Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells
Abstract
:1. Introduction
2. Heterogeneity of Cancer Cells
3. Electrical Impedance Spectroscopy (EIS)
3.1. Theory
3.2. Impedance Spectroscopy of Adhered Cells
3.3. Impedance Spectroscopy of Cells in Suspension
4. Applications of Impedance Spectroscopy for Cancer Cells
4.1. Cell Characterization
Metastasis
4.2. Cell Monitoring
4.2.1. Microenvironment
4.2.2. Impedance Coupled with Dielectrophoresis (DEP)
4.3. Drug Monitoring
4.4. Single Cell Analysis
5. Future Trends in Monitoring Cancer Cell Dynamics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CCSCT | Classical Cancer Stem Cell Theory |
CSC | Cancer Stem Cell |
CTC | Circulating Tumor Cell |
DEP | Dielectrophoresis |
ECIS | Electrical Cell-Substrate Impedance Sensing |
ECM | Extracellular Matrix |
EGF | Epidermal Growth Factor |
EIS | Electrical Impedance Spectroscopy |
EMT | Epithelial Mesenchymal Transition |
IFC | Impedance Flow Cytometry |
MSCs | Mesenchymal Stem Cells |
PCR | Polymerase Chain Reaction |
PDGF | Platelet Derived Growth Factor |
SPM | Stemness Phenotype Model |
TGF-α | Transforming Growth Factor-alpha |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA. A. Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Nadler, D.L.; Zurbenko, I.G. Estimating cancer latency times using a weibull model. Adv. Epidemiol. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA. Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marjanovic, N.D.; Weinberg, R.A.; Chaffer, C.L. Cell plasticity and heterogeneity in cancer. Clin. Chem. 2013, 59, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Yang, L.; Frazier, A.B. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 2007, 13, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Norgard, R.J.; Stanger, B.Z. Cellular plasticity in cancer. Cancer Discov. 2019, 9, 837–851. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.C.; Stanger, B.Z.; Sander, M. Nomenclature for cellular plasticity: Are the terms as plastic as the cells themselves? EMBO J. 2019, 38, e103148. [Google Scholar] [CrossRef]
- Yakisich, J.S.; Azad, N.; Kaushik, V.; Iyer, A.K.V. Cancer cell plasticity: Rapid reversal of chemosensitivity and expression of stemness markers in lung and breast cancer tumorspheres. J. Cell. Physiol. 2017, 232, 2280–2286. [Google Scholar] [CrossRef]
- Kaushik, V.; Yakisich, J.S.; Way, L.F.; Azad, N.; Iyer, A.K.V. Chemoresistance of cancer floating cells is independent of their ability to form 3D structures: Implications for anticancer drug screening. J. Cell. Physiol. 2019, 234, 4445–4453. [Google Scholar] [CrossRef]
- Bednarz-Knoll, N.; Alix-Panabières, C.; Pantel, K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev. 2012, 31, 673–687. [Google Scholar] [CrossRef]
- Vlashi, E.; Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 2015, 31, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eker, B.; Meissner, R.; Bertsch, A.; Mehta, K.; Renaud, P. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells. PLoS ONE 2013, 8, e57423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, H.; Sun, T.; Holmes, D.; Gawad, S.; Green, N.G. Single cell dielectric spectroscopy. J. Phys. D Appl. Phys. 2007, 40, 61–70. [Google Scholar] [CrossRef]
- Anh-Nguyen, T.; Tiberius, B.; Pliquett, U.; Urban, G.A. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sens. Actuators A Phys. 2016. [Google Scholar] [CrossRef]
- Giana, F.E.; Bonetto, F.J.; Bellotti, M.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Phys. Rev. E 2018, 97. [Google Scholar] [CrossRef] [PubMed]
- Giana, F.E.; Bonetto, F.J.; Bellotti, M.I. Design and testing of a microelectrode array with spatial resolution for detection of cancerous cells in mixed cultures. Meas. Sci. Technol. 2020, 31. [Google Scholar] [CrossRef]
- Paiva, S.I.; Borges, L.R.; Halpern-Silveira, D.; Assunção, M.C.F.; Barros, A.J.D.; Gonzalez, M.C. Standardized phase angle from bioelectrical impedance analysis as prognostic factor for survival in patients with cancer. Support Care Cancer 2011, 19, 187–192. [Google Scholar] [CrossRef]
- Cruz, M.H.; Sidén, Å.; Calaf, G.M.; Delwar, Z.M.; Yakisich, J.S. The stemness phenotype model. ISRN Oncol. 2012, 2012, 392647. [Google Scholar] [CrossRef] [Green Version]
- Bissell, M.J.; Hines, W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 2011, 17, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Michor, F.; Polyak, K. The origins and implications of intratumor heterogeneity. Cancer Prev. Res. 2010, 3, 1361–1364. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lewis, M.T.; Huang, J.; Gutierrez, C.; Osborne, C.K.; Wu, M.F.; Hilsenbeck, S.G.; Pavlick, A.; Zhang, X.; Chamness, G.C.; et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 2008, 100, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016, 35, 645–654. [Google Scholar] [CrossRef]
- Yang, G.; Quan, Y.; Wang, W.; Fu, Q.; Wu, J.; Mei, T.; Li, J.; Tang, Y.; Luo, C.; Ouyang, Q.; et al. Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br. J. Cancer 2012, 106, 1512–1519. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, D.; Li, Z.; Qian, M.; Zhang, M.Q. Population dynamics of cancer cells with cell state conversions. Quant. Biol. 2013, 1, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.M.; Miao, Z.H.; Jiang, Y.; Chen, Y.; Li, J.X.; Tong, L.J.; Zhang, J.; Huang, Y.R.; Ding, J. Characterization of the conversion between CD133+and CD133—Cells in colon cancer SW620 cell line. Cancer Biol. Ther. 2012, 13, 1396–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akunuru, S.; Zhai, Q.J.; Zheng, Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 2012, 3, e352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safa, A.R.; Saadatzadeh, M.R.; Cohen-Gadol, A.A.; Pollok, K.E.; Bijangi-Vishehsaraei, K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015, 2, 152–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirkse, A.; Golebiewska, A.; Buder, T.; Nazarov, P.V.; Muller, A.; Poovathingal, S.; Brons, N.H.C.; Leite, S.; Sauvageot, N.; Sarkisjan, D.; et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 2019, 10, 1787. [Google Scholar] [CrossRef]
- Dilão, R. Chemotherapy in heterogeneous cultures of cancer cells with interconversion. Phys. Biol. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Pattnaik, S.; Becht, E.; Mezheyeuski, A.; Bruun, J.; Micke, P.; de Reynies, A.; Nelson, B.H. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA 2019, 116, 9020–9029. [Google Scholar] [CrossRef] [Green Version]
- Fricke, H.; Morse, S. The electrical capacity of tumors of the breast. J. Cancer Res. 1926, 10, 340–376. [Google Scholar]
- Moqadam, S.M.; Grewal, P.K.; Haeri, Z.; Ingledew, P.A.; Kohli, K.; Golnaraghi, F. Cancer detection based on electrical impedance spectroscopy: A clinical study. J. Electr. Bioimpedance 2018, 9, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Halter, R.J.; Hartov, A.; Heaney, J.A.; Paulsen, K.D.; Schned, A.R. Electrical impedance spectroscopy of the human prostate. IEEE Trans. Biomed. Eng. 2007, 54, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Halter, R.J.; Schned, A.; Heaney, J.; Hartov, A.; Schutz, S.; Paulsen, K.D. Electrical impedance spectroscopy of benign and malignant prostatic tissues. J. Urol. 2008, 179, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Osterman, K.S.; Kerner, T.E.; Williams, D.B.; Hartov, A.; Poplack, S.P.; Paulsen, K.D. Multifrequency electrical impedance imaging: Preliminary in vivo experience in breast. Physiol. Meas. 2000, 21, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Green, N.G.; Morgan, H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano 2008, 3, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, O.G.; Grimnes, S.; Schwan, H.P. Interface phenomena and dielectric properties of biological tissue. Encylopedia Surf. Colloid Sci. 2002, 20, 2643–2652. [Google Scholar]
- Schwan, H.P. Electrical properties of tissues and cell suspensions: Mechanisms and models. In Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, USA, 3–6 November 1994. [Google Scholar]
- Grimnes, S.; Martinsen, Ø.G. Alpha-dispersion in human tissue. Journal of Physics: Conference Series. In Proceedings of the XIV International Conference on Electrical Bioimpedance and 11th Conference on Biomedical Applications of Electrical Impedance Tomography, Gainesville, FL, USA, 4–8 April 2010; Volume 224. [Google Scholar]
- Aminipour, Z.; Khorshid, M.; Keshvari, H.; Bonakdar, S.; Wagner, P.; Van der Bruggen, B. Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. Eur. J. Pharm. Biopharm. 2020, 146, 133–142. [Google Scholar] [CrossRef]
- Daza, P.; Olmo, A.; Canete, D.; Yúfera, A. Monitoring living cell assays with bio-impedance sensors. Sens. Actuators B Chem. 2013, 176, 605–610. [Google Scholar] [CrossRef]
- Arias, L.R.; Perry, C.A.; Yang, L. Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens. Bioelectron. 2010, 25, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Giaever, I.; Keese, C.R. Micromotion of mammalian cells measured electrically (cell motility/fibroblast behavior/nanometer motions/electrical measurements). Proc. Natl. Acad. Sci. USA 1991, 88, 7896–7900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawad, S.; Schild, L.; Renaud, P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 2001, 1, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Gawad, S.; Renaud, P. Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytom. Part A 2005, 65, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.; Morgan, H. High-speed single-cell dielectric spectroscopy. ACS Sens. 2020, 5, 423–430. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.T.; Chen, D.Y.; Luo, Y.N.; Jiang, M.; Wei, C.; Long, R.; Yue, W.T.; Wang, J.B.; Chen, J. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens. Bioelectron. 2014, 57, 245–253. [Google Scholar] [CrossRef]
- Jang, L.S.; Wang, M.H. Microfluidic device for cell capture and impedance measurement. Biomed. Microdevices 2007, 9, 737–743. [Google Scholar] [CrossRef]
- Qiao, G.; Wang, W.; Duan, W.; Zheng, F.; Sinclair, A.J.; Chatwin, C.R. Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE Trans. Biomed. Eng. 2012, 59, 2321–2329. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, H.S.; Frazier, A.B.; Chen, Z.G.; Shin, D.M.; Han, A. Whole-cell impedance analysis for highly and poorly metastatic cancer cells. J. Microelectromechanical Syst. 2009, 18, 808–817. [Google Scholar] [CrossRef]
- Sista, R.; Hua, Z.; Thwar, P.; Sudarsan, A.; Srinivasan, V.; Eckhardt, A.; Pollack, M.; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008, 8, 2091–2104. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.; Jang, L.S.; Tsai, S.L.; Chen, M.K.; Wang, M.H. Impedance analysis of single melanoma cells in microfluidic devices. Electroanalysis 2014, 26, 2129–2137. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, Z.; Xu, Y.; Liu, R.; Li, Q.; Cheng, J. A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Anal. Methods 2017, 9, 1201–1212. [Google Scholar] [CrossRef]
- Malleo, D.; Nevill, J.T.; Lee, L.P.; Morgan, H. Continuous differential impedance spectroscopy of single cells. Microfluid. Nanofluidics 2010, 9, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, K.; Chen, D.; Fan, B.; Xu, Y.; Ye, Y.; Wang, J.; Chen, J.; Huang, C. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. Biosens. Bioelectron. 2018, 111, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Kim, Y.J.; Moon, H.S.; Lee, J.W.; Yoo, T.K.; Park, K.; Lee, J.H. Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel. Biomicrofluidics 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Arias, L.R.; Lane, T.S.; Yancey, M.D.; Mamouni, J. Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. Anal. Bioanal. Chem. 2011, 399, 1823–1833. [Google Scholar] [CrossRef]
- Park, Y.; Kim, H.W.; Yun, J.; Seo, S.; Park, C.J.; Lee, J.Z.; Lee, J.H. Microelectrical impedance spectroscopy for the differentiation between normal and cancerous human urothelial cell lines: Real-time electrical impedance measurement at an optimal frequency. Biomed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Nuñez, L.F.E.; Gutierrez-Iglesias, G.; Martinez-Cuazitl, A.; Mata-Miranda, M.M.; Alvarez-Jiménez, V.D.; Sánchez-Monroy, V.; Golberg, A.; González-Díaz, C.A. A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Chekhonin, V.P. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp. Mol. Pathol. 2018, 105, 166–174. [Google Scholar] [CrossRef]
- Frisch, S.M.; Schaller, M.; Cieply, B. Mechanisms that link the oncogenic epithelial- mesenchymal transition to suppression of anoikis. J. Cell Sci. 2013, 126, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Livas, T.; Kyprianou, N. Anoikis and EMT: Lethal “liaisons” during cancer progression. Crit. Rev. Oncog. 2016, 21, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarkova, V.; Kralova, V.; Vitovcova, B.; Rudolf, E. Selected aspects of chemoresistance mechanisms in colorectal carcinoma—A focus on epithelial-to-mesenchymal transition, autophagy, and apoptosis. Cells 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, V.; Brabletz, T.; Ceppi, P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 2020. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Kalantari, M.; Mohammadinejad, R.; Javaheri, T.; Sethi, G. Association of the epithelial–mesenchymal transition (EMT) with cisplatin resistance. Int. J. Mol. Sci. 2020, 21, 4002. [Google Scholar] [CrossRef]
- Kuwada, K.; Kagawa, S.; Yoshida, R.; Sakamoto, S.; Ito, A.; Watanabe, M.; Ieda, T.; Kuroda, S.; Kikuchi, S.; Tazawa, H.; et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J. Exp. Clin. Cancer Res. 2018, 37, 307. [Google Scholar] [CrossRef]
- Zhang, J.; Chintalaramulu, N.; Vadivelu, R.; An, H.; Yuan, D.; Jin, J.; Ooi, C.H.; Cock, I.E.; Li, W.; Nguyen, N.-T. Inertial microfluidic purification of floating cancer cells for drug screening and three-dimensional tumour models. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Faurobert, E.; Bouin, A.P.; Albiges-Rizo, C. Microenvironment, tumor cell plasticity, and cancer. Curr. Opin. Oncol. 2015, 27, 64–70. [Google Scholar] [CrossRef]
- Puls, T.J.; Tan, X.; Husain, M.; Whittington, C.F.; Fishel, M.L.; Voytik-Harbin, S.L. Development of a novel 3D tumor-tissue invasion model for high-throughput, high-content phenotypic drug screening. Sci. Rep. 2018, 8, 13039. [Google Scholar] [CrossRef]
- Asthana, A.; Kisaalita, W.S. Biophysical microenvironment and 3D culture physiological relevance. Drug Discov. Today 2013, 18, 533–540. [Google Scholar] [CrossRef]
- Lee, S.M.; Han, N.; Lee, R.; Choi, I.H.; Park, Y.B.; Shin, J.S.; Yoo, K.H. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosens. Bioelectron. 2016, 77, 56–61. [Google Scholar] [CrossRef]
- Tran, T.B.; Cho, S.B.; Min, J. Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening. Biosens. Bioelectron. 2013, 50, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Mansoorifar, A.; Koklu, A.; Ma, S.; Raj, G.V.; Beskok, A. Electrical impedance measurements of biological cells in response to external stimuli. Anal. Chem. 2018, 90, 4320–4327. [Google Scholar] [CrossRef] [PubMed]
- Gaddy, T.D.; Wu, Q.; Arnheim, A.D.; Finley, S.D. Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment. PLoS Comput. Biol. 2017, 13, e1005874. [Google Scholar] [CrossRef] [PubMed]
- Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 2001, 69, 522–530. [Google Scholar]
- Rotin, D.; Tannock, I.F.; Robinson, B. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: Potential implications for cell death in tumors. Cancer Res. 1986, 46, 2821–2826. [Google Scholar]
- Gascoyne, P.R.C.; Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers 2014, 6, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.N.G.; Turner, P.A.; Janorkar, A.V.; Zhao, F.; Minerick, A.R. Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment. Biomicrofluidics 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Huang, H.; Chen, L.; Li, X.; Ge, Z.; Chen, T.; Yang, Z.; Sun, L. Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 2014, 15, 18281–18309. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.N.G.; Jiang, A.Y.L.; Mendoza, N.S.; Ro, C.C.; Lee, D.H.; Lee, A.P.; Flanagan, L.A. Label-free enrichment of fate-biased human neural stem and progenitor cells. Biosens. Bioelectron. 2020, 152, 111982. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Yeh, J.H.; Jen, C.P. A handheld electronics module for dielectrophoretic impedance measurement of cancerous cells in the microchip. Biochip J. 2018, 12, 208–215. [Google Scholar] [CrossRef]
- De Angelis, M.L.; Francescangeli, F.; La Torre, F.; Zeuner, A. Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front. Oncol. 2019, 9, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnaim, L. Therapeutic drug monitoring of cancer chemotherapy. J. Oncol. Pharm. Pract. 2007, 13, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Choi, N.; Kim, K.; Koo, H.J.; Choi, J.; Kim, H.N. Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics 2018, 8, 5259–5275. [Google Scholar] [CrossRef]
- Henslee, E.A.; Torcal Serrano, R.M.; Labeed, F.H.; Jabr, R.I.; Fry, C.H.; Hughes, M.P.; Hoettges, K.F. Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach. Analyst 2016, 141, 6408–6415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Lv, Y.; Wang, L.; Xing, W.; Cheng, J. A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing. Biosens. Bioelectron. 2012, 32, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.L.; Lan, K.C.; Jang, L.S. Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sens. Actuators B Chem. 2012, 173, 927–934. [Google Scholar] [CrossRef]
- Wang, H.C.; Nguyen, N.V.; Lin, R.Y.; Jen, C.P. Characterizing esophageal cancerous cells at different stages using the dielectrophoretic impedance measurement method in a microchip. Sensors 2017, 17, 1053. [Google Scholar] [CrossRef]
- Abiri, H.; Abdolahad, M.; Gharooni, M.; Ali Hosseini, S.; Janmaleki, M.; Azimi, S.; Hosseini, M.; Mohajerzadeh, S. Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes. Biosens. Bioelectron. 2015, 68, 577–585. [Google Scholar] [CrossRef]
- Chuang, C.H.; Huang, Y.W.; Wu, Y.T. System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors 2011, 11, 11021–11035. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, R.; Mandal, M.; Mitra, A.; Das, S. Monitoring cellular activities of cancer cells using impedance sensing devices. Sens. Actuators B Chem. 2014, 193, 478–483. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, J.; Xiao, L.; Tang, J.C.O.; Zhang, Y.; Wang, P.; Yang, M. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosens. Bioelectron. 2009, 24, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Nguyen, T.; Park, J.J.K.; Yoo, A.Y.; Park, J.J.K.; Cho, S. Impedance characterization of chitosan cytotoxicity to MCF-7 breast cancer cells using a multidisc indium tin oxide microelectrode array. J. Electrochem. Soc. 2018, 165, B55–B59. [Google Scholar] [CrossRef]
- Gharooni, M.; Abdolahad, M. Bioelectrical impedimetric sensor for single cell analysis based on nanoroughened quartz substrate; suitable for cancer therapeutic purposes. J. Pharm. Biomed. Anal. 2017, 142, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.L.; Wang, M.H. 24 h observation of a single HeLa cell by impedance measurement and numerical modeling. Sens. Actuators B Chem. 2016, 229, 225–231. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, L.; Zhao, P.; Liang, F.; Wang, W. A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. Anal. Chem. 2019, 91, 15204–15212. [Google Scholar] [CrossRef]
- Asphahani, F.; Wang, K.; Thein, M.; Veiseh, O.; Yung, S.; Xu, J.; Zhang, M. Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment. Phys. Biol. 2011, 8. [Google Scholar] [CrossRef] [Green Version]
- Carey, T.R.; Cotner, K.L.; Li, B.; Sohn, L.L. Developments in label-free microfluidic methods for single-cell analysis and sorting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Doyle, G.V.; Terstappen, L.W.M.M. Significance of circulating tumor cells detected by the cellsearch system in patients with metastatic bbreast colorectal and prostate cancer. J. Oncol. 2010, 2010, 617421. [Google Scholar] [CrossRef]
- Jiang, A.Y.L.; Yale, A.R.; Aghaamoo, M.; Lee, D.H.; Lee, A.P.; Adams, T.N.G.; Flanagan, L.A. High-throughput continuous dielectrophoretic separation of neural stem cells. Biomicrofluidics 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.N.G.; Jiang, A.Y.L.; Vyas, P.D.; Flanagan, L.A. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods 2018, 133, 91–103. [Google Scholar] [CrossRef]
- Jubery, T.Z.; Dutta, P. A new design for efficient dielectrophoretic separation of cells in a microdevice. Electrophoresis 2013, 34, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.P.; Aghaamoo, M.; Adams, T.N.G.; Flanagan, L.A. It’s electric: When technology gives a boost to stem cell science. Curr. Stem Cell Rep. 2018, 4, 116–126. [Google Scholar] [CrossRef]
- Zhang, J.; Cunningham, J.J.; Brown, J.S.; Gatenby, R.A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Valente, K.P.; Khetani, S.; Kolahchi, A.R.; Sanati-Nezhad, A.; Suleman, A.; Akbari, M. Microfluidic technologies for anticancer drug studies. Drug Discov. Today 2017, 22, 1654–1670. [Google Scholar] [CrossRef]
- Soleimani, S.; Shamsi, M.; Ghazani, M.A.; Modarres, H.P.; Valente, K.P.; Saghafian, M.; Ashani, M.M.; Akbari, M.; Sanati-Nezhad, A. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models. Biotechnol. Adv. 2018, 36, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Yakisich, J.S.; Venkatadri, R.; Azad, N.; Iyer, A.K.V. Chemoresistance of lung and breast cancer cells growing under prolonged periods of serum starvation. J. Cell. Physiol. 2017, 232, 2033–2043. [Google Scholar] [CrossRef]
Type of Monitoring | Cancer Cell Line | Summary | Platform | Operating Conditions | Ref |
---|---|---|---|---|---|
Cell Characterization | PC-3, RWPE-1 | Discerned and detected differences in impedance values for RWPE-1 and PC-3 at 8.7 kHz | EIS | Frequency: 100 Hz–1 MHz Voltage: NR Temperature: 25 °C | [57] |
HeLa, A459, MCF-7, MDA-MB-231 | Distinguished stages of breast cancer and cell type based on response to electric field revealing different impedance outputs | EIS | Frequency: 20–101 kHz Voltage: 0.1–1.0 V | [88] | |
MDA-MB-231, MCF-7, MCF-10A | Measured cell membrane differences indicated by membrane capacitance and cytoplasmic conductivity | EIS | Frequency: 3 kHz–3 MHz Voltage: NR Temperature: 37 °C | [50] | |
CE81T CE81T-4 | Cell densities compared to find the lower limit of detection Cytological stages were distinguishable based on admittance values | EIS | Frequency: 4 kHz Voltage: 1 V | [89] | |
A549, MRC-5 | Cell number and cell type detected based on admittance (inversely proportional to impedance) | EIS | Frequency: 1–100 kHz Voltage: 100 mV | [82] | |
SV-HUC-1, TCCSUP | Cells were found to have distinct impedance values at 119 kHz | EIS | Frequency: 5 Hz–1 MHz Voltage: 0.5 V | [59] | |
95C, 95D, A549, H1299 | Cells distinguished by metastasis, oncogene cylin A, and oncogene cyclophilin A based on membrane capacitance and cytoplasm conductivity | IFC | Frequency: 1 kHz and 100 kHz Voltage: NR | [48] | |
Cell Monitoring | PC-3 | Impedance was used to observe variations in cells dielectric properties with a change in pH (microenvironment change) | EIS | Frequency: 10 kHz–40 MHz Voltage: 0.2 V | [74] |
CAL27, Het-1A | Impedance discerned the spreading, adhesion, and proliferation of cells cultured directly on electrodes | ECIS | Frequency: 10 kHz, 25 kHz, 50 kHz Voltage: 10 mV | [58] | |
H1299 A549, HeLa | H1299 distinguishable from HeLa via lower membrane capacitance and higher cytoplasm conductivity Epithelial-mesenchymal transition (EMT) discernible in A549 cells via higher membrane capacitance and cytoplasm conductivity (single cell monitoring achieved) | IFC | Frequency: 100 kHz, 250 kHz Voltage: NR | [56] | |
MRC-5, QUDB | Impedance used to discern cell types, attachment, spreading, and proliferation properties | ECIS | Frequency: 200 Hz–150 kHz Voltage: 400 mV | [90] | |
T24, TSGH8301 | Different stages of bladder cancer discernable using impedance and lower grade bladder cancer had higher impedance than higher grade bladder cancer | EIS | Frequency: 1 kHz–100 kHz Voltage: 1 V | [91] | |
T47D | Studied spreading of adherent cells and effects of ZD6474 (anti-cancer) drug treatment Impedance decreased with increased drug dosage indicating increased cell death | ECIS | Frequency: 100 Hz–1 MHz, 10 kHz (fixed) Voltage: 10 mV | [92] | |
KYSE 90 | Tested effects of cisplatin (anti-cancer drug) on cells Cisplatin induced cell morphology changes and apoptosis indicated by decreasing normalized impedance | ECIS | Frequency: 1 Hz–1 MHz Voltage: 10 mV | [93] | |
HeLa | Viability of cells monitored with drug treatments of doxorubicin and 5-fluoracil Microenvironment manipulated with hydrogel to create concentration gradients and mimic tissue structure Both drugs decreased cell viability indicated with reduced normalized resistance | ECIS | Frequency: 4 kHz Voltage: 10 mVpp | [73] | |
Drug Monitoring | CAL27 | Cell index (measure of impedance) distinguished between cisplatin (apoptosis inducer), nicotine (apoptosis inhibitor), and cisplatin + nicotine treatments | ECIS | Frequency: NR Voltage: NR | [43] |
CaSKi, HeLa, RKO, SMMC-7721 | Implemented novel device with fluid mixing microchannels, air-bubble valves, and interdigitated microelectrodes to monitor cisplatin cytotoxicity and dosage dependent response detected via impedance | ECIS | Frequency: 60 kHz (fixed) Voltage: NR | [87] | |
MCF-7 | Cells treated with anti-cancer drug Chitosan-P to study effects on impedance Largest change in impedance observed at 21.4 kHz and impedance decreased after Chitosan-P treatment due to cell death | ECIS | Frequency: 10 Hz–100 kHz Voltage: NR | [94] | |
MCF-7, MCF-7 WT, MCF-7 DOX | Cells types had higher resistive values based on drug resistance, concluding that impedance can distinguish between drug resistant phenotypes | ECIS | Frequency: 100 Hz–2 MHz Voltage: NR | [12] | |
Single Cell Analysis | MCF-7 | Cell death monitored by the impedance of cells trapped on rough surface and treated with paclitaxel and mebendazole anti-tublin drugs at low and high doses Roughened and smooth electrode surfaces were compared to improve sensitivity of impedance readings and demonstrate the importance of nanoscale geometry Nano-roughened electrodes had a 20% greater sensitivity | EIS | Frequency: 0–60 kHz, targeted frequency at 4 kHz Voltage: 40 mV | [95] |
HeLa | Electrical properties of cells observed for 24 h period Cell shape change at 15 h marked by impedance characteristics based on cell spreading and adhesion to electrodes After 15 h membrane capacitance and cytoplasm resistance decreased | ECIS | Frequency: 10–100 kHz Voltages: 0.7 V and 0.9 V | [96] | |
HeLa, HepG2, A549 | Membrane capacitance and cytoplasm conductivity used to characterize three different cancer cells lines | IFC | Frequency: 103 Hz–106 Hz Voltage: 1 V | [97] | |
686LN, 686LN-M4e | Highly metastatic and poorly metastatic head and neck cancer cell lines were measured on a 16-array microsystem The impedance spectra displayed a higher value for 686LN and a lower value for 696LN-M4e confirming the presence of different cells | EIS | Frequency: 40 Hz–10 MHz Voltage: 500 mV | [51] | |
U87MG | Cells were grown on electrodes and treated with chlorotoxin (ion inhibitor) to monitor real-time shape changes and impedance changes | EIS | Frequency: 500 Hz–20 kHz Voltage: 10 mV | [98] | |
MCF-10A, MCF-7, MDA-MB-231, MDA-MB-435 | Magnitude and phase of impedance, membrane capacitance, and resistance differentiated each cell line, which represents stages of cancer | EIS | Frequency: 100 Hz–3 MHz Voltage: NR | [5] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowell, L.L.; Yakisich, J.S.; Aufderheide, B.; Adams, T.N.G. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines 2020, 11, 832. https://doi.org/10.3390/mi11090832
Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines. 2020; 11(9):832. https://doi.org/10.3390/mi11090832
Chicago/Turabian StyleCrowell, Lexi L., Juan S. Yakisich, Brian Aufderheide, and Tayloria N. G. Adams. 2020. "Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells" Micromachines 11, no. 9: 832. https://doi.org/10.3390/mi11090832
APA StyleCrowell, L. L., Yakisich, J. S., Aufderheide, B., & Adams, T. N. G. (2020). Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines, 11(9), 832. https://doi.org/10.3390/mi11090832