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Abstract: A new approach in the development of aircraft and aerospace industry is geared toward
increasing use of electric systems. An electromechanical (EM) piezoelectric-based system is one of
the potential technologies that can produce a compactable system with a fast response and a high
power density. However, piezoelectric materials generate a small strain, of around 0.1–0.2% of the
original actuator length, limiting their potential in large-scale applications. This paper reviews the
potential amplification mechanisms for piezoelectric-based systems targeting aerospace applications.
The concepts, structural designs, and operation conditions of each method are summarized and
compared. This review aims to provide a good understanding of piezoelectric-based systems toward
selecting suitable designs for potential aerospace applications and an outlook for novel designs in
the near future.

Keywords: piezoelectric stack; amplification mechanism; quasi-static stepped system; ultrasonic
system; piezoelectric-hydraulic; aerospace applications

1. Introduction

A concept of more/all-electric aircraft has recently received huge attention in the
research and development work in the field of aerospace engineering [1–7]. The intent is to
use more electrical systems in aircraft and aerospace applications to bring an impact on
the environment [8]. With the fast development of electrification, more researchers and
manufacturers are shifting to this dynamic trend involving a high demand for increasing
the load, improving fuel efficiency, reducing emissions, and lowering the total cost of oper-
ation. Researchers seek different approaches and technologies to broaden this fashionable
concept in a wide range of applications. The choice of actuators in the aircraft is based on
various critical factors, such as power density, reliability, efficiency, control features, and
thermal robustness, as well as the weight, size, and maintenance cost. In a commercial
aircraft, actuators are essential in various applications, such as flight control, engine starter,
landing system, brake actuation, and fuel pump [9,10]. The specifications of actuators in an
aircraft vary across a wide range. Typical requirements can be listed as 1–320 kN of force,
10–700 mm of stroke, and 10–500 mm/s of speed, with the requirement of both modulated
and two-position control methods [4,11]. For these actuation systems in the aircraft engine,
the working temperature is from −50 to 150 ◦C at the engine intake; and it is higher for the
actuators located toward the high-pressure compressor void (300–400 ◦C) or the tail cone
area (500–600 ◦C) [12]. Overall, actuators in an aircraft require both the advantages of mate-
rials that allow them to deliver the required power in extreme environmental conditions
and the optimal structural designs to maximize their performance within a constrained
weight and space.

In the development of signal-by-wire and power-by-wire actuators in aircraft, elec-
tromechanical (EM) systems have seen a huge improvement, with significant results from
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both researchers and manufacturers. Electrical actuators, which have taken advantage of
state-of-the-art motors and power screws, are among these systems [13–17]. The electrical
actuators could provide a load range of up to 90 kN, with over 90% efficiency, making
them suitable for replacing several conventional hydraulic or fueldraulic systems in the
jet engine [18,19]. These systems bring more advantages in terms of a compact design
(eliminating pipes and heavy elements) and power-to-weight ratio (weight reducing),
enhancing aircraft stability and thus providing the ability to incorporate more functions
within the control system to further enhance aircraft utility. Besides electrical actuators,
smart-material-based actuators are also considered a promising approach. The develop-
ment of smart materials, such as piezoelectric materials [20], shape memory alloys [21],
magnetostrictive materials [22], and electroactive polymers [23,24], also offers advantages
in the aerospace applications [25,26]. Looking beyond the potential of replacing the con-
ventional system with similar or even better performance actuators, the smart behavior of
such materials may offer more room for the development of novel systems. For example,
the shape-changing ability of smart materials can be explored in morphing aircraft [27,28].
Shape memory alloy-based [29,30] and piezoelectric-based bender designs [31] can be used
for noise reduction when mounting the bender on the trailing edge of the jet engine fan
nozzle and the rotor of the helicopter, respectively. Each material responds differently to
the stimuli, and various actuation modes can be achieved with distinct working concepts
and geometrical designs. Among them, piezoelectric materials have shown great potential
in aircraft and spacecraft applications [32–36]. The definition of piezoelectric materials is
that they can either generate an output voltage when subjected to mechanical stress or
perform a dimensional change when subjected to an electric field. These phenomena are
known as direct and indirect modes of operation, which can be used for generators [37],
sensors [38], and actuators [39]. Piezoelectric materials have the advantages of high power
density, high efficiency, driving force, and displacement resolution over electromagnetic
materials. They also do not generate electromagnetic noise and are nonflammable [40–42].
Piezoelectric materials come in different forms, such as sheet, wafer plate, stack, fiber,
and composite, which makes them suitable for diverse geometrical designs. Despite a
minimal strain capability, piezoelectric actuators can deliver high power outputs with high
efficiency due to their ability to be cycled at very high frequencies as compared with other
actuators [43] (Figure 1).
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Some piezoelectric materials can work in a very large temperature range, making them
more promising in aircraft applications. A report from NASA revealed positive results of
four piezoelectric ceramics, namely PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/36, from sev-
eral tests to evaluate their applicability as sensors and actuators in the intelligent aerospace
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system over a large temperature range, from −150 to 250 ◦C [44]. More efforts on material
development were recorded that would gradually enhance the potential of piezoelectric
materials in high-temperature industrial applications [45,46]. Therefore, piezoelectric-based
systems are possible for applications located in the cold section of the aircraft engine, in
which the temperature varies from −50 to 250 ◦C. However, amplification methods are
required to generate sufficient stroke for these applications. The specifications of suitable
applications for a compact piezoelectric design should be in the range of up to 5 kN of force,
100 mm of stroke, and 50 mm/s of speed. Thus the high stress and working frequency of
piezoelectric actuators can be advantageous within a compact system. Some applications
could be variable blow-in doors, booster bleeds, variable inlet guide vanes (IGVs), and
variable stator vanes (VSVs). For instance, a piezoelectric-based linear actuator with a
crank-slider mechanism was proposed to drive the IGV, which helps to control the flow
that enters the jet engine and to improve the efficiency of the compressor [47,48]. Sufficient
stroke of the actuator is accumulated over repeated cycles. For the same application (IGV or
VSV of the gas turbine jet engine), the piezoelectric system could also be designed in such
a way that a rotary motion can deliver directly to the application [49]. This actuator can
be mounted on the unison ring, thus eliminating the need for other mechanical structures
that add extra weight to the system. Moreover, the ability of power-off holding position of
piezoelectric materials allows a design that can maintain the last controlled position in the
event of failure, thus enhancing the safety level in aircraft applications.

This review paper focuses on the potential of piezoelectric-based systems for large-
scale applications in the aircraft and aerospace industry. The structure of this review is as
follows: Section 2 presents a brief overview of piezoelectric fundamentals, piezoelectric
stacks, and classification of amplification methods. The subsequent four sections review
the amplification methods for piezoelectric. Section 3 introduces direct amplification mech-
anisms to produce continuous motion. In Section 4, the quasi-static stepped actuators are
reviewed and are divided into three concepts: inchworm, inertial, and walking. Section 5
reviews the ultrasonic actuators, where the resonant mode of piezoelectric is used. In
Section 6, a different approach is described as the piezoelectric stack is coupled with hy-
draulic fluid in a pump to power the hydraulic cylinder. Section 7 summarizes the reviewed
piezoelectric-based systems and discusses their potential in aerospace applications. Finally,
the conclusion and future outlook are presented in the last section.

2. Piezoelectric Actuators
2.1. Fundamentals of Piezoelectric Materials

The piezoelectric effect on ceramic materials was discovered in 1880 by Nobel laureates
Pierre and Jacques Curie. A piezoelectric transducer can be used as both generator [50] and
actuator [51]. Specifically, the direct piezoelectric effect is used in the generator, while the
indirect piezoelectric effect is used for the actuator [52]. The direct piezoelectric effect refers
to the development of electrical charges on applications of mechanical stress, and vice versa
(indirect piezoelectric effect). For the actuation applications reviewed in this paper, the
piezoelectric material deforms with the applied electric field to produce mechanical energy.

The most commonly used piezoelectric materials are piezoelectric ceramic, such as
lead zirconate titanate (PZT), barium titanate (BaTiO3), and lead titanate (PbTiO3). With
a polycrystalline structure, ceramic materials can be fabricated into a variety of shapes
and sizes. Besides, with the effort to reduce and avoid lead (Pb) in piezoelectric materials,
lead-free piezoelectric development has been gaining momentum in recent years [20,53–55].
Some of these materials are alkali-metal-based bismuth sodium titanate (BNT), bismuth
potassium titanate (BKT) [56], and potassium sodium niobate (KNN) [57]. To increase the
potential of piezoelectricity in various working conditions, high-temperature piezoelectric
materials have been developed, such as Pb(NbO3)2 and Bi4Ti3O12 [45]. However, the
strain and stress of these materials may be reduced. In general, piezoelectric materials
have a very small strain, of 0.1–0.2%, but with high stress, in the range of 100–131 MPa.
Their specific power density is around 1000 kW/kg, and they have high efficiency, of
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more than 80% [40,43,58]. However, piezoelectric materials experience some drawbacks,
such as substantial hysteresis [59], temperature-dependent properties [60], and fracture
behaviors [61]. These phenomena eventually affect the performance of the piezoelectric
materials, especially the stroke and accuracy of piezoelectric actuators.

The performance of the piezoelectric actuator is determined by the material properties
known as the electromechanical coefficients. The most common material properties are
the directional piezoelectric charge constants. The mechanical strain (S) of a piezoelectric
material can be found by the relation

S = sET + dE (1)

where sE is the compliance or elasticity coefficient, T is the mechanical stress, d is the
piezoelectric charge constant, and E is the electric field (E = Φ/t, where Φ is the applied
voltage and t is the thickness of the material).

The coupling coefficient of the piezoelectric can be divided into three groups corre-
sponding to the orientations of the electric field and the displacement. These coefficients
are d33, d31, and d15, corresponding to three deformation modes: longitudinal, transversal
(Figure 2a), and shear modes (Figure 2b), respectively. In general, the strain and electrome-
chanical conversion efficiency are higher in the longitudinal direction [62,63]. Therefore,
this deformation mode is usually used in actuators, especially in the stacked configuration.
Table 1 below shows examples of some piezoelectric materials and their properties that are
commonly used in the piezoelectric-based system.

Table 1. Examples of some properties of piezoelectric materials.

Materials d33 at Room
Temp. (pC/N)

Curie Temp. TC
(◦C)

Operating Temp.
(◦C) Reference

PZT powder 590–610 - - [20]

PMN-PT 2000–3500 120–130 Up to 80 [42,60]

PZN-PT 1900–2000 160 Up to 110 [42,64]

PZT-5H 585 170 −150–125 [44]

PZT Navy Type III
(Hard) 1 <300 305 Up to 220 [45]

PZT-4 225 310 −150–100 [44]

PZT Navy Type II
(Soft) 2 <600 340 Up to 200 [45]

PZT-5A 350 350 Up to 250 [44]

PIC series 240–500 160–370 −40–150 [65]

Lead-free
materials

BTBK 58.9–117 170–223 - [56]

BNT 91 320 - [56]

KNN 80–160 Up to 400 - [57]

High-temperature
materials

Pb(NbO3)2 81 550 Up to 300 [45]

Bi4Ti3O12 3.5 675 Up to 675 [45]

Bi4Ti2.86Nb0.14O12 20 655 Up to 655 [45]
1 Hard: less hysteresis loss, good stability under high mechanical loads, and operating field strength; thus good
for ultrasonic transducers. 2 Soft: large hysteresis loss, large piezoelectric charge coefficient, and easy polarization
at low field strength; thus ideal for actuator and sensor applications.
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Figure 2. Deformation of the piezoelectric actuator. (a) Longitudinal and transversal mode; (b) shear mode.

Piezoelectric elements can come in different geometrical forms, such as thin plate,
single layer, multilayer, torsion tube. Besides these designs, macro piezo fiber composite
(MFC) is another form of piezoelectric that was invented by NASA back in the 1990s and
has been commercialized by Smart Material since 2002 [66,67]. Constructed of piezoelectric-
ceramic-based fibers (usually PZT 5A or PZT Navy Type II) sandwiched between electrodes
and polyimide layers, MFCs can produce elongation, contraction, and bending motions for
actuation [68]. They can also function in sensitive sensor and vibration harvesting applica-
tions [69,70]. With a flexible nature, these piezoelectric composites have greater durability
and reliability and can be attached to the surface of or embedded inside the structures.
They have been proposed to be used in various aerospace applications, such as aircraft
health structure monitoring, noise and vibration control of helicopter rotors, and surface
control of morphing wings [67,69,71]. MFCs can find more aerospace applications if high-
temperature piezoelectric (see Table 1), electrode, and adhesive materials are explored [72].
Table 2 below summarizes the performance of commercial piezoelectric actuators with
some typical geometrical forms.

Table 2. Typical displacement and resonant frequency of typical geometrical forms of commercial piezoelectric actuators.

Form Typical Size Displacement Range Resonant Frequency

Single layer (wafer) A few hundred micrometer
thickness Up to 0.1 µm Up to 100 kHz

Multilayer extension
(rectangle, round, hollow stacks)

Up to 100 mm2 area & 100 mm
in length

Up to 100 µm Up to 100 kHz and more

Multilayer shear ing Up to ∼
250 mm2area & 50 mm length Up to 10 µm Up to 100 kHz and more

Piezo bender
(unimorph/bimorph) <1 mm thickness 10 µm to 2 mm Up to a few kilohertz

Macrofiber composite
(elongation) Up to 140 mm active length Up to 150 µm 1 From kIlohertz to megahertz

Macrofiber composite
(contraction) Up to 170 mm active length Up to 100 µm 2 From kIlohertz to megahertz

1 Free strain: up to 1050 ppm. 2 Free strain: up to −600 ppm.

The piezoelectric actuator can be powered by a periodic voltage with sinusoidal,
sawtooth, or rectangle waveforms. Depending on the required movements, each piezoelec-
tric mechanism requires a customized input signal with a particular pattern, amplitude,
and frequency to maximize its performance. In the event of more than one piezoelectric
element being involved in the design, the phase difference of the controlled signal of each
piezoelectric actuator needs to be designed precisely to obtain the coupling performance.
The sinusoidal, square/rectangle, and sawtooth waveforms are commonly used in the
stepped-motion piezoelectric system (Table 3). Power consumption during the operation



Micromachines 2021, 12, 140 6 of 28

of piezoelectric actuators is directly proportional to the capacitance of the device by the
relation shown in Table 3.

Table 3. Typical input signals and related power consumption for piezoelectric actuators.

Sinusoidal Waveform Square/Rectangle Waveform Sawtooth Waveform
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where f is the working frequency, C is the capacitance of the piezoelectric, and Vpp is the applied peak to peak voltage. The piezoelectric
heat dissipation is usually 10% of the power supplied to the load. Therefore, the selection of usage piezoelectric materials and operating
conditions must be weighed against the consumed power to ensure that the system’s power budget is optimized.

2.2. Piezoelectric Stacks

Piezoelectric materials can be stacked together and be sandwiched between electrode
layers to achieve a higher stroke for actuator applications [73,74]. Adopting the name of
the manufacturing method, they are known as the piezoelectric stack or the multilayer
piezoelectric (Figure 3). Piezoelectric stacks and piezoelectric actuators are manufactured
and developed by various companies, such as Physik Instrumente (PI), Tokin Corporation,
Cedrat Technologies, PiezoDrive, PiezoMotor, Piezosystem Jena, and CTS Corporation.
Usually, the length of the stack is limited to 150 mm and the area is less than 225 mm2. The
commercial piezoelectric stack usually offers a stroke range from several micrometers to a
hundred micrometers (longitudinal mode) and a blocked force range from a hundred to
a few thousand newtons. The size and shape of a piezoelectric stack can be customized
to generate the required force and stroke. In the case of large stroke applications, an
amplification mechanism is preferred.
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The stroke (∆L) of the stack is scaled with the number of stacking layers (Equation (2)),
while the output force (Fb) is related to the active area of the piezoelectric actuators (Equation (3)).

∆L = Vpp × d33 × N (2)

Fb = Vpp × d33 ×YA/L0 (3)
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where, d33 is the piezoelectric constant (longitudinal mode), N is the number of stacking
layers, Y is the modulus of the piezoelectric material, A is the area of each layer, and L0 is
the initial thickness of each layer. The force and stroke of the piezoelectric stack are under
an electrical load (applied voltage Vpp), and the mechanical load is shown in Figure 4.
When the piezoelectric stacks are implemented in a cyclic process, they will be subjected to
a severe hysteresis characteristic affected by the frequency and magnitude of the applied
voltage. Therefore, closed-loop control is required to compensate for the hysteresis effect in
precise positioning applications [59,75].
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2.3. Classification of Amplification Methods

The microstroke range of a stand-alone piezoelectric stack can be further amplified to
the required level using external amplifiers, such as mechanical, hydraulic, or other kinetic
mechanisms, depending on the architecture. Several conceptual designs are proposed
and used, such as the amplified mechanism by the compliant structure, the inchworm
mechanism, the walking mechanism, and the hybrid electro-hydraulic system. In this
paper, the amplification methods are divided into four groups, as shown in Figure 5. Each
technique will be discussed in subsequent sections.
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3. Continuous Motion

The small stroke can be amplified instantly once the piezoelectric element is activated.
Compliant mechanisms, cantilever, X-frame mechanism, and unimorph/bimorph config-
urations could be classified under this group. They are capable of generating a smooth
and continuous motion with less friction and zero backlash in a compact design. However,
there are trade-offs between the output force, the overall stiffness, and the response speed
for the displacement. The output stroke is defined by the input stroke from the piezoelectric
element and the amplification ratio of the amplifier. The amplification ratio is usually
limited to tens due to geometrical constraints. Besides, the relative size of the piezoelectric
element should not be too large as it would lead to an oversized system.

These amplification methods can generate a moderate stroke or increase the input
stroke from the piezoelectric element for other designs. The commercial amplified piezo-
electric actuator of Cedrat Technologies company, for example, could generate a stroke of
up to 1 mm. This stroke is 10 times or more larger than that of a stand-alone piezoelec-
tric stack in a load-free condition [33,76]. For a broader stroke range, the stepped-motion
mechanisms would offer better solutions [39].

3.1. Compliant Mechanism

The micron stroke of a piezoelectric stack can be amplified by up to thousands of
micrometers by a compliant mechanism [77–79]. These mechanisms can be constructed by
rigid arms with flexure hinges (Figure 6a) or by thin arms (Figure 6b). The piezoelectric
stack applies a mechanical force to the system and causes the elastic deformation of the
compliant mechanism. As a result, the output motion is generated with an amplification
ratio of ∆Y/∆X either in a perpendicular direction to (Figure 6) or in the same direction
(Figure 7) as the piezoelectric stroke. On amplifying the stroke, the output force decreases.
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The amplifying ratio can also be maximized by modifying the structure of compliant
mechanisms. Several designs were proposed and used in applications, such as bridge
type [80,81], rhombus type [78,82], Scott Russell type [83,84], and honeycomb type [85].
The amplified piezoelectric actuator can also be used to enhance the input stroke. An
optimal geometrical design can be achieved to provide a specific stroke and force. The
designs with compliant mechanisms usually offer an amplification ratio of up to a few tens.

Besides the bridge type, which is commonly seen in the commercial amplified piezo-
electric actuators (Figure 6), the lever mechanism offers simplicity in design, manufac-
ture, and assembly among amplification methods [86,87]. A simple lever mechanism [42]
(Figure 7a) can also be modified to an X-frame mechanism/scissor mechanism [88] (Figure 7b).
The output motion is parallel to the stroke input from the piezoelectric stack. Similar to
other compliant mechanisms, the lever mechanism trades force for stroke amplification. A
design of two-stage cantilever mechanism can have an amplification factor of 30, with a
final stroke of 400 µm, to be used as a printed head [62]. Another mechanism, the so-called
high-bending-stiffness connector, which was recently proposed and commercialized (in
2018), can amplify the output stroke to by two–three times, with only a fractional increment
in length [89]. These compliant mechanisms can also be integrated into the design to gain
a long input stroke for other actuators, such as inchworm [90,91], inertial [92–94], and
piezoelectric-hydraulic pump [86].

3.2. Piezoelectric Bending

The piezoelectric plate can be used to create bending motion for various applications [95–97].
Figure 8a illustrates a schematic of a unimorph configuration with one piezoelectric plate
and one passive plate. In other applications, a bimorph configuration can be constructed
from two piezoelectric elements to create a two-way bending motion (Figure 8b).
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The bending motion from unimorph and bimorph configurations can be used in the
inertial piezoelectric actuator [98] or as an active valve of the piezoelectric micropump [99].
A combination of a piezoelectric bender and a compliant mechanism was also proposed to
control a helicopter rotor blade [100].

The amplification methods in this section (Section 3) are usually considered in those
applications where the stroke is the priority and space is not constrained. For applications
where a higher stroke is required, other amplifiers can be selected for a compact design.

4. Quasi-Static Stepped Motion

An output stroke of up to centimeters could not be achieved directly from the am-
plification methods covered in Section 3. It requires a further cumulative effect whereby
the stroke can be accumulated from microstep motion over repeated cycles. These mecha-
nisms can be classified as inertial, inchworm, and walking concepts. Theoretically, these
amplification concepts could produce unlimited output motion. However, in practice,
the piezoelectric-based actuators using such methods are designed to have the output
motion in the range of centimeters, with a maximum speed of tens of millimeters per
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second. For more significant stroke requirements, these stepped-motion actuators could
be scaled up. However, they require a suitable housing structure to provide the backbone
and support. This housing structure must not be oversized as compared to the actuator.
As the working principle is mostly based on friction, they require tight tolerance of the
structural dimension and the frictional holder. For high-force applications, they are prone
to mechanical wear and tear over time. Thus, regular maintenance of such systems is
required. The piezoelectric stack is usually driven at a low frequency, of less than 1 kHz.
Therefore, these actuators can also be considered as a quasi-static system and are different
from the ultrasonic system discussed in Section 5.

4.1. Inertial Concept

The inertial actuator is built from one moving block (piezoelectric stacks), fixed at one
end, and one inertial mass acting as a friction element (Figure 9). The working principle of
the inertial piezoelectric-based actuator can be described as follows: First, the piezoelectric
stack is controlled to extend slowly. During this process, the friction element makes contact
with the moving structure; hence, they are moving forward together due to the frictional
force. After that, the piezoelectric stack contracts quickly to create an impulsive force. Due
to inertia, the moving structure cannot respond to the fast retraction to return to its original
position but remains in its current place. As a result, the moving block returns to get ready
for a new cycle while the moving structure is brought forward. The piezoelectric stack is
powered by a sawtooth wave input signal to create the required motion. This design can
be used for long-stroke and high-resolution applications [101,102] by slowly increasing
voltage to drive the piezoelectric stack.
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Figure 9. Schematic of the inertial piezoelectric actuator.

The concept demonstrated in Figure 9 can also be called the stick-and-slip mech-
anism. The roles of piezoelectric stack, friction element, and moving structure are ex-
changeable [92,103–105]. In the impact drive mechanism, the position of the moving unit
(piezoelectric stack and friction element) changes in each step, while the moving structure
is now fixed [106]. Flexure hinges can be introduced to generate the required motion from
piezoelectric elements [92–94,104]. Moreover, these mechanisms also increase the effective
displacement of the piezoelectric element in the designed direction. Table 4 summarizes
some inertial piezoelectric actuators with both symmetrical and asymmetrical flexure
hinges. A design with one piezoelectric stack and asymmetrical flexure hinge can produce
a linear motion with a speed of up to 15 mm/s [93].
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Table 4. Performance of a typical piezoelectric-based actuator.

Flexure Hinge Piezoelectric (mm) Voltage (Vp-p) Frequency (Hz) Force (N) Speed (mm/s) Reference

Symmetrical
(Z shaped)

5× 5× 20
(Two) 100 5000 3.43 1 (1 Hz) 6.057 [105]

Symmetrical
(bridge type)

5× 5× 20
(Two) 100 1000 1.58 (1 Hz) 7.95 [104]

Asymmetrical
(nonparallel

type)

5× 5× 20
(One) 100 500 2.94 * 5.96 [92]

Asymmetrical
(parallelogram

type)

5× 5× 20
(One) 100 2000 3.43 14.25 [107]

Asymmetrical
(four-bar

mechanism)

5× 5× 20
(One) 100 490 4.32 15.04 [93]

1 Force (N) = weight (kg) × 9.81.

4.2. Inchworm Concept

The piezoelectric inchworm creates stepped motion by mimicking the crawling motion
of an inchworm [91,108]. Figure 10a shows the basic principle of the inchworm design with
three sets of stacked piezoelectric actuators: a moving block (2) is extended and contracted
to provide the main motion to drive the moving structure, while two clamping blocks (1
and 3) are engaged and disengaged with the moving structure one at the time. With this
geometrical relation, the piezoelectric inchworm allows a straightforward design for each
piezoelectric block to achieve the required level of pushing and clamping force.
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The working principle of the inchworm actuator can be explained as follows: First,
clamping stack 3 extends and clamps the moving structure below it. The moving stack
(stack 2) then extends and pushes stack 3 to move forward (toward the right side) together
with the moving structure. Next, clamping stack 1 extends down to clamp the moving
structure while stack 3 retracts. Stack 2 contracts to drive stack 1 and the moving structure
further toward the right side. After that, stack 1 retracts to release the structure while
stack 3 extends to engage again. These steps are repeated to accumulate small steps into
significant motion. In this design, the inchworm unit (three piezoelectric stacks) remains
the same while the moving structure is being pushed in one direction only. Therefore,
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this design can be called a pusher inchworm. In another modification, called the walking
inchworm, the moving structure is now fixed while the inchworm unit moves, which
resembles the inchworm crawling on the tree branch. The clamping and moving blocks in
inchworm piezoelectric can be divided into several blocks and arranged along with the
moving structure, as shown in Figure 10b These piezoelectric blocks can be controlled to
achieve the desired performance.

Several works are geared toward developing the inchworm design from a geometrical
design to a control method for various targeted applications [39,108–113]. The clamping force
can be achieved by either the intermittent [114–116] or the continuous mechanism [113]. In
the intermittent clamping mechanism, the clamping blocks provide the clamping force to the
structure in sequence. In contrast, the continuous clamping mechanism maintains contact with
the structure during the working process. Therefore, the clamping force varies and depends
on the load condition for the intermittent mechanism, while the continuous mechanism
can only generate a constant clamping force. The clamping structure can be a piezoelectric
stack [108,115,116], electromagnetic in nature [49,117], an inertial mass [118,119], or a wedge-
type clamping mechanism [111,120]. To increase the velocity of the motion, the stroke of
the moving block can be amplified using a flexure mechanism, as mentioned earlier, in
Section 3.1 [90,91]. The moving block can also be replaced by a magnetostrictive actuation
with a similar or larger stroke (0.2% strain). An inchworm actuator with Terfenol-D as a
moving block and piezoelectric stacks as a clamping block can generate a stall load of 115 N
and a no-load speed of 2.5 cm/s [121].

4.3. Walking Concept

The main difference between the walking concept and the inchworm concept is that
the walking type does not require a moving block. Instead, the moving motion is created
directly from the walking legs. The legs produce an elliptical motion on their tips to engage
and disengage with the moving structure in sequence to drive it further. In the walking
concept, the position of the leg structure remains the same. The number of legs can vary
depending on the design architecture, with a minimum of two legs [122].

As shown in Figure 11, the working principle of the walking concept is described as
follows: Legs 1 and 3 (leg group I) come in contact with the moving structure and bend to
the right to drive it forward while legs 2 and 4 (leg group II) retract and bend to the left.
Next, leg group II extends to make contact with the moving structure; then, they bend to
the right to drive the moving structure further. Leg group I retracts and bends to the left to
repeat the previous motion of leg group II. These steps are repeated in sequence to create
stepped motions of the moving structure.
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Figure 11. Schematic of a walking piezoelectric actuator.

The bending movement of the leg could be created by piezoelectric in bending mode [123]
(Figure 12a), V-shape configuration [124] (Figure 12b), or combining the longitudinal and
shear motions [125] (Figure 12c). The output force and speeds of these designs are compared
in Table 5. Several products using walking concepts are commercialized for small-scale
applications with the force range of around a few hundred newtons, a designed stroke of
less than 100 mm, and a speed of less than 20 mm/s [126,127]. A series of PiezoWalk from
Physik Instrumente company, for example, could produce a linear motion with a velocity of
15 mm/s (PICMAWalk) or a maximum blocking force of 300 N [126].
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Table 5. Comparison of the output force and speed performance of three commercial designs using
the walking mechanism.

Configuration of the
Piezoelectric Stack Output Force Speed Resolution

Bending
configuration

(NEXACT)

~10–20 N/50 g
(20 mm travel range)

Medium
Up to 10 mm/s

0.03 nm (open loop)
-

V-shape configuration
(PICMAWalk)

~50–60 N/700 g
(20 mm travel range)

High
Up to 15 mm/s

0.02 nm (open loop)
<10 nm (closed loop)

Combination of
longitudinal and

shear modes
(NEXLINE)

Up to 600 N/1250 g
(20 mm travel range)

Low
Up to 1 mm/s

0.03 nm (open loop)
5 nm (closed loop)

Similar to the other stepped-motion design, flexure hinges can also be employed
to create the bending motion for the walking leg from only one piezoelectric stack. This
could reduce the number of piezoelectric elements and the input signal of the system. For
example, two asymmetrical right-angle flexure hinges could generate a linear motion with
a motion speed of 39.78 µm/s at a frequency of 20 Hz [128].

5. Ultrasonic Stepped Motion

While the quasi-static stepped-motion designs operate at a low frequency, ultra-
sonic actuators use piezoelectric resonant vibrations [129]. Therefore, they are capable
of producing high velocities and long-range motions. The ultrasonic actuator consists of
a piezoelectric-based stator and a moving structure (Figure 13). The stator produces the
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elliptic motion to drive the moving structure that is similar to the piezoelectric walking
design. The elliptic motion could be generated from the tip of each piezoelectric element or
the combination motions of the whole stator [130]. Based on these driving methods, the
ultrasonic actuator can be classified into two groups: standing wave [131–133] (Figure 13a)
and traveling wave [39,134,135] (Figure 13b). The ultrasonic concept could be used for
both linear motion [136] and rotary motion [135,137].
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6. Hybrid Piezoelectric–Hydraulic System

The piezoelectric mechanisms described in previous sections always require a trade-off
between force and stroke. Therefore, hydraulic energy may be more realistic for applications
requiring both massive stroke and force (in the range of a thousand newtons and more).
In such cases, hybrid piezoelectric-hydraulic systems would be beneficial. For example,
a piezoelectric actuator with a higher energy density and lower power consumption
than the electromagnetic actuator would make it a promising candidate for the pump in
an electro-hydrostatic actuator [33]. Hybrid piezoelectric–hydraulic actuators have been
researched and used in various fields, such as aerospace [138], automotive [139], and
mechanical engineering [140]. The basic concept lies in coupling a piezoelectric stack with
the transmission of hydraulic fluid via valve systems. The high frequency, large force, and
small stroke of the piezoelectric actuator can be converted into a lower frequency and larger
stroke of the output cylinder [141–147] (Figure 14a). Piezoelectric stacks can be operated
by hundreds of volts, making it suitable for available electric power in aircraft. Unlike
the conventional hydraulic system in the jet engine, the hybrid piezoelectric-hydraulic
system only consumes power when required to move load. Therefore, it would have high
energy efficiency. Besides, the piezoelectric-hydraulic pump has few moving parts; it also
eliminates the need for lubrication, hence reducing the maintenance effort.
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The working principle of the piezoelectric–hydraulic pump is shown in Figure 14b. It
is described as follows: When the piezoelectric stack expands, the piston is pushed further,
thereby decreasing the volume of the pump chamber. Pressure is built up inside the pump
chamber, causing the outlet valve to open to release the fluid. When the stack contracts, the
volume of the pump chamber increases. The decrease in chamber pressure causes the inlet
valve to open, allowing fluid to enter the chamber. This process is repeated to control the
fluid flow and regulate the chamber pressure from the piezoelectric-hydraulic pump.

The piezoelectric–hydraulic pump has advantages over conventional systems such as
hydraulic, pneumatic, and electric actuators in terms of efficiency and power density [139].
Its performance can be characterized by the maximum flow rate of the working fluid and
the stall pressure [148]. This fluid circuit will then be extended into a working cylinder via
a control valve system and accumulator. Some researchers have worked on developing
the pump design to maximize the flow rate and pressure performance [144,149–153] while
other researchers have attempted to build a compact system with an integrated hydraulic
cylinder [139,150,154,155]. The performance of this hybrid pump relies on both the design
of the piezoelectric stack and the pump chamber and the use of hydraulic fluid and the
valve system.

6.1. Design of the Piezoelectric Configuration

The first publication on the piezoelectric–hydraulic system proposed the use of a
piezoelectric stack to drive the hydraulic circuit [149,156]. A piezoelectric stack 55.5 mm
in length and 22 mm (stroke of 60 µm) in diameter is driven from −100 V to 500 V at a
frequency of 300 Hz and could produce an output power of 34 W. Based on this result,
several improvements have been proposed. To increase the performance of the pump, the
frequency of the piezoelectric stack in the system was investigated. It was found that the
piezoelectric stack self-heating phenomenon is one of the critical issues that occurs in PZT
materials [141,157]. Therefore, a maximum pumping frequency of 1 kHz was selected based
on the thermal limitations of piezoelectric stacks [154]. For higher-frequency applications,
a cooling system was introduced to enhance the performance of the piezoelectric stack. The
cooling fluid was introduced so that it could be used to thermally regulate the piezoelectric
stack operating at a high frequency [140,158].

Research on a compact piezoelectric–hydraulic system was conducted at the Univer-
sity of Maryland [150,154,155]. At a high frequency, significant losses in flow rate were
observed. It demonstrated a highly nonlinear variable of the output velocity with pumping
frequency. By comparing the performances of the hybrid pumps from different piezo-
electric materials [159], they found that higher power output could be achieved from
single-crystal PMN-based materials. Besides piezoelectric materials, some hybrid pumps
also use magnetostrictive materials, such as Terfenol-D and Galfenol [138,155,160].

6.2. Design of the Pump Chamber

The size (Apiston/chamber) of the piston and the pump chamber is based on the perfor-
mance of the piezoelectric stack (Strokepiezo, Forcepiezo, and Frequency) and pump perfor-
mance (Flow rate and Pressurechamber) (Equation (4)):

Apiston/chamber =
Flow rate

Strokepiezo × Frequency
=

Forcepiezo

Pressurechamber
(4)

The design of the multipump chamber adopted from micropump designs [99,161,162]
can be investigated in the piezoelectric stack pump to increase its performance. The double-
piezoelectric pump was reported to have a significant increase in both the flow rate and
the output pressure and produce a continuous fluid flow inside the system [163].

The sealing method is also an essential issue in the pump chamber design to prevent
fluid leakage. The pump chamber can be sealed by O-rings arranged on the long side piston
or a thin diaphragm plate. The first method is used in the pump design with a large input
stroke [164]. The second one is commonly used in the design with a small to medium input
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stroke [147,158,165–167]. However, a thin diaphragm plate will be deformed permanently
after repeated cycles. It can lead to a reduction in pump performance. The working fluid
selection is also important to reduce the leakage and increase the pressure generated
within the chamber. Some working fluids used in the piezoelectric–hydraulic pump are the
hydraulic fluid MIL-H5606F [154], the water-based hydraulic fluid Hydrolubric 123 [168],
Mobil DTE-24 [163], glycerin solution [169], and AeroShell oils [138]. The ionic liquid (IL)
with a higher bulk modulus than other common working fluids was also proposed to
increase the output pressure [170]. Besides, the operating temperature range of the fluid
is also an essential criterion for fluid selection. They should be sufficient for aerospace
applications in which the ambient temperature may vary across a broad range, from −50
to more than 250 ◦C. Therefore, in some cases, thermal solutions are important to assure
the stable performance of the system. The properties of typical working fluids are shown
in Table 6, below.

Table 6. Properties of typical working fluids.

Fluid
Density
(kg/m3)

Temperature
Range (◦C)

Bulk Modulus
(GPa)

Viscosity
Reference

40 ◦C 100 ◦C

Water 997 0–100 2.1 0.7 0.5 [171]
70% Glycerinaquerous 1181 −39–114 1 0.4 22.5 - [172]

Hydrolubric 123-B - ~1 (Pour point) - 21.5 3 - [173]
Mobile DTE-24 871 −27–220 1 1.7 31.5 5.3 [174]

AeroShell 41 874 −41–135 2 - 15.68 6.13 [175]
MIL-H5606F 859 −54–135 1.79 15 - [154]

IL-EMIM-EtSO4 1241 162 (Flash point) 3.1 39.44 7.66 [170]
1 From pour point to flash point. 2 At the pressurized condition. 3 At 100 F (~38 ◦C).

6.3. Design of the Valve System

The valve system is important to determine the performance of the piezoelectric–
hydraulic pump. The valves are designed to regulate the fluid flowing into and out of the
pump chamber. Therefore, the response of the valves needs to be compatible with the
movement of the piston (or piezoelectric stack). The valves used in piezoelectric–hydraulic
pumps are reed valve, microreed valve, active valve, and diffuser valve (valve less design).

The reed valve is popular among all valve types (Figure 15a). The reed valve structure
is simple, and its movement is passively related to the piezoelectric stack’s performance.
However, the response of the reed valve is limited by the natural frequency of the geo-
metrical design. While the piezoelectric stack can be operated at hundreds to thousands
of hertz, the reed valve movement is usually at around a few hundred hertz, depending
on the geometry and size. A miniaturized piezo-hydraulic pump was developed with the
highest frequency of the reed valve at 400 Hz [176]. Other attempts to change the design of
the reed valve with the microarray valves have focused on increasing the frequency but
still maintaining the working condition of the pump. The microvalve arrays with a spider-
spring (or arm) configuration [158,168,177] (Figure 15b) could enhance the performance of
the pump function, especially the flow rates.
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The active valve is formed by a unimorph disc type of piezoelectric for fluid flow
rectification [165]. This active valve allows it to open more rapidly than the reed valve, as
well as it can reduce flow resistance. Backflow can also be suppressed. By controlling the
valve operation corresponding to the movement of the piezoelectric stack, the delivered
fluid volume could be maximized. However, existing research has reported that the actual
flow rate is lower than the expected value due to the appearance of air entrapment and
the effective control of the active valve. Later research has shown the importance of timing
control of the active valve in the performance of the system at a high frequency, which was
missing in the previous study [178].

The diffuser valve or valveless design is also used in the piezoelectric pump, but mostly
in a micropump driven by a diaphragm piezoelectric. This valve type can be conical [179,180]
or a Tesla valve [153,181]. These designs do not have any moving parts, so they do not suffer
from fatigue failure as compared to other valves. This valveless structure is much smaller
than designs with valves as it does not have a flow rectification system. Its performance
relies on fluid flow from a high-pressure source to a low-pressure place.

Table 7 Summarizes several valve types in the piezoelectric–hydraulic pump. Each
valve has its pros and cons that can still be developed to maximize the performance of the
piezoelectric pump. A control strategy can be created for the active valve to synchronize
its movement with the pump function. Finally, the concept of the diffuser valves can be
integrated with a piezoelectric-stack pump.

Table 7. Comparison of valve types in the piezoelectric–hydraulic pump.

Type Pros. Cons.

Reed valve Simpler structure Working frequency limitations

Microreed valve array
Small size and low inertia,
hence a broader working

frequency range

Complex structure and
requirement of

micromachining

Active valve (piezoelectric disc) Operates at a higher
frequency Complex control

Diffuser valve—conical shape No moving part, hence no
fatigue failure Leakage

Diffuser valve—Tesla valve Lesser pressure drop Complex structure

The performances of some piezoelectric–hydraulic pumps are presented in Table 8. The
experimental results are based on prototypes with a maximum piezoelectric input stroke of
less than 100 µm. The reported flow rates were less than 2 L/min, with the stall pressure of
a few thousand kilopascals. For practical applications, a piezoelectric–hydraulic pump can
be scaled up to increase its performance. The most powerful commercial piezoelectric-based
pumps are the solid-state pumps SSP from Kinetic Ceramics company, with reported pressure
in a stalled condition of 2700 psi (18.6 MPa) and a maximum flow rate of up to 7 L/min,
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using high-voltage piezoelectric stacks (operating voltage 0–1000 V) working at 1 kHz of
frequency [164].

Table 8. Summary of the performance of several piezoelectric–hydraulic pumps.

Piezo Stack (mm) Voltage (Vp-p) Frequency
(Hz) Valve Pressure

(kPa)
Flow Rate
(mL/min) Reference

PZT stack 19 × 19 × 102 800 60
Commercial

ball-type
check valve

3800 312 [141]

PZWT100 ∅13 × 20 1000 1000 Unimorph
disc valve 8300 204 [165]

P− 885.91
7 × 7 × 36 120 60 Reed valve 7.96 10.32 [169]

APC Pst150 10 × 10 × 81 100 200 Reed valve 550 1140 [139]

P 2) 10 × 10 × 18 100 300 Reed valve 1600 180 [154]

APC Pst150 3.5 × 3.5 × 18 150 400 Reed valve 125 186 [167]

EPCOS
(×3) 6.7 × 6.7 × 30 150 400 Reed valve 1724 338 [182]

P25 × 60 1000 300
Reed valve

(double piezo
pump)

6532 1246 [163]

PZWT100 ∅81 (120 µm
stroke) 1200 1000 Reed valve

MEMS valve 6895 1830 [168]

7. Piezoelectric-Based Systems in Aerospace Applications

Harnessing various amplification methods listed earlier, the potential of piezoelectric
actuators can be further exploited significantly. Each design has a different performance
range (force, stroke, resolution, speed) and requires different structural designs and control
strategies. Table 9, below, shows a comparison of these piezoelectric-based systems studied
in this paper.

The designs of continuous motion are the simplest to directly amplify the stroke of
the piezoelectric by a certain ratio. Amongst them, the flexure hinge is the most popu-
lar mechanism that is used in both research prototypes and commercial products. The
amplification ratio can be adjusted by the geometrical design but is usually limited to a
few tens. Commercial products usually produce output strokes in the millimeter range
and an output force of thousands of newtons. These structures can be used directly for
applications with requirements in this range or in combination with other mechanisms [33].

For broader stroke application, the stepped-motion systems are preferred. The output
stroke is achieved by accumulating small motions after steps. The resolution, speed, and
force abilities vary in each concept. Generally, quasi-static systems are more suitable for
larger force and slower speed applications compared to ultrasonic systems. These methods
are used in various commercial piezoelectric drives with the designed stroke length in the
centimeter range. The available output force and speed are tens to hundreds of newtons
and a few to hundreds of milimeters/second, respectively. These systems can be scaled up
to achieve larger outputs, but they are limited due to the space constraint of the applications.

The performances of some commercial piezoelectric products are summarized in
Figure 16 (from Physik Instrumente (NEXLINE, PICMAWalk, NEXAC-walking concept;
Inertia Drives; PILine Ultrasonic) [126], PiezoMotor (LEGS linear-walking concept) [127],
Cedrat Technologies (APA-continuous motion) [76]). The output force varies in each prod-
uct based on the size of the piezoelectric elements. Stepped-motion actuators could provide
a maximum force of a few to hundreds of newtons. Amplified piezoelectric has a maxi-
mum force of hundreds to a few thousand newtons. The standard piezoelectric stacks are
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usually manufactured to produce a force in a range of hundreds to thousands of newtons.
High-force actuators can be achieved by combining a number of piezoelectric stacks to
increase the effective cross-sectional area. The stroke of each piezoelectric stack is small, in
the microrange. However, by using the stepped-motion concepts, the stroke of piezoelectric
devices can be increased up to the centimeter range. The ability to be operated with a high
frequency (ultrasonic devices) allows the design to gain centimeters/second of output
velocity. These performances are sufficient for those aircraft applications as mentioned
in Section 1. Furthermore, with a resolution of up to micro- and nanorange, piezoelectric
devices could add an extra advantage in precise positioning applications if required. In
applications in which multiple sets of the stepped-motion piezoelectric systems are used,
the resolution of each piezoelectric system plays a key role in the control method. Thus
synchronizing individual performances of piezoelectric sets helps gain high output force
and stroke.

Table 9. Comparison of piezoelectric-based systems.

Concept Structure Force Stroke Resolution Speed Control

Continuous motion

Flexure mechanism Medium Medium Small - - Simple
Lever, X-mechanism Simple Medium Small - - Simple

Bimorph configuration Simple Low Very small - - Simple

Quasi-static stepped motion

Inchworm—intermittent Medium Large Large Medium Low Complex
Inchworm—continuous Medium Medium Large Medium Low Complex

Inertial Medium Small Large High Medium Simple
Walking—bending legs Complex Small Large High High Medium
Walking—V-shape legs Complex Small Large High High Medium

Walking—combination legs Complex Medium Large High Medium Medium

Ultrasonic stepped motion

Standing wave Medium Small Large Medium High Medium
Traveling wave Complex Small Large Medium High Complex
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The piezoelectric-hydraulic pump is another approach to amplifying the performance
of the piezoelectric by coupling it with a working fluid. This pump, with a significant flow
rate and stalled pressure, has been commercialized by Kinetic Ceramics company [164].
Several products from the solid-state pump series SSP can generate output pressure of 100 to
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2700 psi (~0.69 to 18.6 MPa) and a maximum flow rate of up to 7.5 L/min (Figure 17). These
pumps can work with various working fluids and in extreme environmental conditions
(−40 to 125 ◦C), which makes it possible to replace the conventional hydraulic or pneumatic
pump in aerospace applications.
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Considering the potential of piezoelectric-based systems, it is possible that such sys-
tems could be developed further and integrated into various aerospace applications. The
selection of a conceptual design depends on the stroke and load range. For example, the
bridge-type piezoelectric actuator has also been used to build a tip-tilt mechanism for
micron positioning or a linear stepping actuator using a stick-slip concept [183]. In other
applications in the helicopter, a bimorph piezoelectric actuator constructed by two piezo-
electric ceramic plates was used to deflect a trailing edge flap on the rotor blade [100]
(Figure 18b). To achieve a large stroke, a piezoelectric-stack-based system was proposed
in the design where micron strokes are accumulated by using a feed-screw for morph-
ing aircraft structures [184]. Piezoelectric stacks are also proposed to be embedded in
the trailing-edge flap in the main rotor of the MD900 helicopter. This system allows ac-
tive control of the flap, thus improving the aerodynamic performance and reducing the
vibration, noise, and power consumption of the rotor [74,185]. Progressively, amplified-
piezoelectric actuators with compliant mechanisms have been used for the active flap
(Figure 18a) [28,31,183]. In another stepped-motion concept, a linear inchworm piezoelec-
tric actuator has been proposed for positioning engine inlet guide vanes via a crank slider
mechanism [47,48] (Figure 18c). The inchworm concept can be used to generate rotary
motion to directly drive the unison ring to control the inlet guide vanes, hence reducing
the transmission mechanism from the previous linear actuator [49]. In the approach of the
hybrid hydraulic system, the piezoelectric pump developed by Kinetic Ceramics Inc. has
been tested with hydraulic primary flight control in remotely piloted vehicles [158,168].
The solid-state pumps from this manufacturer have been improved in terms of performance
over the years for more practical applications. Following the same working concept as
that of electro-fluidic components with smart materials, piezoelectric stacks can be used as
precisely controlled valves for a magnetostrictive pump [138].
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However, some limitations may need to be considered when using piezoelectric-based
systems. First, material aging causes a change in the properties of materials and loss of po-
larization, which results in instability over a long working period. Second, the temperature
dependence of properties limits the working condition of the piezoelectric systems. Hence,
piezoelectric-based systems may be suitable for such applications exposed to ambient
temperature in a range of −50–150 ◦C. In the case of a higher working temperature, a
thermal solution is required. Moreover, as a brittle material, piezoelectric is prone to be
easily damaged by tension. Therefore, it requires careful design and operation to suppress
unexpected tensile loads. Finally, the enclosure may be vital for stepped-motion actuators
to eliminate the working environment’s effect on the friction elements. Knowing these
limitations, the development of futuristic piezoelectric materials is essential besides the con-
ceptual designs. Piezoelectric materials could be tailored to alter their material properties
to be better suited for aerospace applications.

8. Conclusions

Piezoelectric-based systems can be considered as novel electromechanical designs to
use in aerospace applications, especially toward the concept of more electric aircraft. To
increase the potential of piezoelectric systems, several amplification methods and related
conceptual designs have been reviewed in this paper. Understanding the mechanisms and
their specifications is beneficial to technology selection. These mechanisms can be divided
into four amplification groups: continuous-motion, quasi-static stepped-motion, ultrasonic
stepped-motion, and piezoelectric–hydraulic systems. The designs in the first three groups
can directly generate output force and stroke, while the piezoelectric pump reviewed in the
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last group produces a fluid flow to power the hydraulic cylinder. Moreover, continuous
motion from the first group can be used to enhance the input stroke from the piezoelectric
element for other systems.

Even though most of the current research prototypes and commercial products based
on piezoelectric serve in small-scale applications with moderate force and stroke ranges,
the concepts of stepped motion and piezoelectric–hydraulic have the potential to be scaled
up and developed for large-scale applications. Some examples of aerospace applications
and developmental products have been introduced to highlight these possibilities. How-
ever, to scale the actuators for practical applications, new challenges must be overcome.
Manufacturing and assembly are the most critical issues for those concepts using frictional
elements. For a large prototype, the housing structure needs to be optimized to avoid
having an oversized system. Besides, some properties of piezoelectric materials, such as
hysteresis characteristics, temperature-dependent properties, or aging, may reduce the
overall performance of the systems. Therefore, they need to be considered in the overall
design and control process; else, regular maintenance is required.
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