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Abstract: A high-resolution sensor using a piezoelectric drum transducer is proposed for power
frequency current sensing (50 Hz or 60 Hz). The utilization of the magnetic circuit helps to enhance the
response to the electric currents in the power cords. The high sensitivity of the sensor originates from
the superposition of the Ampere forces and the amplified piezoelectric effect of the drum transducer.
The feasibility of the sensor was verified by experiments. The device exhibits a broad 3 dB bandwidth
of 67.4 Hz without an additional magnetic field bias. The average sensitivity is 31.34 mV/A with a
high linearity of 0.49%, and the resolution of the sensor attains 0.02 A. The resolution is much higher
than that of the previous piezoelectric heterostructure for two-wire power-cords. Error analysis
shows that the uncertainty reaches 0.01865 mV at the current of 2.5 A. Meanwhile, the device can
generate a load power of 447.9 nW with an optimal load resistance of 55 KΩ at 10A (f = 50 Hz) in
energy harvesting experiments. The features of high sensitivity, excellent linearity, high resolution,
low costs, and convenient installation demonstrate the application prospect of the proposed device
for measuring power frequency currents in electric power grids.

Keywords: high-resolution sensor; piezoelectric drum transducer; current sensing; magnetic circuit;
electric power grid

1. Introduction

Electricity measurement is of great importance for the safety protection, reliability,
and early warning of the electrical equipment in electric power grids. The traditional
current sensors, such as Rogowski coils [1], Hall devices [2], and current transformers [3],
are used for electricity measurement, but there are some disadvantages. For example,
Rogowski coils are not suited for small current measurements. Hall devices put forward
high requirements for signal conditioners. Current transformers have the shortcoming
of signal distortion due to the magnetic saturation. For the measurement of the power
frequency (e.g., 50 Hz in China and 60 Hz in North America) currents, a current sensor
was developed to use the combination of a piezoelectric cantilever beam and NdFeB
magnets [4], which resonates at 60 Hz in operation. However, it is hard to maintain the
resonance due to the nonlinear behavior of the device, and a non-resonant device might be
preferred in realistic current sensing.

In recent years, magnetoelectric (ME) mechanisms have been reported for energy
harvesting [5–9] and current sensing [10–12]. ME structures can be used as electric current
sensors by coupling the magnetic field generated by the alternating currents [13–18]. An
ME device with a tunable bias magnetic circuit was presented [13], which exhibits an
excellent linearity for 50 Hz current measurement. A ring-type ME structure operating in
vortex magnetic field of the currents was developed [14]. The sensor shows a non-resonant
sensitivity of ~12.6 mV/A over the frequency range of 1 Hz–30 kHz. A new ME structure
was put forward for alternating current sensing [15]. A current sensitivity of 1.03 mV/mA
is attained when the input current ranges from 15 mA to 2.1 A. A gradient-type ME
current sensor is proposed, which operates in magnetic field gradient detection [16], and a
sensitivity of 0.65–12.55 mV/A is attained in a wide frequency range of 10 Hz–170 kHz. ME
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cantilever beams have also attracted attention due to their high resonant sensitivities. A
FeCuNbSiB/Ni/PZT beam was fabricated for coupling the magnetic field around a current-
carrying wire with a strong zero-biased response [17]. The resonant sensitivity reaches
~330 mV/A for measuring 50 Hz currents. A current sensor consisting of a FIEA beam, a
PZT8 plate, and a permalloy yoke was proposed [18]. The permalloy yoke concentrates
the vortex magnetic field of the electric wire to the FIEA beam, which improves the
sensitivity of the device. The sensor exhibits a high resonant sensitivity of 300.5 mV/A
with a separating distance of 6 mm. However, most of the ME current sensors require
DC bias magnetic fields, as the ME effect is strongly dependent on the bias. Furthermore,
the presence of the bias magnetic field will increase the volume of the device, which may
render its applications impractical.

To measuring 50 Hz or 60 Hz currents in electric power grids, a structure without
magnetic field bias might be preferred. A silicon-based piezoelectric current sensing
device without a DC magnetic field bias was developed [19]. The device couples the
alternating magnetic field of the current-carrying wire and vibrates at the frequency of
the current. Recently, current sensors based on piezoelectric cymbal structures have been
explored [20,21]. The resolution is 0.05 A [20] and 0.04 A [21] for a single wire and a
two-wire power cord, respectively. To improve the resolution, a current sensor using a
piezoelectric drum transducer is designed in this paper. The high non-resonant sensitivity
results from the superstition of the Ampere forces and the large effective piezoelectric
coefficient of the drum transducer. A prototype was fabricated and tested. The results
demonstrate the feasibility of the proposed device with high sensitivity and resolution for
50 Hz or 60 Hz current sensing.

2. Design and Analysis

Figure 1 shows the schematic diagram of the proposed current sensor. The sensor is
composed of a magnetic circuit, a piezoelectric drum transducer, and a mass load. The
magnetic circuit consists of four magnets and two magnetic yokes, and the magnetic
poles are shown in Figure 1. The drum transducer is made up of a steel ring sandwiched
between two composite disks, and the composite disk is constructed from a piezoelectric
disk bonded on a brass plate. The magnetic circuit produces magnetic flux density on the
conductors of the power cord. When the power cord is energized, the Ampere forces (in
3-direction) on the conductors are superimposed based on Ampere’s force law, as shown
in Figure 2. An enhanced reacting force is then induced on a magnetic circuit, and a
voltage proportional to the electric current is produced due to the piezoelectric effect of the
piezoelectric disks.
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As illustrated in Figure 2, the vertical Ampere forces on the two current-carrying
conductors (conductor a and conductor b) can be calculated by

Fa = J0sin(ωt + ψ)
y

V1

B1dV (1)

Fb = −J0sin(ωt + ψ)
y

V2

B1dV (2)

where J0, ω, and ψ respectively denote the current density, angular frequency, and phase
angle, J0 = I0/

(
πr2

c
)
, I0 is the amplitude of the current, rc is the radius of each conductor,

V1 and V2 are the considered volumes of the conductor a and conductor b, respectively,
and B1 is the magnetic flux density in 1-direction. The vertical force on the power cord can
be expressed as

F3 = Fa + Fb = J0sin(ωt + ψ)(Bma − Bmb)
= J0Blsin(ωt + ψ)

(3)

where Bma and Bmb are the integrals of B1 over the volume V1 and V2, respectively.
The reaction force of F3 (Fr) acts on the magnetic circuit, and the induced electric field

(in 3-direction) can be expressed as

E3 =
de

33F0

πr2
pε0
(
εT

33 − 1
) =

de
33Bl J0

εeπr2
p

(4)

where de
33 is the effective piezoelectric coefficient of the drum transducer, which is depen-

dent on the geometry of the drum transducer [22], F0 is the amplitude of Fr, rp is the radius
of the piezoelectric disk, ε0 is the permittivity of vacuum, ε0 = 8.85 × 10−12 F/m, and εT

33 is
the relative permittivity. The induced voltage in the application of Fr is

V3 = E3tp =
de

33Bl J0tp

εeπr2
p

(5)

The sensitivity of the piezoelectric heterostructure S is obtained as

S =
V3

I0
=

de
33Bltp

εe(πrprc)
2 (6)

It is clear that the sensitivity S is proportional to de
33. The use of the piezoelectric

drum transducer with a high effective piezoelectric coefficient can potentially improve the
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sensitivity of the proposed device. For energy harvesting applications, the output power
across the external resistive load RL can be expressed as

P =
V2

L
RL

=
(ωCV3)

2RL

2[1 + (ωCRL)2]
(7)

where RL is the load voltage and C is the capacitance of the piezoelectric disks. The
impedance of the piezoelectric drum transducer RS depends on the angular frequency ω
and the capacitance C, and RS = 1/(ωC) [23]. The maximal power can be found at RL = RS,
which is given by

Pmax =
π f C

2
(

de
33Bl J0tp

εeπr2
p

)
2

(8)

It can be seen from Equation (8) that Pmax is proportional to the square of Bl. Pmax can
be improved using the magnetic circuit shown in Figure 1, which improves Bl due to the
specific arrangement of the magnets.

3. Results and Discussion

A prototype was fabricated according to Figure 1 to study the feasibility of the pro-
posed piezoelectric heterostructure. The material of the piezoelectric disks is PZT5H. The
radius and the thickness of each piezoelectric disk are 7.5 mm and 0.2 mm, respectively.
The brass disk (with a radius of 10mm and a thickness of 0.2 mm) and the piezoelectric
disk are bonded using insulate epoxy adhesive, and are cured under load.

The frequency-voltage response of the prototype was investigated. Figure 3 shows the
induced voltage versus the frequency at 1 A. It can be seen from Figure 3 that the induced
voltage attains 187.6 mV at the resonant frequency of fr = 556.2 Hz in the given frequency
range (50 Hz–770 Hz). The 3 dB bandwidth ∆f of the device is 67.4 Hz. As the sensor
operates at the power frequency (50 Hz or 60 Hz), the broad 3 dB bandwidth might be
beneficial for the improvement of the sensitivity.
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Figure 4 shows the experimental set-up of the current sensing experiments. A current
generator is used to generate electric currents in the power cord. The power cord passes
through the magnetic circuit. The magnetic circuit experiences an enhanced force when
the power cord is energized, which induces an output voltage of the piezoelectric drum
transducer. The output voltages of the sensor are monitored using a lock-in amplifier.
Figure 5 plots the induced voltage versus the applied electric current at the power fre-
quency of 50 Hz. A good linear response is observed in Figure 5. The voltage varies from
32.29 mV to 345.68 mV when the electric current increases from 1 A to 11 A. The average
sensitivity reaches 31.34 mV/A due to the high effective piezoelectric coefficient of the
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drum transducer. The fitting curve is obtained using the least squares method (with a slope
of 31.226 and an intercept of 2.6873), which is given by

f (I) = 31.226I + 2.6873 (9)
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The corresponding correlation coefficient is 0.99995853. The linearity is analyzed based
on the fitting curve and the experimental data, which is calculated by δ = (∆Vmax/Y)× 100%.
Here, ∆Vmax denotes the maximum deviation, and Y is the full scale output. Using the data
in Figure 5, a high linearity of 0.49% is obtained, which is very favorable to 50Hz or 60Hz
current sensing in electric power grids.

Figure 6 plots the induced voltage versus time at 2.5 A (the number of the measured
voltages is 240). The inset of Figure 6 shows the histogram of the induced voltages. The
standard deviation is calculated by

σ =

√
∑n

i=1 ν2
i

n− 1
(10)

where νi is residual error, νi = Vi −
−
V, and V is the average value of the voltages. Using

the sample points (n = 240), V and σ are calculated to be 80.0038 mV and 0.07224 mV,



Micromachines 2021, 12, 1166 6 of 8

respectively. Normal distribution can be utilized to analyze the sample points based on the
histogram. The confidence interval with a confidence level of 99.99% can be expressed as

S =

[−
V − ε,

−
V + ε

]
(11)

where ε = 4σ/
√

n. The uncertainty of the sensor is given by

ξ = ±ε (12)
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Figure 6. Induced voltage as a function of time at 2.5 A. The inset plots the histogram of the voltages.

According to the measured voltages shown in Figure 6, the confidence interval is
obtained to be [79.98515 mV, 80.02245 mV] for a 99.99% confidence level, and the uncertainty
of the sensor reaches 0.01865 mV.

Figure 7 shows the resolution of the current sensor to small current variation (∆I = 0.02 A)
at the frequency of 50 Hz. From Figure 7, an obvious step-change of the induced voltage
was observed by adjusting the amplitude of the current within 180 s. A current change
as small as 0.02 A is clearly distinguished. It is estimated that this resolution could be
further improved by adopting the magnets with a higher remnant flux density and the
piezoelectric material with higher piezoelectric coefficient (e.g., PMN-PT). The proposed
sensor possesses the characteristics of high sensitivity, high linearity, high resolution, and
low costs. Furthermore, the sensor operates without the requirement to wholly encircle
the power cord. These features facilitate the current sensing of the proposed device in
realistic applications.

Micromachines 2021, 12, x FOR PEER REVIEW 6 of 8 
 

 

𝑆 = [𝑉ሜ − 𝜀, 𝑉ሜ + 𝜀] (11) 

where 𝜀 = 4𝜎/√𝑛. The uncertainty of the sensor is given by 𝜉 = ±𝜀 (12) 

 
Figure 6. Induced voltage as a function of time at 2.5 A. The inset plots the histogram of the volt-
ages. 

According to the measured voltages shown in Figure 6, the confidence interval is 
obtained to be [79.98515 mV, 80.02245 mV] for a 99.99% confidence level, and the uncer-
tainty of the sensor reaches 0.01865 mV. 

Figure 7 shows the resolution of the current sensor to small current variation (ΔI = 
0.02 A) at the frequency of 50 Hz. From Figure 7, an obvious step-change of the induced 
voltage was observed by adjusting the amplitude of the current within 180 s. A current 
change as small as 0.02 A is clearly distinguished. It is estimated that this resolution could 
be further improved by adopting the magnets with a higher remnant flux density and the 
piezoelectric material with higher piezoelectric coefficient (e.g., PMN-PT). The proposed 
sensor possesses the characteristics of high sensitivity, high linearity, high resolution, and 
low costs. Furthermore, the sensor operates without the requirement to wholly encircle 
the power cord. These features facilitate the current sensing of the proposed device in 
realistic applications. 

 
Figure 7. Output voltage as a function of time under small current step changes. Figure 7. Output voltage as a function of time under small current step changes.



Micromachines 2021, 12, 1166 7 of 8

The proposed device can be used to harvest magnetic field energy from the power
cord. A resistance box was connected to the output of the device. By changing the load
resistance, the load voltage increases with the load resistance. The experimental powers
were obtained based on the measured load voltages and the corresponding load resistances.
Figure 8a plots the experimental output power as a function of the load resistance at the
current of 10 A (f = 50 Hz). It can be seen from Figure 8a that the power does not always
increase with the resistance. The power reaches a maximum value of 447.9 nW across the
resistance of 55 KΩ. Figure 8b shows maximal power versus the electric current at the
frequency of 50 Hz. The maximal powers are calculated according to the optimal load
resistances and the corresponding load voltages. It can be seen from Figure 8b that the
power exhibits an approximate quadratic increase. The power increases from 4.65 nW
to 539.8 nW when the current is increased from 1 A to 11 A. It should be noted that the
electrical field energy harvested by the device is ignored as the proposed piezoelectric
heterostructure is intended for low-voltage applications (e.g., 220 V).
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4. Conclusions

In this paper, a self-powered electric current sensor based on a piezoelectric drum
transducer is presented. The superposition of the Ampere forces on the conductors of the
power cord enhances the response of the sensor to the electric current, which improves
the sensitivity of the device. Some conclusions to this study are summarized as follows.
(1) The induced voltage of the sensor has a highly linear relationship with the input current,
and a high linearity of 0.49% is obtained with an average sensitivity of 31.34 mV/A. (2) The
resolution of the sensor was experimental investigated and a high resolution of 0.02 A is
attained at the power frequency of 50 Hz, indicating that a step current change as small as
0.02 A can be distinguished by the proposed sensor. (3) The feasibility of the device for
harvesting magnetic field energy from two-wire power cords was verified. The prototype
generates a load power of 447.9 nW with a matching load resistance of 55 KΩ at a current
of 10 A.
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