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Abstract: Network-on-Chip is a good approach to working on intra-chip communication. Networks
with irregular topologies may be better suited for specific applications because of their architectural
nature. A good design space exploration can help the design of the network to obtain more optimized
topologies. This paper proposes a way of optimizing networks with irregular topologies through
the use of a genetic algorithm. The network proposed here has heterogeneous routers that aim to
optimize the network and support applications with real-time tasks. The goal is to find networks that
are optimized for average latency and percentage of real-time packets delivered within the deadline.
The results show that we have been able to find networks that can deliver all the real-time packets,
obtain acceptable latency values, and shrink the chip area.

Keywords: Network-on-Chip; irregular topologies; design space exploration

1. Introduction

With the decrease in the size of transistors, it was possible to put thousands of them
into a single silicon wafer, which caused the advent of Systems-on-Chips (SoCs). It was also
possible to put several processors communicating together, thus characterizing an MP-SoC
(Multiprocessor System-on-Chip). MP-SoCs require more processing in communication,
which made the buses obsolete and unable to meet this demand. Because of this, Networks-
on-Chips (NoCs) emerged [1,2]. NoCs are scalable and allow reuse, and these qualities
make them a more appropriate solution.

NoCs are formatted by a set of routers that are interconnected, thus forming a topol-
ogy [3,4]. Routers have the function of forwarding the messages from their source to
their destination to provide network communication. How routers are interconnected is
directly related to network performance [5–7], since the routers route the packets to their
destinations. Different topology types occupy different areas due to the way the routers
are organized.

Generic applications generally use regular topologies because of their easy implemen-
tation. However, in some cases, routers can be out of use either due to traffic patterns or
because we have more routers than processing elements (PE), consequently generating a
larger area and energy consumption than necessary and affecting network performance.
When working with specific applications, the use of irregular topologies can bring us better
performance in the area, power, and latency since only the necessary routers can be used [3].
At design time, it is possible to explore the possibilities of connection between routers
within the topology. This exploration performs a search, varying the number of routers
and positions of the source and destination nodes, saving resources, and prioritizing the
evaluated metrics.

When working with real-time (RT) applications, the packets must meet the expected
deadline, as a delay can lead to failures in the execution of the task. Some techniques
tend to ensure that the deadlines of these packets are met. One of them is the use of
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priorities for RT packets to have a preference at the time of containment. In addition, the
use of heterogeneous routers can have a positive impact on the final latency since different
types of routers tend to give us various performances, and merging these routers into our
topology can help us increase network performance [8].

This work aims to generate irregular networks optimized through design space explo-
ration (DSE), seeking to improve latency compared to a mesh topology. We also seek to
increase the percentage of delivered packets within the deadline and decrease the network
area by removing routers.

There are works in the literature using only real-time applications [9]. In order to
expand on this topic, this paper uses networks with real-time and non-real-time application
support. The objective is then to develop an optimization method to explore the architecture
to find NoCs optimized for latency values and real-time packets that can meet their deadline.
In addition, this seeks to reduce the network area by removing as many routers as possible
without abruptly affecting latency and the deadline. Some techniques that aim to improve
network performance were used, such as utilizing heterogeneous routers. Other techniques
used were the use of real-time packet priorities and preemptive virtual channels on some
routers. The network optimization is performed through a genetic algorithm (GA) through
the latency and percentage of delivered packets within the deadline.

To simulate the behavior of irregular networks, the IrNoC tool was used [10]. This tool
was developed in SystemC TLM [11]. IrNoC is a cycle-accurate simulator with worm-hole
switching. The simulator also has two different types of routers, which can be combined to
improve the accuracy of the network. The simulation results are passed on to the GA and
then back to the tool, seeking better network settings.

This paper is divided into six sections as follows. Section 2 presents some related
studies, and Section 3 explains the evaluation metrics used. The proposed irregular
topology is described in Section 4, and the experimental methodology and obtained results
are presented in Section 5. Finally, in Section 6, we present conclusions and suggestions for
future works.

2. Related Works

This section will introduce some works on irregular topologies and real-time.
In [12], an irregular network called UTNoC (Undefined Topology Network on Chip) is

proposed. Each router can connect to any other topology in this network, and each router
can connect to just one processing element. Routing is based on tables, and they are filled
through a broadcast stage. In the UTNoC network, each router can have several ports since
it can connect with any other router of the topology.

The experiments performed based on the UTNoC network were done in a SystemC
simulator. The tool also uses a genetic algorithm that performs the network optimization
by removing connections between the routers so that the network performs near the
performance of the application graph. The experiments were done based on four different
injection rates. The results show that it is possible to obtain an irregular topology with a
performance close to the application graph, reducing the number of connections with only
a small increase in latency.

The work in [4] proposes the use of irregular topologies for a specific application. The
objective of the work is to generate irregular topologies that are fault-tolerant. With the use
of the Tabu search algorithm, redundant links are created to have the packet go through if
there is a failure in a communication link between two routers.

Topologies were evaluated for latency and fault tolerance. Each solution was generated
based on a task graph. Four synthetic applications and four real applications (MPEG and
VOPD) were used for the tests.

As a result, efficient and fault-resistant topologies were obtained. It was observed
that the network latency estimate decreased as the links increased. The links gradually
increased as more flaws were injected. Solutions involving more links than a ring topology
were able to achieve both latency estimation and up to 30% random link fault injection.
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In [13], a new approach is presented for generating irregular topologies for specific
real-time applications. The proposal seeks to form networks that are free of containment
and obtain an efficient cost.

The work proposes a complete approach to co-design in embedded real-time systems
that are based on Networks-on-Chips. The system starts to be specified from a graph of
tasks, and then a co-synthesis is performed and the cost of the system is minimized. The re-
sult of the co-synthesis is expressed as an annotated task graph. Finally, the NoC topology is
created without contention. Port-based contention is eliminated by proper communication
scheduling, and path-based conflicts are removed, assigning non-intersecting routes for
potentially conflicting messages. The construction of the NoC topology considers the time
constraints of the system, minimizing costs in terms of energy and resource requirements.

As the communication pattern is known as a priori, it is used for schedule computation
and transmission and performs routing, taking into account the temporal constraints of
the system. The results show that the system’s performance does not deteriorate, and
significant resource savings are also achieved.

The work carried out by [14] focuses on the generation of irregular topologies for
fault-tolerant NoCs. In order to prevent transient failures, the work in question seeks to
generate irregular topologies that are optimized, seeking to meet a demand for real-time
applications. A genetic algorithm is used to find irregular topologies optimized for various
fault injection scenarios. From an initial topology, links between routers are added.

When the irregular topology is formed, a fault injector randomly distributes up to
15% of faults among the links, making it impossible to carry out communications between
the routers. A second genetic algorithm performs the task mapping, trying to minimize the
latency delay, so that the deadlines of the real-time applications are fulfilled.

Routing is performed using the shortest path algorithm, looking for the shortest
route between two routers. If there is a failure in the shortest path route, this route is not
considered, causing the algorithm to calculate another route. The results show that the
generated topologies could deliver real-time packets with less than a 1% deadline delay.
Average latency was increased by up to 13%.

In [9] the optimization of irregular topologies for real-time applications is performed.
In order to decrease the average latency generated by the network and increase the number
of packets that meet their deadline, an optimization approach is presented, focusing on
hard real-time applications. A heuristic is used to change the mapping of the routers,
seeking to find an irregular topology capable of increasing the number of packets that meet
the deadline, while, on the other hand, decreasing the average latency of the NoC.

The generated topologies were compared in a binary tree format, which can deliver
packets very easily. The results obtained showed that all irregular networks could be more
optimized than the tree topology in terms of deadline. The results obtained showed that
in terms of deadline, all irregular networks can be more optimized than the tree topology.
When addressing the latency metric, half of the generated topologies were able to be
further optimized.

Differently from the works shown above, this paper will focus on irregular topologies
that address applications containing real-time and non-real-time tasks, in addition to using
heterogeneous routers and area reductions. We aim at optimizing the network for values of
average latency, packet delivery rate, and area. Table 1 exemplifies the difference between
the works presented in this section and the approach used in this paper.
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Table 1. Related Works Comparison

Paper Irregular Topology Latency RT Packets Heterogeneous Routers Area

[12] X X

[4] X X

[13] X X

[14] X X X

[9] X X X

This Paper X X X X X

3. Evaluation Metrics

This section presents the metrics used to evaluate the proposed network.

3.1. Proposed Network Evaluation

The main objective of an NoC is to ensure that all messages are delivered so that the
application works well [15]. When working with real-time systems, this concern is more
significant, as a delay in communication can compromise the system’s integrity. Hence, the
performance evaluation consists of verifying that the network meets the minimum latency
and flow requirements.

This paper is intended to evaluate the network for metrics of average latency, the
percentage of the RT packets that meet the deadline, and the area reduction, which will be
done by reducing the number of routers. The total area of an NoC is built mainly through
the number of routers, so we believe that reducing the number of routers expected in
the network reduces the area. The percentage of RT packets that meet the deadline is
calculated using a counter at each local portal. At the end of the simulation, the number
of RT packets sent was compared with those that met the deadline, and the percentage
calculation was performed. Latency is usually calculated in clock cycles [16], but in our
paper, it is calculated in nanoseconds (ns) since the IrNoC tool works that way. The average
latency can then be obtained by the sum of each packet trafficked in the network and
divided by the total number of packets. In Equation (1), it can be better observed how this
calculation is performed.

Average Latency =
Nº of Pckts

∑
i=1

Latency of Pcket
Nº of Pckets

(1)

In this work, heterogeneous routers, preemptive virtual channels, and packet priority
techniques improve network performance. The heuristic seeks to optimize the network by
merging different routers and changing the mapping of the routers.

3.2. Design Space Exploring

For the design space exploring stage, the genetic algorithm was chosen. Although
there are more optimized solutions in the literature, GA is easy to implement and can
solve the problem with few iterations. The genetic algorithm was implemented using the
C++ language (chosen due to its high performance). The function that starts the algorithm
generates a first population with random values, which have their genes altered due to the
next steps. The objective of the work is the optimization of irregular topologies compared
to other topologies, such as mesh. Due to this, the comparison between heuristic methods
to solve the problem is unnecessary.

Given a specific application and a set of initial irregular topologies, the GA then seeks
to change the network mapping, seeking to generate more optimized networks. To perform
this optimization, the GA considers the average latency, the percentage of packets delivered
on time, and the number of routers present in the topology.
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A chromosome that is used in our GA represents a solution to the problem. The
representation of this chromosome depends on the problem addressed and also on what
one wishes to manipulate genetically [17]. In the case of this paper, a chromosome would
be the representation of an irregular topology, that is, basically the way the routers are
interconnected. The chromosome represents the network mapping, so the chromosome
represents how the routers are linked together. In Figure 1, an example of a chromosome
used by our GA can be seen. The chromosome has two rows, each row contains the routers
present in the network, and the connection between these routers is carried between one
router and the one directly below it in the other row.

Figure 1. Example of a chromosome in our GA.

The initial population is created randomly and starts with a router for each core in
the application. Then, the network is evaluated through the fitness function according to
established metrics. The GA then removes routers from the topology to optimize in the
area. The new mapping generations are tested to find a topology that meets the latency,
area, and deadline requirements. The inequality (2) shows the relation as to the number of
routers within a topology.⌊

Cores Number
2

⌋
≤ Routers Number ≤ Cores Number (2)

Then, at most, the number of routers will be the same as the cores that the application
has and at least the floor of the total number of cores over two. Initially, each router starts
with a core associated with it, and as the GA pulls out routers, the cores that will be attached
to them will be connected to the routers that remain. In the end, the topology can be up to
half of the initial routers since a minor number could compromise the latency and deadline
performance of the RT packets. Each router can have a varying number of ports, with four
being the limit number, so we can say that each router in our network can connect at most
with four other routers. Initially, the network starts with only one type of router, and the
GA will test different router types.

The crossover is accomplished by generating a string of random bits ranging from
0 to 1, and this string is the same size as the parents. Two children are then generated.
The first child is made by taking the positions with value 1 in the first line of the bit string
and substituting the corresponding number of the exact position of the first parent. The
remainder of the row containing 0 values is replaced by the values of the exact position
of the first row of the second parent. To fill the second line of the first child, the inversion
is done. The values that contain 1 are replaced by the values of the same position of
the second row of the second parent, and the remaining values are exchanged for the
equivalent of the second row of the first parent. The second child is generated inversely,
so there is no risk of repeating connections already tested. In this paper, for the mutation,
the gene exchange approach will be used [18]. The first router in the top row is replaced
by the last one in the same row in the mutation step. Figure 2 shows this process. The
fitness function used is the IrNoC simulator itself. If a population has an invalid individual,
the GA tries to generate another valid individual. This process is repeated until the entire
population is adequate.
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(a) crossover (b) mutation steps

Figure 2. GA operations.

In this paper context, the GA was executed using the parameters in Table 2. The
parameters were chosen through several tests with different parameters, seeking to find the
most adaptive configuration to the problem. In most experiments, these parameters were
evaluated through the convergence points. Using more individuals or a larger population
would lead to a much longer simulation time since configurations are tested by changing
the number of routers, types of routers, and the interconnection between these routers,
leading to an NP-Hard search problem.

Table 2. The tuning of the algorithm in the experiment.

Algorithm Tuning

GA Individuals = 50, Iterations = 50,
Crossover = 40%, Mutation = 50%, Elitism = True

4. Proposed Irregular Topology

The architecture proposed here provides more than one core per router, enabling
savings in the area. Initially, the architecture starts using a core for each router in the
application. As the genetic algorithm executes, it optimizes the architecture by removing
routers and allocating the orphaned cores to the remaining routers, leaving a maximum
of two cores for each router, thus avoiding a communication overload. When a router
has more than one PE connected to it, one of the communication ports between routers
is transformed into a local port to accommodate the other PE. Figure 3 exemplifies the
architecture used.

The routing algorithm used is the shortest path of Floyd Warshall [19,20] and uses
a routing table present in each router, where the routers present in the architecture are
presented on each line together with the number of hops to and the outgoing port to reach
each router.
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Figure 3. Example of an irregular topology using the proposed architecture.

The tables in each router are constructed during the formation of the network topology.
Each table contains the address of any router present in the topology. Therefore, the higher
the topology, the larger the table and its occupied space within the router. As in this paper,
the area is measured by the number of routers and not by the space actually occupied by
each router and its components, and this is a problem that will not be addressed in this
paper but rather in the future. The tables in each router are constructed during the network
creation when the routers are each allocated to their position, and they are building and
mapping the tables simultaneously.

The IrNoC simulation tool has two types of routers, which can be seen in Figure 4. The
first type is a simple router, containing only the basic mechanisms of a router. The second
type of router differs from the first by adding two preemptive virtual channels for each input
port. In the present work, the genetic algorithm merges the different types of routers, seeking
to increase the network’s performance. The simulation ends when the RT packet deadline
ends since the main goal is to deliver all RT packets within the deadline.

Figure 4. Router models used
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5. Experimental Results

This section presents the results obtained from the simulations carried out in networks
with irregular topologies and optimized through the genetic algorithm. The simulations
were carried out to find networks optimized for average latency and real-time packets
delivered within the deadline.

Almost all the applications used are synthetic and generated using the TGFF tool [21,22].
Synthetic applications are those with 15 tasks and the first 4 applications with 10 tasks. The
fifth application with 10 tasks is a real application, which corresponds to the Romberg integral
method [23], obtained in [24]. Simulations are ended as soon as the RT packets’ deadline
ends, after which the percentage of delivered RT packets is checked. Two different sets of
applications were generated, with 10 and 15 tasks, respectively. The applications contain
different numbers of packets, data volume, deadlines, and traffic patterns. The communication
graphs can be seen in Figure 5.

The tests are done for different deadline levels, trying to analyze how far our networks
can deliver the packets in real-time. The heuristic seeks to deliver the packets in real-time
within the specified period, while for non-real-time packets, delays are allowed. Each
application has a different deadline. In the first level, the deadlines established by the
simulation tool are used. At the second level, the deadline value for each application drops
by half. At the third level, the deadline value is decreased 10 times compared to the first
level. The highest deadline value tested for applications is 12,000 nanoseconds because it is
an average deadline number for RT applications, and the lowest deadline value used is
500 nanoseconds, which is a small deadline value for an RT application and was chosen to
determine if the application would be optimized up to this point.

Figure 5. Application communication graphs.

The results are presented in tables and charts. Tables show the application, latency
values, the percentage of delivered RT packets, and the number of each type of routers used
in the application. T1 is the simplest router, and T2 is the router that contains preemptive
virtual channels. The tables present the most optimized result for each application. Each
application set was also run on a mesh network that co-handles all application tasks.
According to a given number of tasks, the charts cover latency and the percentage of
packets complying with their deadlines. Each chart shows the applications for irregular
and mesh topologies, differentiating each injection rate used during the simulations. The
results are shown in the charts in Figures 6–9. The y-axis shows the evaluated metric
(latency or packets delivered within the deadline). The x-axis shows the evaluation for
each application described in Section 5. Tables 3–6 present the results in more detail.
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Figure 6. Latency for applications with 10 tasks.

Figure 7. Packets for applications with 10 tasks.

Figure 8. Latency for applications with 15 tasks.
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Figure 9. Packets for applications with 15 tasks.

Table 3. Irregular topologies with 10 cores.

Long Deadline Average Deadline Short Deadline

App. Latency Packets T1 T2 App. Latency Packets T1 T2 App. Latency Packets T1 T2

1 279.35 100% 5 1 1 3120 100% 6 2 1 1530 100% 6 2

2 188.10 100% 3 3 2 9140 37.50% 0 10 2 1058 100% 3 3

3 177.90 100% 3 3 3 1830 100% 3 4 3 530 20% 1 9

4 700.15 100% 4 2 4 802.78 34.42% 0 10 4 173.75 21.73% 10 0

5 329.75 100% 0 6 5 209.93 100% 10 0 5 130 90% 4 6

Table 4. Mesh topologies with 10 cores.

Long Deadline Average Deadline Short Deadline

App. Latency Packets App. Latency Packets App. Latency Packets

1 418.70 45% 1 140.70 15% 1 990 1%

2 306.73 31.33% 2 856 12% 2 760 1.33%

3 419.44 30% 3 142.80 12% 3 780 2%

4 198.63 18.18% 4 720.45 9.84% 4 522.70 0.75%

5 173.16 17.22% 5 203.21 4.67% 5 190.31 1.59%

Table 5. Irregular topologies with 15 cores.

Long Deadline Average Deadline Short Deadline

App. Latency Packets T1 T2 App. Latency Packets T1 T2 App. Latency Packets T1 T2

1 658.86 62.51% 0 10 1 184.46 100% 6 2 1 450 100% 6 2

2 895.67 100% 5 3 2 3720 19.14% 0 10 2 566.67 100% 6 2

3 750.99 100% 3 5 3 873.84 100% 2 6 3 741.76 100% 5 3

4 488.39 61.90% 0 10 4 324.33 35.29% 0 10 4 184,46 88.69% 0 10

Table 6. Mesh topologies with 15 cores.

Long Deadline Average Deadline Short Deadline

App. Latency Packets App. Latency Packets App. Latency Packets

1 262.12 19.37% 1 881.25 9.37% 1 6 0.62%

2 161.37 61.25% 2 587.50 6.25% 2 412.5 0.41%

3 192.47 20.58% 3 831.18 9.41% 3 547.1 0.58%

4 204.56 36.87% 4 873.75 9.37% 4 618.8 0.62%
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General Analysis

Analyzing the charts shows that for applications with 10 tasks, as shown in Figure 6,
the latency in most cases managed to be less than that of the mesh topology. Figure 8
shows that for applications with 15 tasks, the latency tends to be higher than the mesh
topology. Figures 7 and 9 show the RT packets delivered within the deadline and show
that irregular topologies always managed to deliver more RT packets when compared to
mesh topologies. In most cases, 100% of RT packets were delivered on time. All irregular
topologies were optimized in terms of area, in some cases reducing by almost half the
number of routers initially used. This reduction in the area becomes more significant if we
compare it with the number of routers used in the mesh network.

As explained above, in the IrNoC simulator, the simulation process is completed when
the deadline ends. Due to this process, the latency in some cases is high, even with few
packets delivered. In these cases, the generated topology could not be optimized, causing
packets to become congested in the network, avoiding being delivered within the deadline,
and overextending latency. When the topology can be optimized properly, it adds the
second type of router, which has better support for real-time multi-packet traffic, as it has
dedicated channels for this purpose. In addition, by also finding a router interconnection
configuration that will favor the application graph, it is possible to manage to deliver
all packets within the deadline. This optimization also causes lower latency, including
reducing the number of routers, favoring the chip area.

Table 7 shows the values of the T statistical test, using a 95% confidence level. The
test used is paired and two-tailed. The sets of applications with irregular and mesh
topologies for latency and delivered packets are compared. In the item delivered packets
for applications with 10 cores, it was possible to deliver 100% of the packets in most cases.
For the tests with a long deadline, all RT packets managed to meet the deadline since they
had more time for delivery. In other cases, it was only possible to deliver 100% of the
packets in half of the cases. When compared to the mesh topology, it is noted that the
optimized irregular topology does better in all cases of delivered packets, also managing
in most cases to remove routers from the topology, reducing the area. The T-test shows a
large statistical difference for long deadline applications, showing that the approach to a
slightly longer deadline is much higher than mesh.

Table 7. T test.

T Test 10 Cores T Test 15 Cores

Latency Delivered Packets Latency and Delivered Packets

Long 0.813 0.001 Long 0.015 0.027

Average 0.173 0.051 Average 0.628 0.076

Short 0.831 0.081 Short 0.662 <0.001

When comparing latency, the T-test shows that there was no variation, and in the
tables, we can see that the average latency of the mesh topology is lower in some cases.
This is because the simulation is stopped as soon as the deadline ends, so in fact, we do not
have a total average latency but a partial one until that moment of the packet’s delivery. As
the mesh was unable to deliver 100% of the packets at any time, we can assume that in a
scenario where the mesh delivers all RT packets, its final average latency would be greater
than that of the irregular topology.

For results with 15 cores in the application, the delivery of 100% of the RT packets is
also achieved in most cases. In applications with short deadlines, this result is achieved in
75% of the cases, while only half of the applications are successful in other test cases. The
T-test shows a significant statistical difference in two of the three cases, which shows the
superiority of the optimization technique in the irregular topology.
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In the latency issue, the mesh topology once again obtains better results. However,
as was highlighted above, these values show a partial result of the latency due to the stop
criterion of the simulations. Taking this into account and also that in the T-test, there was a
big difference in one of the three cases, we can say that for the latency with 15 cores, the
irregular approach also becomes superior. When the network area is observed, it can be
seen that in most cases, it is reduced by 46.66%, and when this value is not achieved, a
decrease of 33.33% in the area is obtained. When comparing the area with mesh topologies,
we achieved a reduction in all applications.

When we compare the results obtained here with [9,12], which are the most similar
to our presented approach, we can observe that the results of this paper are satisfactory
in optimizing irregular topologies. In [12], only non-real-time applications and one type
of router are used, and the routing approach has an additional broadcasting cost when
compared to our approach. We have area reduction as an advantage in our approach,
besides showing that we can optimize irregular topologies with an urgent demand for
packet delivery. In [9] uses real-time packets but does not work with non-real-time packets,
as is done in our paper. Merging different types of routers, as we do, allows us to improve
latency and packets delivered results when compared to [9]. Due to these comparisons,
we can state that the proposed approach managed to find optimized irregular topologies,
improving latency and delivering packets within the deadline.

6. Conclusions and Future Works

This paper analyzed the use of irregular topologies to obtain networks with optimized
values for latency, area, and a higher rate of real-time packets delivered within the stipulated
deadline. The networks used are optimized through a genetic algorithm and rely on
heterogeneous routers to enhance achieving the desired metrics.

Different applications were used, with different communication patterns and dead-
lines for the RT packets. The genetic algorithm is responsible for exploring space and
design and seeks to find networks that are as optimized as possible regarding medium
latency, RT packets delivered, and several routers. The use of heterogeneous routers also
contributes to the optimization of the network since one type of router has preemptive
virtual channels, which tends to decrease the latency of real-time packets.

The results demonstrate that it is possible to find networks optimized for different
applications and packet delivery times. By exploring irregular networks through the
genetic algorithm, we could find topologies that met the latency, area, and deadline of
the RT packets. Compared with the mesh networks, the irregular networks that use
heterogeneous routers were superior and met the design constraints.

As future improvements, we aim at evolving this work using hybrid networks that use
wire-bound routers and routers that connect through small antennas, the so-called WiNoCs
(Wireless Networks-on-Chips). It is also planned to analyze the energy consumption to
verify the efficiency of hybrid networks and heterogeneous routers.
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