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Abstract: The focus of research and development on electric motorcycle range extender are system
integration and energy regulation and management but the present fuel cell stack range extender
still has defects, such as large volume, heavy weight and high cost. Its volume and weight will
have a strong impact on the endurance of electric motorcycle. The bipolar plate takes most volume
and weight of a proton exchange membrane fuel cell (PEMFC) stack and it is the key component
influencing the overall power density and cost. Therefore, how to thin and lighten the bipolar plate
and to enhance the performance and life of PEMFC stack is an urgent research subject to be solved
for the moment and will be the key to whether the PEMFC stack range extender can be put in the
electric motorcycle or not. In addition, the internal temperature, humidity, flow, voltage and current
in the operation of PEMFC stack will influence its performance and life and the overall performance
and life of fuel cell stack will be directly influenced by different external operating conditions. As
nonuniform distribution of temperature, humidity, flow, voltage and current will occur in various
regions inside the fuel cell stack, this study will use micro-electro-mechanical systems (MEMS)
technology to develop a flexible five-in-one microsensor, which is embedded in the PEMFC stack
range extender for real-time wireless microscopic diagnosis and the reliability test is performed, so
that the actual operating condition inside the fuel cell stack range extender can be mastered instantly
and correctly and the internal information is fed back instantly, the fuel cell stack range extender
control system can be modified to the optimum operating parameters immediately, so as to enhance
the performance and prolong the lifetime effectively.

Keywords: electric motorcycle; PEMFC stack; range extender; flexible five-in-one microsensor;
wireless microscopic diagnosis

1. Introduction

At present, battery storage capacity is limited and the driving range is short after
a charging. A possible solution to this is to install a range extender on battery electric
vehicles to increase the driving range of battery electric vehicles. The electric vehicle range
extender is an additional energy storage component installed on the battery electric vehicle
for increasing the running kilometrage of the vehicle. The electric energy can be supplied
when the battery power is exhausted. It can supplement electric energy to the battery of an
electric vehicle instantly, protecting the battery against over discharge. The electric vehicle
range extender can supplement electric energy to the electric vehicle battery in an optimum
charging state instantly, preventing the heating induced by battery over discharge and
overcharge and electrolyte boiling evaporation. The optimal operating state can thus be
maintained continuously, so the battery service life can be increased greatly.
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Among the constituent elements of a proton exchange membrane fuel cell (PEMFC)
stack, the bipolar plate accounts for almost 88% of total weight of fuel cell stack [1], to
reduce the weight, the bipolar plate is a good cut-in point. It is indicated that many
international corporations or research institutions studied bipolar plate in succession.
For example, (1) Treadstone Technologies developed composite metal bipolar plate; (2)
Argonne National Laboratory developed low cost metal bipolar plate [2]; (3) Wilberforce
et al. studied the influence of geometric design of bipolar plate on the performance of
PEMFC [3]; (4) Madadi et al. coated different materials on a metal bipolar plate to improve
the performance of PEMFC [4].

The performance of PEMFC is mutually influenced by many operating parame-
ters, such as temperature, humidity, pressure and flow. Lee et al. [5] used micro-electro-
mechanical systems (MEMS) technology to integrate micro temperature and humidity
sensors to measure local values of PEMFC. The study found that the temperature difference
between Membrane Electrode Assembly (MEA) and a bipolar plate was 5.7 ◦C. In order
to eliminate local CO2 to prevent vehicles from emitting exhaust gas, Hoeflinger et al. [6]
used a PEMFC range extender system to optimize the air flow rate and pressure data, so as
to enhance the performance. Tang et al. [7] used 25 µm thick Type-T thin film thermocouple
to measure the temperature difference, which was about 1.5 ◦C. Lee et al. [8] embedded a
microsensor in the vanadium redox battery, the accuracy and sensitivity of micro tempera-
ture sensor were 0.5 ◦C and 2 × 10−3 ◦C respectively. Fergany [9] used a SSO (Salp Swarm
Optimizer) to optimize the operating parameters of PEMFC.

In terms of PEMFC, the temperature, humidity, pressure and flow can influence the
cell performance and life. When it is too dry, the internal reaction of MEA is incomplete.
When the gas is too wet, the membrane material is unlikely to retain moisture. Under dif-
ferent operating conditions, if the PEMFC has severe water accumulation, the runner will
be blocked temporarily, the voltage of cell drops instantaneously, the cell performance de-
grades and the cell performance cannot be predicted. In order to measure the temperature
distribution at all points of MEA, Inman et al. [10] used phosphor thermometry to design
an optical fiber temperature sensor and embedded the optical fiber temperature sensor
between the bipolar plate and the gas diffusion layer. However, the invasive measurement
mode not only increases the cost but also influences the cell performance [11–13].

Tan et al. [14] used LC wireless sensor to detect the temperature and humidity accord-
ing to the change in capacitance of resonant circuit. Huang et al. [15] used wireless sensor
data collector and wireless sensor nodes of different functions for monitoring experiment
data. The system composed of wireless sensors, Cloud Computing and storage, enables
the researchers to perform local monitoring on a local scale or to perform remote data mon-
itoring through Cloud. Jafer et al. [16] developed a wireless sensor network module; the
resistance and capacitance values were measured by resistance temperature detector (RTD)
and capacitive pressure sensor, the signals were digitally processed by analog to digital
convertor (ADC) and sent by RF module to the measurement instrument, the wireless
sensor module successfully measured the internal temperature and pressure information
of water pipe. Huang et al. [17] developed an RLC (resistance-inductance-capacitance)
resonant circuit and used Polydimethylsiloxane (PDMS) as the substrate of strain sensor.
This circuit will induce coil, when the coil inductance changes, the value is derived from
an equation.

At present, the bipolar plate of a PEMFC stack is still made of metal and graphite,
because the metal bipolar plate has a smaller volume, lower cost and high mechanical
strength. But it has lower electrical conductivity and resistance to galvanic corrosion, so the
metal bipolar plate is inapplicable to the operating conditions in a harsh environment. The
graphite has quite good chemical stability, corrosion resistance and electrical conductivity.
The bipolar plate isolates the oxidation and reduction between two poles and collects
current and it shall contact MEA equally to collect current effectively, so its material shall
have quite good chemical stability, corrosion resistance and electrical conductivity. If the
resistivity is too high, the internal resistance of battery increases greatly, the efficiency
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decreases, the electric energy is lost and the waste heat is accumulated. Therefore, there
must be good electrical conductivity and low contact resistance [18–20]. To sum up, the
operating environment shall be considered in selecting the material of bipolar plate. The
graphite is suitable for harsh environment, whereas the metal bipolar plate is suitable for
general conditions.

2. Design and Production of PEMFC Stack

This study has successfully developed the PEMFC stack, the bipolar plate runner
design uses serpentine flow field as shown in Figure 1a. The assembled entity is shown
in Figure 1b. The bipolar plate specifications as shown in Table 1. The serpentine flow
field is one of the most frequently used forms used in fuel cell stack runner plate design.
This design form results in faster fuel inlet transmission speed, so the fuel in the front
edge of runner is likely to be conveyed via the diffusion layer to the catalyst layer, better
performance distribution can be obtained.
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Table 1. Bipolar plate specifications.

Item Condition

Bipolar plate thickness (mm) 6
Runner type Anode, Cathode: Multiple (3 runners)

Runner depth (mm) 1
Runner width (mm) 1

Rib width (mm) 1

3. Integrated Design and Sensing Principle of Microsensor

This study developed a special flexible five-in-one microsensor, which could be em-
bedded in the fuel cell stack range extender of electric motorcycle. The micro temperature
sensor, micro humidity sensor, micro flow sensor, micro voltage sensor and micro current
sensor were integrated into the flexible five-in-one microsensor by using MEMS technology,
which was corrected and the thermal shock and constant temperature and humidity tests
and durability test for the flexible five-in-one microsensor were performed. Afterwards, the
flexible five-in-one microsensor was embedded in the PEMFC stack, so as to simultaneously
measure the local states of internal temperature, humidity, flow, voltage and current in the
operation of fuel cell stack.

3.1. Integrated Design of Flexible Five-in-One Microsensor

The flexible five-in-one microsensor is developed by using MEMS technology, which
can measure the temperature, humidity, flow, voltage and current simultaneously. Its sens-
ing principle is described below. Figure 2 is the integrated design drawing of the flexible
five-in-one (temperature, humidity, flow, voltage and current) microsensor designed in
this study. The temperature sensing area is 240 µm × 240 µm, the humidity sensing area is
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270 µm × 270 µm, the flow sensing area is 240 µm × 240 µm, the voltage sensing area is
350 µm × 350 µm and the current sensing area is 350 µm × 350 µm.
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Figure 2. Schematic diagram of integration of flexible five-in-one microsensor.

3.2. Sensing Principle of Micro Flow Sensor

This study used hot-wire micro flow sensor, the sensing end is an electrical resistance
heater, the heater is given a constant voltage to generate a heat source. When the fluid
passes by the heat source, the heat is carried away, so that the temperature of heater
changes. Due to the material properties, the resistance changes when the temperature
changes. According to Ohm’s law, in the case of constant voltage, the current changes
when the resistance changes, the values are measured according to this principle. If the
process is in ideal situation and completely matching heat transfer and heat convection,
the power supplied by power supply can be equated with the heat carried away by the
fluid. The flow can be converted into electric signal output by constant temperature circuit
design. In other words, the hot-wire micro flow sensor is a microsensor designed using the
positive correlation between thermal energy dissipation rate of hot wire and fluid flow.

4. Process Development of Flexible Five-in-One Microsensor

The production process of the flexible five-in-one microsensor is shown in Figure 3. (a)
The PI substrate is cleaned with organic solutions acetone and methanol respectively and
then the residual methanol, the surface dust and residual oil and fat are removed by DI
water, so as to enhance the adhesive ability of thin film metal, 0.1 Å/s deposition rate for
evaporation, (b) the Cr is evaporated by using E-beam evaporator as adhesion layer and the
Au is evaporated as sensing layer is shown in Figure 4; (c) the pattern of micro temperature,
humidity, flow, voltage and current sensor is defined by using photolithography process;
(d) the pattern is transferred to the metal film of Cr and Au by wet etching; (e) the PI9320 is
coated as protection layer and the voltage and current sensing areas and pins are defined
by using photolithography process, the production of flexible five-in-one microsensor
is completed.
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5. Durability and Reliability Tests for Flexible Five-in-One Microsensor
5.1. Temperature Correction of Flexible Five-in-One Microsensor

The flexible five-in-one microsensor and the thermometer of the BM-525 BRYMEN
digital multimeter are put in DENG YNG DS45 Drying Oven (UNITED CORPS Co., Ltd.,
Lo San Village, Taiwan), the resistance value is extracted at intervals of 10 ◦C from 20 ◦C
to 100 ◦C. The micro temperature sensor is corrected three times and the average value
is taken, the measured correction curve shows that the micro temperature sensor has
favorable linearity and reliability, as shown in Figure 5.
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5.2. Humidity Correction of Flexible Five-in-One Microsensor

For humidity correction, the constant temperature and humidity testing machine is
used as environmental criteria, from relative humidity 40% to 80% and the temperatures
25 ◦C and 50 ◦C are used for correction, each time when the relative humidity recording
point is increased, the heater of the micro humidity sensor is used for heating to completely
evaporate the residual moisture at previous recording point, after 120 min stabilization, the
NI PXI 2575 data acquisition unit is used to extract the capacitance value of micro humidity
sensor instantly, so as to obtain the correction curve, as shown in Figures 6 and 7.
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6. Internal Measurement and Wireless Microscopic Diagnosis of Fuel Cell Stack
6.1. Comparison between Normal Flow Rate and Low Flow Rate and Operating Conditions of
Wireless Sensor

In order to know the reaction inside the PEMFC stack in the operating environment of
insufficient flow, the cell stack is supplied with hydrogen at a low flow rate (0.05 slpm),
so as to observe the reaction of the cell stack in the operating environment at a low flow
rate and to monitor the feasibility of the wireless sensor. The test conditions are shown in
Table 2.

Table 2. Test conditions of high and low flow rates of fuel cell stack.

Item Flow Output Current Temperature Time

Condition 1 Hydrogen: 0.5 slpm
Oxygen: 1.5 slpm

1 A 25 ◦C 8 h

Condition 2 Hydrogen: 0.05 slpm
Oxygen: 1.5 slpm

For the future application to electric motorcycles, this study must overcome the over-
size of prior signal acquisition machine (NI PXI 2575), so the NI 9227 and NI 9219 wireless
modules are further customized, as shown in Figure 8, so as to simplify the equipment for
measuring signals and the measurement signals extracted by the data acquisition single
plate are transmitted to the tablet PC display interface instantly coordinating with area data
network, so that the flexible five-in-one microsensor is used for internal wireless remote
diagnosis of fuel cell stack. The wireless system diagnosis setup of this study is shown in
Figure 9.
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6.1.1. Fuel Cell Stack Performance Testing

The performance curves of the fuel cell stacks with and without flexible five-in-one
microsensor are compared in this study to test whether the flexible five-in-one microsensor
has a strong impact on the performance of cell stack. As the flexible five-in-one microsensor
developed in this study is very small, the total area of six flexible five-in-one microsensors
is about 2.64% of the overall reaction area of MEA. The flexible five-in-one microsensor
embedded in the cell stack influences about 2.58% of the performance of cell stack, as
shown in Figure 10.
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6.1.2. Local Temperature Distribution Difference between Normal Flow Rate and Low
Flow Rate

The fuel cell stack is supplied with normal flow (condition 1) and low flow (condition 2)
for test in this study, the temperature change inside the fuel cell stack is observed. As
shown in Figure 11, when the flow is sufficient, the internal temperature of cell stack drops
in the early stage, because the flow is sufficient, there is adequate gas to carry the heat
away from the cell stack. When the flow is low, the internal temperature of cell stack rises
gradually, because there is no adequate gas inside to carry the heat away. It is also found in
the figure that as the Cell 2 is in the middle of cell stack, the heat is likely to accumulate,
the temperature is higher than Cell 1 and Cell 3.
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6.1.3. Local Relative Humidity Distribution Difference between Normal Flow Rate and
Low Flow Rate

The relative humidity inside cell stack increases with time in condition 1, because
there are more oxygen and hydrogen molecules when the fuel is sufficient, which can be
combined to generate more water vapor. However, as the flow is insufficient in condition 2,
there is less moisture, the relative humidity and humidity change are lower than that in
condition 1, as shown in Figure 12.
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6.1.4. Local Flow Distribution Difference between Normal Flow Rate and Low Flow Rate

As shown in Figure 13, when the flow is sufficient, the efficiency of cell stack increases
with time and the gas consumption increases, so the flow decreases steadily with time.
However, if the flow is insufficient, the gas distribution in the runner is very unstable and
the snakelike runner design used in this study makes the flow more unstable.
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In condition 1, the voltage increases with time, because proton exchange membrane
inside the cell stack is lost with time as the cell stack works. The corrosion of runner and
the oxidation of collector plate induce the aging of cell stack. The aging of cell stack will
increase the resistance inside cell stack, in order to maintain stable current output of cell
stack, the voltage inside cell stack increases with time, as shown in Figure 14.
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6.1.5. Local Current Density Distribution Difference between Normal Flow Rate and Low
Flow Rate

In condition 1, the voltage of cell stack increases with time and the current density
increases with time. The current density rises inside the cell stack but the loss inside the
cell stack increases, the current density measured outside has not increased. There is higher
voltage in condition 2, the current density is higher at the beginning but the current is not
high as the flow is insufficient, so the current density in condition 2 is lower than that in
condition 1, as shown in Figure 15.
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7. Conclusions

The micro temperature, humidity, flow, voltage and current sensors are integrated
on a 50 µm thick Polyimide (PI) foil substrate successfully by using MEMS technology in
this study. This flexible five-in-one microsensor has five sensing functions, small thickness,
small structural area, high sensitivity, real-time measurement and arbitrary placement.
The flexible five-in-one microsensor can be embedded in the anode runner plate of cell
stack without influencing the sealing condition of PEMFC stack. The local temperature,
humidity, flow, voltage and current data inside the fuel cell stack are successfully extracted
by NI PXI 2575 data acquisition unit and NI 9227 and NI 9219 wireless modules in the
operational process of fuel cell stack.
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