(b) elastic outlet cavity with height of 3 mm, (c) elastic outlet cavity with height of 4 mm, and (d) 
elastic outlet cavity with height of 5 mm. The metric for color bar: left color bar-m/s, right color 
bar-pa. 
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Figure 8. The simulation results of elastic outlet cavity. (a) Elastic outlet cavity with height of 2 mm,
(b) elastic outlet cavity with height of 3 mm, (c) elastic outlet cavity with height of 4 mm, and (d) elastic
outlet cavity with height of 5 mm. The metric for color bar: left color bar-m/s, right color bar-pa.
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It should be noted that the simulation is a static simulation. The purpose of the simulation is
to qualitatively to study the influence trend of the cavity height on the head loss. This qualitative
influence trend can be obtained from both dynamic simulation and static simulation. In order to
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simplify the simulation work, we choose the static simulation in the paper. The pressure at port A
was set to a constant value, so this simulation cannot accurately simulate actual working flow rate of
the pump. However, this simulation does not hinder the qualitative study of the influence trend of
cavity height on head loss.

4.2. Theoretical Analysis

The fluid flow diagrams of the elastic inlet and elastic outlet cavities are shown in Figure 10.
Figure 10a is a schematic representation of the fluid flow from the inlet pipeline to the elastic inlet
cavity. Obviously, the fluid flow from the inlet pipeline to the elastic inlet cavity can be viewed as a
pipe flow with a sudden increase in cross-section. In Figure 10a, A1 is the area of cross section 1-1,
A2 is the area of cross section 2-2, v1 is the flow velocity of the liquid in the inlet pipeline, and v2 is
the horizontal velocity component of the liquid in the elastic inlet cavity. Figure 10b is a schematic
representation of the fluid flow from the elastic outlet cavity to the outlet pipeline. Clearly, the fluid
flow from the elastic outlet cavity to the outlet pipeline can be considered as a pipe flow with an abrupt
decrease in cross-section. In Figure 10b, A3 is the area of cross section 3-3, A4 is the area of cross section
4-4, v3 is the horizontal velocity component of the liquid in the elastic outlet cavity, and v4 is the flow
velocity in the outlet pipeline. According to the local energy loss theory of pipe flow, when the liquid
flows from the inlet pipeline to the elastic inlet cavity, the local head loss is:

hζ2 = (1−
A1

A2
)

2 v2
1

2g
(12)
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As liquid flows from the elastic outlet cavity to the outlet pipeline, the local head loss is:

hζ3 = 0.5(1−
A4

A3
)

v2
4

2g
(13)

The areas of cross-sections 2-2 and 3-3 are calculated by Equations (14) and (15), respectively.
In Equations (14) and (15), K is a constant value.

A2 = Kh2 (14)

A3 = Kh3 (15)

Equation (16) can be obtained by Equations (12) and (14). Equation (17) can be obtained by
Equations (13) and (15).

hζ2 = (1−
A1

Kh2
)

2 v2
1

2g
(16)
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hζ3 = 0.5(1−
A4

Kh3
)

v2
4

2g
(17)

According to Equations (16) and (17), hζ2 decreases as h2 increases and hζ3 decreases as h3 increases.
Therefore, the higher the height of the elastic cavity, the greater the local head loss of the fluid flow.
The theoretical analysis is in general agreement with the above simulation analysis.

5. Prototype Fabrication and Experimental Device

5.1. Experimental Prototypes

To test the effect of the elastic cavity height on the output performance of the piezoelectric
pump, four prototypes with elastic cavity heights of 2 mm, 3 mm, 4 mm and 5 mm were fabricated.
Except for the height of the elastic cavity, the four prototypes had the same structural parameters.
In addition, a prototype without elastic inlet and outlet was fabricated and compared to the prototype
with elastic inlet and outlet. The photo of the prototype with elastic inlet and outlet is shown in
Figure 11, and the main structural parameters are shown in Table 1. The pump structure is rectangular.
The material of the pump body is polymethyl methacrylate (PMMA), which is highly transparent.
The inlet and outlet of the pump chamber employ wheel check valves. The construction of the wheel
check valve is shown in Figure 12. The wheel check valve is composed of a wheel valve piece and a
valve plate. The valve piece and valve plate were made of beryllium bronze. We used laser cutting
technology to make these valves. The elastic diaphragm is made of silicone. In Figure 12, ds is
the outside diameter of the wheel check valve plate, dm is the outside diameter of the moving disk
on the wheel check valve plate, dn is the outside diameter of the valve plate, and dk is the diameter
of the center hole of the valve plate. The piezoelectric vibrator is round. The piezoelectric vibrator
was made of elastic metal substrate and piezoelectric ceramic sheet, as shown in Figure 13. The elastic
metal substrate and piezoelectric ceramic sheet were glued together by polyethylene terephthalate
(PET) glue.
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Table 1. The main parameters of prototypes.

Structural Parameters Values

Diameter and thickness of piezoelectric vibrator Φ20 × 0.4 (mm)
Diameter and thickness of the metal substrate Φ20 × 0.2 mm

Diameter and thickness of the piezoelectric ceramic sheet Φ16 × 0.2 mm
Outer diameter of wheeled valve piece ds 5 mm

Outer diameter of the moving disc on the wheeled valve piece dm 1.4 mm
Thickness of wheeled valve piece 0.03 mm
Outer diameter of valve plate dn 5 mm

Diameter of center hole of valve plate dk 1.2 mm
Thickness of valve plate 0.05 mm

Height of the pump chamber 0.15 mm
Diameter of inlet and outlet pipeline 1.5 mm

Thicknesses of elastic diaphragm 0.2 mm
Height of elastic cavity 2, 3, 4, 5 mm

Diameter of elastic cavity 3 mm



Micromachines 2020, 11, 735 12 of 17

Micromachines 2020, 11, x 11 of 17 

 

5.1. Experimental Prototypes 

To test the effect of the elastic cavity height on the output performance of the piezoelectric 
pump, four prototypes with elastic cavity heights of 2 mm, 3 mm, 4 mm and 5 mm were fabricated. 
Except for the height of the elastic cavity, the four prototypes had the same structural parameters. In 
addition, a prototype without elastic inlet and outlet was fabricated and compared to the prototype 
with elastic inlet and outlet. The photo of the prototype with elastic inlet and outlet is shown in 
Figure 11, and the main structural parameters are shown in Table 1. The pump structure is 
rectangular. The material of the pump body is polymethyl methacrylate (PMMA), which is highly 
transparent. The inlet and outlet of the pump chamber employ wheel check valves. The construction 
of the wheel check valve is shown in Figure 12. The wheel check valve is composed of a wheel valve 
piece and a valve plate. The valve piece and valve plate were made of beryllium bronze. We used 
laser cutting technology to make these valves. The elastic diaphragm is made of silicone. In Figure 
12, ds is the outside diameter of the wheel check valve plate, dm is the outside diameter of the moving 
disk on the wheel check valve plate, dn is the outside diameter of the valve plate, and dk is the 
diameter of the center hole of the valve plate. The piezoelectric vibrator is round. The piezoelectric 
vibrator was made of elastic metal substrate and piezoelectric ceramic sheet, as shown in Figure 13. 
The elastic metal substrate and piezoelectric ceramic sheet were glued together by polyethylene 
terephthalate (PET) glue. 

 
(a) (b) 

Figure 11. Photo of the prototype with elastic inlet and outlet, (a) top view; (b) bottom view. 

ds

dm
  

(a) (b) 

Figure 12. Structure of the wheeled check valve; (a) wheeled valve piece; (b) valve plate. 

Piezoelectric ceramic sheet

Elastic metal substrate
 

Figure 13. Photo of the piezoelectric vibrator. 

Table 1. The main parameters of prototypes. 

Figure 12. Structure of the wheeled check valve; (a) wheeled valve piece; (b) valve plate.

Micromachines 2020, 11, x 11 of 17 

 

5.1. Experimental Prototypes 

To test the effect of the elastic cavity height on the output performance of the piezoelectric 
pump, four prototypes with elastic cavity heights of 2 mm, 3 mm, 4 mm and 5 mm were fabricated. 
Except for the height of the elastic cavity, the four prototypes had the same structural parameters. In 
addition, a prototype without elastic inlet and outlet was fabricated and compared to the prototype 
with elastic inlet and outlet. The photo of the prototype with elastic inlet and outlet is shown in 
Figure 11, and the main structural parameters are shown in Table 1. The pump structure is 
rectangular. The material of the pump body is polymethyl methacrylate (PMMA), which is highly 
transparent. The inlet and outlet of the pump chamber employ wheel check valves. The construction 
of the wheel check valve is shown in Figure 12. The wheel check valve is composed of a wheel valve 
piece and a valve plate. The valve piece and valve plate were made of beryllium bronze. We used 
laser cutting technology to make these valves. The elastic diaphragm is made of silicone. In Figure 
12, ds is the outside diameter of the wheel check valve plate, dm is the outside diameter of the moving 
disk on the wheel check valve plate, dn is the outside diameter of the valve plate, and dk is the 
diameter of the center hole of the valve plate. The piezoelectric vibrator is round. The piezoelectric 
vibrator was made of elastic metal substrate and piezoelectric ceramic sheet, as shown in Figure 13. 
The elastic metal substrate and piezoelectric ceramic sheet were glued together by polyethylene 
terephthalate (PET) glue. 

 
(a) (b) 

Figure 11. Photo of the prototype with elastic inlet and outlet, (a) top view; (b) bottom view. 

ds

dm
  

(a) (b) 

Figure 12. Structure of the wheeled check valve; (a) wheeled valve piece; (b) valve plate. 

Piezoelectric ceramic sheet

Elastic metal substrate
 

Figure 13. Photo of the piezoelectric vibrator. 

Table 1. The main parameters of prototypes. 

Figure 13. Photo of the piezoelectric vibrator.

5.2. Experimental Device

The experimental setup for testing the performance of the prototypes is shown in Figure 14.
The signal generator (Rigol, DG 1022) generates a sinusoidal drive signal with a phase shift of 0, which
is amplified by a power amplifier (Apex PA94) to actuate the piezoelectric sheet. The voltage amplitude
of sinusoidal drive signal is 150 V. The water, which was the pumping medium, was heated to 60 ◦C
and kept at a constant temperature by means of a thermostatic water bath. The purpose of heating
and keeping water warm is to eliminate air bubbles in the water and improve the elastic modulus of
water. The inlet and outlet pipelines were placed horizontally on the workbench so that the pump has
zero backpressure. The flow rate of the piezoelectric pump was measured using the weighing method
and the output pressure was measured using a digital manometer. In order to reduce measurement
errors in the experimental data, four measurements were taken for each prototype and the mean value
was calculated.
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6. Results and Analysis

6.1. Performance Improvement of Piezoelectric Pump by Elastic Inlet and Outlet

First, the output backpressure and flow rate of the prototype without elastic inlet and outlet were
tested at different drive frequencies. Then, the output backpressure and flow rate of the prototype
with elastic inlet and outlet (2 mm high elastic cavity) at different drive frequencies were tested.
The test results are shown in Figure 15. Figure 15a shows flow comparison curves of the two tested
prototypes when the needle valve is fully open. Figure 15b shows backpressure comparison curves
when the needle valve is fully closed. Figure 15c,d respectively shows flow comparison curves
and backpressure comparison curves when the needle valve opening is 50%.
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frequency curves with 50% needle valve opening, and (d) output backpressure—driving frequency 
curves with 50% needle valve opening. 
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Figure 15. Performance comparison test curves of the prototypes with and without elastic inlet and outlet.
(a) Flow rate—driving frequency curves with needle valve fully open, (b) output backpressure—driving
frequency curves with needle valve fully closed, (c) flow rate—driving frequency curves with 50%
needle valve opening, and (d) output backpressure—driving frequency curves with 50% needle
valve opening.

Comparing the flow rate curves of the two prototypes in Figure 15a, we can see that the flow
rate of the prototype with elastic inlet and outlet is significantly higher than that of the prototype
without elastic inlet and outlet. The prototype with elastic inlet and outlet has a 36% higher maximum
flow rate than the prototype without the elastic inlet and outlet. When the driving frequency f is low
(f < 30 Hz), there is no significant difference in the output flow between the two prototypes.The reason
for this phenomenon is that the elastic cavity does not work due to the low frequency ratio λ.
When the driving frequency f increases gradually (30 < f < 170 Hz), the flow rate curve of the prototype
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with elastic inlet and outlet rises rapidly, which is significantly higher than that of the prototype
without elastic inlet and outlet. This phenomenon indicates that the elastic cavity works and reduces
the dynamic load. When the driving frequency f reaches about 180 Hz, the flow rate of the two
prototypes reaches the peak value, which shows that the resonant frequency of the prototypes is about
180 Hz. When the driving frequency continues to increase (f > 180 Hz), the flow rate of the prototype
with inlet and outlet is still higher than that without inlet and outlet, but the flow difference is gradually
reduced. Therefore, when selecting the driving frequency of the piezoelectric pump with elastic inlet
and outlet, it should be less than the resonance frequency. Comparing the flow rate curves in Figure 15c,
we can find that the change trend of the flow rate curves is similar to that in 15a. This result shows that
the elastic cavity can also effectively improve the flow rate when the pump system load is not 0.

Comparing the output backpressure curves of the two prototypes in Figure 15b, it is clear that
there is no significant difference between them. The output backpressure in Figure 15b was tested
at zero flow rate and was the maximum output backpressure of the two prototypes. In the output
backpressure test at zero flow rate, the liquid in the pipelines is not flowing, so the dynamic load
of the liquid in the pipelines is negligible. At this point, the elastic inlet and outlet do not function,
so the maximum output backpressure is nearly identical for the two test prototypes. Comparing
the output backpressure curves in Figure 15d, we can see that the output backpressure of the prototype
with elastic inlet and outlet is significantly higher than that of the prototype without elastic inlet
and outlet when the needle valve opening is 50%. This result shows that the elastic cavity effectively
reduces the pressure loss caused by dynamic load and improves the output backpressure.

In summary, the elastic inlet and outlet effectively improve the flow rate and output backpressure
of the piezoelectric pump without increasing the maximum output backpressure.

6.2. Effect of the Elastic Cavity Height on the Performance of Piezoelectric Pump

Four prototypes with elastic cavity heights of 2 mm, 3 mm, 4 mm, and 5 mm were tested for flow
rate and output backpressure, respectively. The test results are shown in Figure 16.

Comparing the flow rate curves of the four prototypes in Figure 16a,c respectively, it can be seen
that the higher the height of the elastic cavity, the lower the flow rate of the prototypes. The test result
shows that the height of the elastic cavity has a detrimental effect on the flow rate. According to
the analysis in 4.1 and 4.2, the higher the height of the elastic cavity, the greater the local head loss
in the elastic cavity. Therefore, the higher the height of the elastic cavity, the lower the flow rate of
the prototype. Comparing the flow rate curves.

Comparing the output backpressure curves of the four prototypes in Figure 16b, it can be seen that
there is no significant difference between the four prototypes. The output backpressure in Figure 16b is
the maximum output backpressure of the four prototypes. The test result shows that the height of
the elastic cavity has not a detrimental effect on the maximum output backpressure. In the maximum
backpressure test at zero flow rate, there is no local head loss in the elastic cavity because the liquid in
the pipelines does not flow. So the maximum output backpressure curves of the four prototypes are
almost the same. However, comparing the output backpressure curves in Figure 16d, there are obvious
differences between the four prototypes. Figure 16d shows that the output back pressure decreases
with the height of the elastic cavity. The test result indicates that the height of the elastic cavity also has
a detrimental effect on the output backpressure. The reason for this phenomenon is that the local head
loss in the elastic cavity increases with the height of the elastic cavity.

In summary, increasing the height of the elastic cavity has a detrimental effect on the flow rate
and output backpressure, but has no effect on the maximum back pressure.



Micromachines 2020, 11, 735 15 of 17
Micromachines 2020, 11, x 15 of 17 

 

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8
Fl

ow
 ra

te
 [m

L/
m

in
]

Driving frequency [Hz]

 2mm
 3mm
 4mm
 5mm

 

0 50 100 150 200 250 300 350
10

15

20

25

30

35

O
ut

pu
t b

ac
kp

re
ss

ur
e 

[k
Pa

]

Driving frequency [Hz]

 2mm
 3mm
 4mm
 5mm

 
(a) (b) 

0 50 100 150 200 250 300
0

1

2

3

4

5

Fl
ow

 ra
te

 [ 
m

L/
m

in
]

Driving frequency [Hz]

 2mm
 3mm
 4mm
 5mm

 
0 50 100 150 200 250 300

0

5

10

15

20

Pu
m

pi
ng

 p
re

ss
ur

e 
[k

Pa
]

Driving frequency [Hz]

 2mm
 3mm
 4mm
 5mm

 
(c) (d) 

Figure 16. Performance comparison test curves of the four prototypes with elastic cavity heights of 2 
mm,3 mm, 4 mm and 5 mm. (a) Flow rate—driving frequency curves with needle valve fully open, (b) 
output backpressure—driving frequency curves with needle valve fully closed, (c) flow 
rate—driving frequency curves with 50% needle valve opening, and (d) output 
backpressure—driving frequency curves with 50% needle valve opening. 

7. Conclusions 

In this study, elastic inlet and outlet are proposed to reduce the dynamic load of liquid in the 
inlet and outlet pipelines. After theoretical analysis, simulation analysis and prototype testing, the 
following conclusions can be drawn: 

The elastic inlet and outlet could effectively improve the flow rate and output backpressure of 
piezoelectric pumps. When the piezoelectric pump system had no load, the maximum flow rate 
was increased by 36%. However, the elastic inlet and outlet could not increase the maximum output 
backpressure. 

The local head loss in the elastic cavity increased with the increase of the height of the elastic 
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output backpressure. 
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elastic cavity. However, if the height of the elastic cavity is too low, the function of the elastic inlet 
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Figure 16. Performance comparison test curves of the four prototypes with elastic cavity heights of
2 mm, 3 mm, 4 mm and 5 mm. (a) Flow rate—driving frequency curves with needle valve fully open, (b)
output backpressure—driving frequency curves with needle valve fully closed, (c) flow rate—driving
frequency curves with 50% needle valve opening, and (d) output backpressure—driving frequency
curves with 50% needle valve opening.

7. Conclusions

In this study, elastic inlet and outlet are proposed to reduce the dynamic load of liquid in the inlet
and outlet pipelines. After theoretical analysis, simulation analysis and prototype testing, the following
conclusions can be drawn:

The elastic inlet and outlet could effectively improve the flow rate and output backpressure
of piezoelectric pumps. When the piezoelectric pump system had no load, the maximum flow
rate was increased by 36%. However, the elastic inlet and outlet could not increase the maximum
output backpressure.

The local head loss in the elastic cavity increased with the increase of the height of the elastic
cavity. So increasing the height of the elastic cavity had a detrimental effect on the flow rate
and output backpressure. However, the height of the elastic cavity had no effect on the maximum
output backpressure.

The height of the elastic cavity should be as low as possible in view of the local head loss in
the elastic cavity. However, if the height of the elastic cavity is too low, the function of the elastic inlet
and outlet will be weakened. The disadvantage of this study is that the optimal height of the elastic
cavity was not investigated. In a follow-up study, we will optimize the structure of the elastic cavity to
reduce the local head loss or find the best height calculation method.
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