Large-Signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors
Abstract
:1. Introduction
2. Device Structure and Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, T.B.; Hsu, W.C.; Su, J.L.; Hsu, R.T.; Wu, Y.H.; Lin, Y.S.; Su, K.H. Comparison of Al0.32Ga0.68N/GaN Heterostructure Field-Effect Transistors with Different Channel Thicknesses. J. Electrochem. Soc. 2007, 154, H131–H133. [Google Scholar] [CrossRef]
- Hung, C.W.; Chang, C.H.; Chen, W.C.; Chen, C.C.; Chen, H.I.; Tsai, Y.T.; Tsai, J.H.; Liu, W.C. A Pt/AlGaN/GaN Heterostructure Field-Effect Transistor (HFET) Prepared by an Electrophoretic Deposition (EPD)-Gate Approach. Solid-State Electron. 2016, 124, 5–9. [Google Scholar] [CrossRef]
- Wojtasiak, W.; Góralczyk, M.; Gryglewski, D.; Zając, M.; Kucharski, R.; Prystawko, P.; Piotrowska, A.; Ekielski, M.; Kamińska, E.; Taube, A.; et al. AlGaN/GaN High Electron Mobility Transistors on Semi-Insulating Ammono-GaN Substrates with Regrown Ohmic Contacts. Micromachines 2018, 9, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, I.; Kabouche, R.; Bougerol, C.; Pernot, J.; Masante, C.; Comyn, R.; Cordier, Y.; Medjdoub, F. High Lateral Breakdown Voltage in Thin Channel, AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates. Micromachines 2019, 10, 690. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chen, S.H.; Lee, P.H.; Lai, K.H.; Huang, T.J.; Chang, E.Y.; Hsu, H.T. Gallium Nitride (GaN) High-Electron-Mobility Transistors with Thick Copper Metallization Featuring a Power Density of 8.2 W/mm for Ka-Band Applications. Micromachines 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Chen, B.Y. Effects of Surface Passivation and Temperature on AlGaAs/InGaAs High-Electron Mobility Transistor. Microelectron. Eng. 2019, 214, 100–103. [Google Scholar] [CrossRef]
- Han, D.; Ruiz, D.C.; Bonomo, G.; Saranovac, T.; Ostinelli, O.J.S.; Bolognesi, C.R. Low-Noise Microwave Performance of 30 nm GaInAs MOS-HEMTs: Comparison to Low-Noise HEMTs. IEEE Electron Device Lett. 2020, 41, 1320–1323. [Google Scholar] [CrossRef]
- Liu, C.; Chor, E.F.; Tan, L.S. Enhanced device performance of AlGaN/GaN HEMTs Using HfO2 High-k Dielectric for Surface Passivation and Gate Oxide. Semicond. Sci. Tech. 2007, 22, 522–527. [Google Scholar] [CrossRef]
- Fitch, R.C.; Walker, D.E., Jr.; Chabak, K.D.; Gillespie, J.K.; Kossler, M.; Trejo, M.; Crespo, A.; Liu, L.; Kang, T.S.; Lo, C.-F.; et al. Comparison of Passivation Layers for AlGaN/GaN High Electron Mobility Transistors. J. Vac. Sci. Technol. B 2011, 29, 061204. [Google Scholar] [CrossRef]
- Fehlberg, T.B.; Milne, J.S.; Umana-Membreno, G.A.; Keller, S.; Mishra, U.K.; Nener, B.D.; Parish, G. Transport Studies of AlGaN/GaN Heterostructures of Different Al Mole Fractions with Variable SiNx Passivation Stress. IEEE Trans. Electron Devices 2011, 58, 2589. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, S.F.; Hsu, W.C. Microwave and power characteristics of AlGaN/GaN/Si High-Electron Mobility Transistors with HfO2 and TiO2 Passivation. Semicond. Sci. Technol. 2015, 30, 015016. [Google Scholar] [CrossRef]
- Geng, K.; Chen, D.; Zhou, Q.; Wang, H. AlGaN/GaN MIS-HEMT with PECVD SiNx, SiON, SiO2 as Gate Dielectric and Passivation Layer. Electronics 2018, 7, 416. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Goa, W.H. High-temperature Stability of Improved AlGaN/AlN/GaN HEMT with Pre-Gate Metal Treatment. IEICE Electron. Express 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, Q.; Liu, X.; Wang, H. Breakdown Enhancement and Current Collapse Suppression in AlGaN/GaN HEMT by NiOx/SiNx and Al2O3/SiNx as Gate Dielectric Layer and Passivation layer. IEEE Electron Device Lett. 2019, 40, 1921–1924. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Wu, S.C.; Yu, C.J.; Wang, T.W.; Liao, J.H.; Wu, M.C. Comparative Study on Performance of AlGaN/GaN MS-HEMTs with SiNx, SiOx, and SiNO Surface Passivation. Solid-State Electron. 2020, 170, 107824. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, H.S.; Cha, H.Y.; Seo, K.S. Development of Catalytic-CVD SiNx Passivation Process for AlGaN/GaN-on-Si HEMTs. Crystals 2020, 10, 842. [Google Scholar] [CrossRef]
- Murugapandiyan, P.; Mohanbabu, A.; Lakshmi, V.R.; Ramakrishnan, V.N.; Varghese, A.; Wasim, M.O.H.D.; Baskaran, S.; Kumar, R.S.; Janakiraman, V. Performance Analysis of HfO2/InAlN/AlN/GaN HEMT with AlN Buffer Layer for High Power Microwave Applications. J. Sci. 2020, 5, 192–198. [Google Scholar] [CrossRef]
- Shrestha, P.; Guidry, M.; Romanczyk, B.; Hatui, N.; Wurm, C.; Krishna, A.; Pasayat, S.S.; Karnaty, R.R.; Keller, S.; Buckwalter, J.F.; et al. High Linearity and High Gain Performance of N-Polar GaN MIS-HEMT at 30 GHz. IEEE Electron Device Lett. 2020, 41, 681–684. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Tian, Y.; Zhang, C.; Wei, J.; Tao, X.; Li, N.; Zhang, L.; Sun, W. High-Temperature Electrical Performances and Physics-Based Analysis of p-GaN HEMT Device. IET Power Electron. 2020, 13, 420–425. [Google Scholar] [CrossRef]
- Mi, M.; Wu, S.; Zhang, M.; Yang, L.; Hou, B.; Zhao, Z.; Guo, L.; Zhang, X.; Ma, X.; Hao, Y. Improving the Transconductance Flatness of InAlN/GaN HEMT by Modulating VT along the Gate Width. Appl. Phys. Express 2019, 12, 114001. [Google Scholar] [CrossRef]
- Fukui, H. Optimal Noise Figure of Microwave GaAs MESFET’s. IEEE Trans. Electron Devices 1979, 26, 1032–1037. [Google Scholar] [CrossRef]
- Fukui, H. Design of microwave GaAs MESFET’S for Broad-Band Low-Noise Amplifiers. IEEE Trans. Microw. Theory Tech. 1979, 27, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Delagebeaudeuf, D.; Chevrier, J.; Laviron, M.; Delescluse, P. A New Relationship between the Fukui Coefficient and Optimal Current Value for Low-Noise Operation of Field-Effect Transistors. IEEE Electron Device Lett. 1985, 6, 444–445. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-S.; Lin, S.-F. Large-Signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors. Micromachines 2021, 12, 7. https://doi.org/10.3390/mi12010007
Lin Y-S, Lin S-F. Large-Signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors. Micromachines. 2021; 12(1):7. https://doi.org/10.3390/mi12010007
Chicago/Turabian StyleLin, Yu-Shyan, and Shin-Fu Lin. 2021. "Large-Signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors" Micromachines 12, no. 1: 7. https://doi.org/10.3390/mi12010007
APA StyleLin, Y. -S., & Lin, S. -F. (2021). Large-Signal Linearity and High-Frequency Noise of Passivated AlGaN/GaN High-Electron Mobility Transistors. Micromachines, 12(1), 7. https://doi.org/10.3390/mi12010007