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Abstract: We report a spray deposition technique for patterning liquid metal alloys to form stretchable
conductors, which can then be encapsulated in silicone elastomers via the same spraying procedure.
While spraying has been used previously to deposit many materials, including liquid metals, this
work focuses on quantifying the spraying process and combining it with silicones. Spraying generates
liquid metal microparticles (~5 µm diameter) that pass through openings in a stencil to produce
traces with high resolution (~300 µm resolution using stencils from a craft cutter) on a substrate. The
spraying produces sufficient kinetic energy (~14 m/s) to distort the particles on impact, which allows
them to merge together. This merging process depends on both particle size and velocity. Particles of
similar size do not merge when cast as a film. Likewise, smaller particles (<1 µm) moving at the same
speed do not rupture on impact either, though calculations suggest that such particles could rupture
at higher velocities. The liquid metal features can be encased by spraying uncured silicone elastomer
from a volatile solvent to form a conformal coating that does not disrupt the liquid metal features
during spraying. Alternating layers of liquid metal and elastomer may be patterned sequentially to
build multilayer devices, such as soft and stretchable sensors.

Keywords: liquid metal; microparticles; stretchable electronics; aerosol spray deposition

1. Introduction

Flexible, soft, and stretchable electronics find applications in sensors, actuators, energy
harvesters, and antennas. Liquid metals (in particular, gallium alloys with melting points
near or below room-temperature) are attractive for such applications because they are both
highly conductive and stretchable due to their fluidic nature [1–4]. Metals that are liquid
can be patterned in unique ways that are not possible with solid metals, including room
temperature deposition [5]. Gallium alloys are of particular interest due to the presence of
a thin (2–5 nm) oxide shell that forms spontaneously in air [6,7]. This oxide layer provides
mechanical stability that enables patterning in spite of the high surface tension of liquid
metals.

There are a variety of methods available to pattern liquid metal. Since these approaches
have been reviewed elsewhere [5], we focus here specifically on additive approaches to
give relevant context to this paper. One common additive method is filling microfluidic
channels. After fabricating a microchannel (by soft lithography, for example), liquid metal
is injected into the channel [8–10]. Alternatively, the microchannel could be filled by placing
the channel under vacuum [11,12]. Both methods can produce high resolution features
(it is straightforward to produce features of 10–100s of microns). Yet, the fabrication of
microchannels can be time consuming. In addition, the conductive patterns must follow a
continuous fluid path, which makes patterning of smaller, discrete structures challenging.
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Patterns may also be formed via selective wetting, in which a prepatterned substrate
is locally wetted with liquid metal. This may be done by patterning a substrate with very
thin layers of solid metals (such as copper [13] or gold [14]) which are then directly wetted
by the liquid metal. The liquid metal will only wet to the patterned regions, forming
high resolution patterns. Alternatively, a single substrate could be patterned to form non-
wetting and wetting regions [15–18]. Likewise, topographic stamps can be used to pattern
liquid metals in an additive fashion [19–21].

3D printing and direct-write printing of liquid metals provides the ability to quickly
modify patterns and iterate on designs [22–29]. Despite its appeal, printing presents
some challenges due to the rheological behavior and high surface tension of liquid metal.
Consequently, it cannot be directly extruded into filaments without the use of rheological
modifiers [30] or electrochemically altering the surface oxide [31]. Instead, printing liquid
metals involves using shear or tensile forces to pull a meniscus of metal from a nozzle.
Thus, printing requires very close contact between the liquid metal meniscus and the
substrate [28,32]. This is easy with flat surfaces, but surfaces with topography require
complex control schemes to maintain a constant gap between the nozzle and substrate [33].
This type of printing requires good adhesion between the metal and the substrate, yet
studies show liquid metals do not adhere well to rough surfaces [17,34]. This issue has been
partly addressed by applying electric fields between the metal and substrate to promote
adhesion [35,36]. Another approach is to disperse liquid metal particles in a polymer
matrix (e.g., silicone) to make a printable ink [37,38] though these materials requires some
post-processing such as mechanical force or freezing to “sinter” the liquid metal particles
and form a conductive path [39,40].

Liquid metals have been deposited by physical vapor deposition [41]. This approach
is relatively slow due to the need for vacuum processing. This approach is also somewhat
wasteful since the metal deposits on the walls of the chamber, which must be covered to
prevent adverse interactions between the liquid metal and the chamber walls. Nevertheless,
this approach shows promise for depositing liquid metal in a non-contact manner through
the vapor phase onto a receiving substrate.

Likewise, drop-on-demand patterning, where droplets of liquid metal are placed
or ejected onto the surface in a designed pattern, presents an approach which does not
require direct contact with a substrate, and still allows designs to be rapidly modified and
iterated upon. Preparing liquid metal micro- or nanoparticles is straightforward [42–44].
Ink jet printing of liquid metal particles has been demonstrated previously by jetting
liquid metal nanoparticles suspended in a volatile solvent from a nozzle [45]. However,
the patterns based on nanoparticles are not electrically conductive and require some
post-processing steps to sinter the particles together. Sintering can be accomplished by
mechanical force [45–47] or by exposure to a laser [48–50].

Alternatively, by aerosolizing liquid metal microparticles, a conductive film can be
easily produced on a substrate. Spraying aerosolized liquid metal over a stencil produces
conductive patterns rapidly and across a large area. Since not all the metal passes through
the stencil, there is some waste, yet most of the metal blocked by the stencil can be re-
covered. This technique has been used successfully to fabricate soft electrodes [51–53],
sensors [54,55], energy harvesters [56–58] and antennas [59] Motivated by these applica-
tions, this study examines how it forms robust electrical contacts, especially in comparison
to inkjet processing. We also use the spray coating process to pattern thin encapsulating
layers of silicone, which are important to ensure the liquid metal does not smear dur-
ing handling after deposition. Silicone elastomers are used commonly to encase surface
features by drop-casting the silicone or by spin-coating the silicone to produce very thin
and uniform layers. Dilution of silicones within a volatile solvent (hexane, toluene, etc.)
has been used to produce a solution which can be aerosolized and used to coat surfaces
in complete and conformal encapsulation layers [54,60,61] This may be done to encase
fluidic materials, prevent short circuiting between conductive elements, or to alter surface
properties. In this paper we examine the characteristics of spray processing which lead
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to high conductivity patterns, as well as demonstrate simple, multilayer structures that
can be fabricated exclusively via additive spray processing, which is promising for future
roll-to-roll processing of flexible devices. Spray coating allows the silicone layers to be very
thin while conforming to the shape of the existing surface features.

2. Results and Discussion
2.1. Processing Overview

In this work, we spray coat materials using an airbrush tool, commonly used for
spraying dilute paints. The barrel of the airbrush holds a reservoir of liquid (e.g., liquid
metal) and connects to a compressed air source. When triggered, the flow of air breaks
the liquid metal into small particles that flow out of the nozzle with air. The nozzle
directs a stream of particles onto a substrate until the particles cover the surface with a
complete film. This process is compatible with a variety of substrates, as seen in prior
work [52,54–56,59,62–66]. While others have shown that patterning is possible using a
directed laser to ablate liquid metal from the surface [53], here we make use of vinyl stencils
(also commonly used in the crafting community) adhered to the substrate to pattern the
metal. We use a craft cutter (Cameo) that can rapidly fabricate complex openings in a
vinyl sheet for stenciling (a technique called xurography [67]). Removing the stencil after
spraying leaves behind the desired liquid metal pattern on the substrate. This process is
depicted schematically in Figure 1a.
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Figure 1. (a) Schematic depiction of the aerosol spraying process for liquid metals. Vinyl stencils conform to the substrate,
the airbrush sprays liquid metal across the surface, and removal of the stencil produces a pattern. (b) A square spiral
patterned by spraying liquid metal with 300 µm wide lines. (c) Cross-sectional profile of liquid metal lines after multiple
coatings.

In comparison to serial patterning methods (direct-write printing or microfluidic
injection), aerosol jetting is high throughput. Large areas (hundreds of square centimeters)
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can be covered in seconds using a single spray nozzle. Though the process may produce
some overspray, the residual liquid metal is recyclable by exposing it to a strong acid or
base. Such extreme pH solutions remove the oxide layer from the liquid metal, which
allows it to bead up into a puddle. Thus, most excess metal can be quickly reclaimed and
used again later.

The resolution of the resulting patterns is primarily limited by the resolution of the
stencil (i.e., a higher resolution stencil will result in a higher resolution pattern). Using
low-cost, disposable vinyl as a stencil material, we were able to produce features down
to 300 µm with ease. We observed that wider patterns have a smaller relative standard
deviation in linewidth (see Figure S1 and Table S1), although all the standard deviations
fall between 19–35 µm for features ranging from 300–2100 µm. This standard deviation
results from line edge roughness, which quantifies a limitation of this approach. Figure 1b
shows a square spiral pattern with line widths of ~300 µm. Features below this threshold
necessitate either a smaller stencil or an alternative patterning method.

The feature height may be controlled by increasing the number of coatings applied
during processing. Figure 1c depicts the cross-sectional profile of sprayed EGaIn features
with varying numbers of coatings. As expected, the height increased linearly with the
number of applied coatings. A single layer was defined by spraying metal on the surface
for approximately 2 s at a standoff distance of approximately 10 cm above the substrate.
We found each layer to have an average maximum thickness of 11.2 ± 2.3 µm. The given
parameters ensured complete coverage of the substrate for each layer of coating.

2.2. Impact of the Surface Oxide

We observed that the sprayed patterns exhibited high conductivity without any post
processing. Figure 2a shows the result of spraying liquid metal to connect a power supply
to an LED. In the first frame the circuit is incomplete. The sprayed liquid metal connects
the two electrodes and completes the circuit, illuminating the LED.

We tested how the conductivity of the sprayed EGaIn compared to bulk EGaIn,
and if the excess oxidation caused by aerosolization may result in a loss of performance.
To do so, we deposited lines of varying width and measured the resistance across two
electrodes at increasing distances apart. Figure 2b depicts the resistance as a function of
the distance between electrodes. We observed a linear increase in the measured resistance
with increasing length, as expected. In addition, wider traces exhibited a lower resistance
than thinner traces. We measured the average trace height to be 25 µm via white light
interferometry, allowing us to calculate the cross-sectional area of each trace. We used the
measured resistance values to calculate the resistivity of the patterns via Pouillet’s law,
given in Equation (1).

R =
ρl
A

(1)

where R is the resistance in Ohms, ρ is the resistivity, l is the distance between electrodes,
and A is the cross-sectional area of the trace. The A term is the product of the width and
height of the trace. Given that the trace height is over an order of magnitude less than the
width, we assume a rectangular cross-section profile.

Fitting of the data in Figure 2b provides an estimate of the material resistivity. We
calculated a value of 32.5 ± 6.3 × 10−6 Ω·cm for the resistivity of sprayed EGaIn, which is
within 10% of the literature reported value of 29.4 × 10−6 Ω·cm [68]. These measurements
are summarized in Table S2 (SI). This indicates the presence of excess oxide has little impact
on the resulting conductivity of the liquid metal patterns. By plotting the resistance as a
function of trace length divided by cross-sectional area, the curves in Figure 2b collapse
into a single linear plot, shown in Figure 2c. The slope of this plot corresponds to the
resistivity of the EGaIn traces.
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Figure 2d shows a comparison of three methods to deposit liquid metal through a
stencil: spraying liquid metal on an untreated glass slide, spraying onto a glass slide in
an HCl rich environment, and drawing a volume of liquid metal down across a slide. The
spray coating creates a nice film across the untreated slide and the metal does not dewet
during handling. To observe what happens in the absence of native oxide on the liquid
metal, we pretreated the glass slide with 1 M HCl. Acidic and basic conditions remove
the oxide on the surface of liquid metal, which exposes bare metal with high interfacial
tension [69–74]. Spraying onto a glass slide in an HCl rich environment showed poor
adhesion, and the liquid metal did not coalesce into a film. Rather, it remained as distinct
droplets disconnected from each other. These differences, which are expected, are apparent
in the optical micrographs in Figure 2d.

We also compared stenciling the same metal via a draw bar, in which a volume of bulk
liquid metal was placed at one end of the stencil and drawn across the surface to cover
the stencil. After removing the stencil, the liquid metal did not adhere fully to the surface,
leaving large regions disconnected and non-uniformly wetted with metal. This finding
suggests that the tension of the interface of the oxide-coated metal did not readily make
contact through the stencil to the exposed regions of the substrate.

Taken in sum, we conclude that spraying produces better features than draw-down of
metal across a stencil. The droplets ensure the metal passes through the stencil. When they
impact the surface, the oxide ruptures and then reforms, pinning the drops to the surface
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and preventing dewetting. This is very important for fabricating stretchable circuitry which
must be robust enough to withstand multiple strain cycles without failing [56,75].

This result also shows that aerosol spray coating of liquid metals produces patterns of
high conductivity, which are not negatively impacted by the presence of excess oxide, and
in fact rely on the oxide to adhere to the surface during deposition. Next, we consider why
this process readily forms conductive networks, whereas nanoparticle inks require some
post-processing sintering to form conductive paths. We hypothesize that this difference is
reliant on two factors: particle size and speed.

2.3. Particle Rupture
2.3.1. Effect of Particle Size

Prior work on gallium nanoparticles (tens to hundreds of nanometers) has shown that
nanoparticle films require force to form a conductive network, and that smaller particles
are stiffer than larger particles due to the mechanics of the native oxide skin [6,45,76–78].
Meanwhile, work which features metal droplets that are tens to hundreds of microns in
diameter are capable of immediately and repeatably forming conductive paths [71,72,79].
Thus, we sought first to confirm the size of the particles produced via the spray deposition
process. The particles were collected by spraying liquid metal into a bath of ethanol to
prevent particles from rupturing on impact. After collection, the ethanol was evaporated,
and the remaining particles were observed via optical microscopy and sized using ImageJ
(see Figure S2 in SI). The droplet particles had an average diameter of 5.8 ± 3.2 µm, shown
in Figure 3a and the particle size follows a log-normal distribution, which is expected for
aerosols [80].

To systematically assess the behavior of liquid metal micro- and nano-particles, we
prepared suspensions of particles in solution and cast them as films. Nanoparticles were
prepared via sonication of liquid metal in ethanol, following the procedure set forth by
previous work in our group on liquid metal nanoparticles [81,82]. Microparticles were
prepared by dispersing liquid metal in ethanol using a Vortex mixer.

We observed that all the films were natively insulating. Figure 3b depicts particles
separated by the oxide layer. At a critical applied force, the particles sinter to form a
conductive path. A mechanical probe with two copper electrodes was placed in contact
with opposing ends of the films. The probe was connected to an Instron mechanical testing
system to measure the force while a Keithley electrometer measured the current passing
through the particles. All of the prepared films were natively insulating, and only passed a
current after a critical load was applied, as seen in the plot in Figure 3c. A constant voltage
is applied to the probes, but no current is measured initially until the particles rupture and
merge, causing the massive spike in current. As anticipated, the largest particles (diameter
of 191.3 ± 14.4 µm) required the least force to merge, showing a measurable current at
a load of 0.98 N. The second group of particles (14.9 ± 1.3 µm) became conductive at a
load of 13.5 N, and smaller particles (2.1 ± 0.3 µm) became conductive at a load of 98.5 N.
The smallest set of particles (1.4 ± 0.1 µm) became conductive at a load of 125.3 N. The
necessary load to induce conductivity is summarized in Figure S3.

Figure 3d is an optical micrograph showing the difference between a compressed (and
therefore conductive) region and the initial uncompressed (insulating) state of the particles.
The compressed region is clearly metallic and highly reflective, while the uncompressed
region is still primarily a collection of individual particles, approximately 1 µm in average
diameter. This experiment confirms that particles of larger size require less force to rupture
than smaller particles, yet size alone cannot account for the behavior seen with spray
coating liquid metal. Since sintering only occurs with applied force, we next sought to
confirm that the force of impact of a sprayed droplet with a surface would provide sufficient
force to rupture the oxide.
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2.3.2. Effect of Particle Speed

After observing that liquid metal microparticles, such as those seen in the aerosol
spray process, will not spontaneously form a conductive pathway without some outside
force, we expect to observe particles merge when impacting the surface with sufficient
speed, as depicted in Figure 4a. A particle with sufficient kinetic energy at impact should
rupture the oxide shell surrounding the particle (a velocity we call “rupture velocity”) and
allow it to deform and merge with other particles to form a conductive film.

We consider both the particle falling at its terminal velocity, as well as the experimental
speed of the aerosol particles. We calculated the experimental particle speed using a high-
speed camera by timing the duration for particles to travel a known distance by observing
particles impacting at two surfaces (glass slides). The experimental setup for measuring
the speed is depicted in Figure S4, which measured a speed of 13.8 m/s. Since the fastest
traveling particles are the ones to first reach the substrate, this represents an upper bound.
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Rupture Velocity

We consider here two methods for the oxide to rupture. First, we examine the obser-
vation by Boley et al. that compressing a film of liquid metal particles to ~50% of their
initial height produces a conductive network [45]. The energy necessary to cause this
deformation (depicted in Figure S5) is related to the effective interfacial tension of the
droplet, as described by Equation (2),

∆Esurface = γ∆A (2)

where ∆Esurface represents the change in surface energy of the droplet, γ is the effect surface
tension, and ∆A is the change in surface area due to droplet deformation. By assuming
the droplet distorts on impact from a spherical droplet to an ovoid with constant volume,
we can calculate the change in surface area to be a function of the radii. Thus, we can
calculate the required energy to compress a droplet to 50% the initial height. Neglecting
the impact of viscous dissipation through the fluid, the energy for deformation will be
provided exclusively from the kinetic energy of the droplet prior to impact.

∆EK =
1
2

mv2 =
2
3

π
(

ρr3
0

)
v2 (3)

By equating the kinetic energy of a droplet (Equation (3)) to the required change
in surface energy (Equation (2)), we arrive at an equation which describes the velocity
required for a droplet to sufficiently deform at impact.

vrupture =

√
1.38γ

ρr
(4)

Figure 4b shows this equation plotted as a function of particle diameter and compares
it with the predicted terminal velocity of a falling particle. At the experimental particle
speed of 13.8 m/s, we predict that particles greater than ~2 µm in diameter will be suf-
ficiently deformed on impact to rupture and form a conductive network. The region of
Figure 4b highlighted in red shows theoretical conditions to produce particles that have
sufficient energy to break the oxide on impact.
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Surface Stress at Impact

Alternatively, we consider the velocity needed to exceed the critical stress needed to
rupture the surface layer of gallium oxide on each particle upon impact. Literature reports
that the oxide breaks beyond a critical surface stress of ~0.2–0.6 N/m [8,83,84]. Assuming
that the kinetic energy of the drop at impact transfers exclusively to transfer energy to the
droplet surface (i.e., neglecting any viscous dissipation, energy transfer to the substrate,
or changes in potential energy), it is possible to predict what minimum kinetic energy a
droplet must have to surpass the critical surface stress. The surface stress can be estimated
by dividing the kinetic energy (E) of the particle by the surface area (A).

σsur f ace =
KE
SA

=
1
2 mv2

4πr2 =
ρrv2

6π
(5)

Any particles that experience a surface stress beyond the critical value of ~0.5 N/m
should rupture and merge together, forming a conductive network. Figure 4c depicts the
surface stress arising from particles impacting a surface plotted as a function of particle
diameter. The impact stress for a particle moving at terminal velocity is significantly less
than a particle of the same size moving at the observed speed of ~14 m/s due to the lower
momentum of the particle. The red highlighted region shows the conditions which possess
sufficient kinetic energy at impact to rupture the oxide, which is important for forming a
conductive network. This analysis predicts that at 14 m/s, particles greater than ~4 µm
in diameter will rupture upon impact, in agreement with our previous analysis. Since the
particles produced during aerosolization of liquid metal are on average 5.8 µm, this falls
in the expected range to form a conductive path with no required post-processing (i.e.,
sintering).

We further confirmed this analysis by spraying liquid metal particles of smaller size
via the same method. Because the airbrush is not capable of producing such small particles,
the particles were prepared via sonication in ethanol and the suspension was loaded into
the airbrush and deposited. Spraying of 1.4 ± 0.1 µm diameter particles on a glass slide
produced a non-conductive film. The particles did not form a conductive network after
spraying, supporting the hypothesis that both size and speed are required, and that very
small (<1 µm) particles moving at high speed still do not form a conductive path.

2.4. Encapsulation via Spray Coating

For many applications, it is desirable or necessary for liquid metal structures to be
encased in an insulating layer to prevent damage to the pattern, short circuits, or leakage
of liquid metal onto other components during handling. This encasement can be done, for
example, by drop-casting of a liquid elastomer pre-cursor over the liquid metal patterns
followed by curing [22,82,85], or alternatively by spray coating [54,60,61]. Processing
both conductive liquid metal patterns and insulating, elastomeric layers by spray coating
provides a relatively straightforward path toward roll-to-roll processing of stretchable
electronics in the future.

As an encasing layer, we used commercially available polydimethylsiloxane (PDMS,
Sylgard-184 or Sylgard-186, Dow), which are thermally curable silicone elastomers com-
monly used in microfluidics and soft devices [86]. Dilution of the silicone liquid pre-
polymer with a volatile solvent (e.g., toluene) results in a low viscosity fluid suitable for
spray coating. During spraying, the volatile component evaporates, thereby coating a thin
layer of elastomer on the substrate. The layers produced by this method can be both thin
and conformal, conforming to any pre-existing features on the surface as shown in Figure
5a. In comparison, pure silicone—which is too viscous for spray coating of thin films—can
produce thin layers via spin-coating or doctor blading, but such methods create a planar
layer over preexisting surface features (Figure 5a).



Micromachines 2021, 12, 146 10 of 18

Micromachines 2021, 12, x 10 of 19 
 

 

of elastomer on the substrate. The layers produced by this method can be both thin and 
conformal, conforming to any pre-existing features on the surface as shown in Figure 5a. 
In comparison, pure silicone—which is too viscous for spray coating of thin films—can 
produce thin layers via spin-coating or doctor blading, but such methods create a planar 
layer over preexisting surface features (Figure 5a). 

 
Figure 5. (a) Schematic depiction of coating of silicone. Drop casting produces a uniformly level surface while spray coat-
ing follows the profile of existing features. PDMS colored with red dye is shown coating an un-dyed PDMS substrate with 
topography. (b) Layer thickness of cured PDMS films for varying dilutions of Sylgard 184 and Sylgard 186. The layer 
thickness increases with additional coatings. (c) Plot of the average layer thickness for each sample in (b) plotted against 
the viscosity of the dilute solution (i.e., before spraying). Layer thickness decreases for higher viscosity fluids. (d) Liquid 
metal cones, deposited by printing, which are encased in PDMS by spray coating. The encapsulation is optically transpar-
ent, but robust to protect the liquid metal from the probing finger. (e) PDMS film strength experimental setup. A film is 
loaded between two clamps at the top of the open structure and the probe is lowered down measuring the force and 
extension. (f) Bar plot showing the average load and extension at rupture for a set of 200 μm PDMS films prepared by 
spray coating. 

Figure 5b shows the thickness of sprayed polymer films as a function of the number 
of coatings. A coating in this case is defined as a single manual pass across a glass slide 
(75 mm long and 50 mm wide), lasting approximately 5 s, and sprayed from 10 cm away 
at a pressure of 30 psi. As expected, additional coatings create thicker films. Interestingly, 
the lowest concentrations of polymer (20% Sylgard 186 or 40% Sylgard 184) produced the 
thickest films. This trend is opposite of the trend observed when spin-coating polymers, 
in which higher concentrations produce thicker films (see Figure S6). The lower viscosity 
of the more dilute samples flows more readily through the nozzle at a given pressure, 
resulting in a thicker layer of deposited silicone. Less dilute compositions may exhibit 
clogging in the nozzle and require greater pressure to push the fluid out of the nozzle. 
The result is less material flow overall, and thinner layers. A semi-log plot of the average 
layer thickness as a function of the prepared solution viscosity (Figure 5c) shows a linear 
trend of decreasing layer thickness with increased viscosity. Additionally, we observed 
that films prepared using higher viscosity starting material formed films with a higher 
degree of surface roughness (see Figure S7 and Table S3). 

Figure 5. (a) Schematic depiction of coating of silicone. Drop casting produces a uniformly level surface while spray coating
follows the profile of existing features. PDMS colored with red dye is shown coating an un-dyed PDMS substrate with
topography. (b) Layer thickness of cured PDMS films for varying dilutions of Sylgard 184 and Sylgard 186. The layer
thickness increases with additional coatings. (c) Plot of the average layer thickness for each sample in (b) plotted against the
viscosity of the dilute solution (i.e., before spraying). Layer thickness decreases for higher viscosity fluids. (d) Liquid metal
cones, deposited by printing, which are encased in PDMS by spray coating. The encapsulation is optically transparent, but
robust to protect the liquid metal from the probing finger. (e) PDMS film strength experimental setup. A film is loaded
between two clamps at the top of the open structure and the probe is lowered down measuring the force and extension. (f)
Bar plot showing the average load and extension at rupture for a set of 200 µm PDMS films prepared by spray coating.

Figure 5b shows the thickness of sprayed polymer films as a function of the number
of coatings. A coating in this case is defined as a single manual pass across a glass slide
(75 mm long and 50 mm wide), lasting approximately 5 s, and sprayed from 10 cm away
at a pressure of 30 psi. As expected, additional coatings create thicker films. Interestingly,
the lowest concentrations of polymer (20% Sylgard 186 or 40% Sylgard 184) produced the
thickest films. This trend is opposite of the trend observed when spin-coating polymers,
in which higher concentrations produce thicker films (see Figure S6). The lower viscosity
of the more dilute samples flows more readily through the nozzle at a given pressure,
resulting in a thicker layer of deposited silicone. Less dilute compositions may exhibit
clogging in the nozzle and require greater pressure to push the fluid out of the nozzle. The
result is less material flow overall, and thinner layers. A semi-log plot of the average layer
thickness as a function of the prepared solution viscosity (Figure 5c) shows a linear trend
of decreasing layer thickness with increased viscosity. Additionally, we observed that films
prepared using higher viscosity starting material formed films with a higher degree of
surface roughness (see Figure S7 and Table S3).

Figure 5d shows an array of liquid metal cones printed on a glass slide and then
encased via spray coating of PDMS. The cones maintain their shape even after being
contacted by a finger, as seen in the second image. As the goal of the elastomer layer was to
produce thin layers that would contain the liquid metal structures, we sought to measure
the force these layers could withstand before rupturing. This force was measured by
pressing a probe (connected to a load cell) against a membrane of silicone while recording
force displacement data. The probe is 13 mm in diameter with a semispherical tip. A
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clamping apparatus held the polymer membranes taut across a 30 mm circular opening.
The experimental apparatus is shown in Figure 5e. The probe was driven into contact with
the film at a rate of 3 mm/min and then continued to push against the film until the film
ruptured or the probe reached the extension limit (90 mm).

We tested films made of both Sylgard 184 and Sylgard 186, diluted to 40 or 60 wt %
before spraying. The films had an average thickness of 257.3 ± 31.1 µm. Figure 5f plots the
maximum load and extension for each film at the point of rupture. The films handled a
comparable load of 15 to 20 N before rupturing. However, the films made of Sylgard 186
extended to more than twice the length than Sylgard 184 before rupturing. This is expected
from the higher reported toughness of Sylgard 186 [86].

2.5. Function as Soft Sensors
2.5.1. Strain Sensor

We demonstrate here a set of resistive strain sensors fabricated via spray coating. Using
vinyl stencils makes design iteration simple and implementing additional complexity in
designs comes with no additional complexity in processing. Figure 6a shows an example
of a device prepared via spray coating and undergoing strain. The device was prepared
by placing a stencil over a silicone substrate (Dragonskin 10 Slow by Smooth-On). Both
the silicone and liquid metal are soft and highly stretchable materials, well suited to use as
strain sensors.
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Figure 6b plots the resistance during strain cycling over time of the strain sensor
shown in Figure 6a. The sensor provides consistent changes in resistance over many strain
cycles. At 50% strain, the sensor showed an increase of ~86% in resistance. At 75% strain,
the resistance increased by ~168% from the unstrained state.

We also demonstrate the simplicity with which alternative designs can be fabricated.
Figure 6c shows four different sensor designs. The changes in patterning result in different
responses to strain, as shown in Figure 6d. We cycled all four samples from 0 to 50% strain
while measuring the resistance. Sensor 3 exhibited the greatest change in resistance (as
expected given the path length parallel to the strain direction), showing a 35% increase
in resistance. In comparison, Sensor 2 only showed ~5% increase under the same strain
conditions since most of the length of the conductor aligns perpendicular to the strain
direction. Sensors 1 and 4 exhibited similar behavior, showing a 22% and 30% increase in
resistance under strain, respectively. The diversity of responses highlights the versatility of
spray coating as a patterning technique and emphasize that the additional complexity of
the pattern does not require any additional steps in sample preparation.

2.5.2. Multilayer Capacitive Sensor

We also fabricated multilayer devices featuring alternating layers of PDMS and EGaIn,
all deposited by spray coating. A multilayer capacitive sensor is shown in Figure 7a. This
sample was prepared on a glass slide with a thin layer of PVA spin-coated on the surface to
allow for easy detachment of the final device. A base layer of PDMS was deposited over
the substrate via spray coating. After curing at 100 ◦C for 6 h, EGaIn was deposited on
the substrate, which was then encapsulated with a second spray coated PDMS layer. This
process was repeated to produce fully encased, multilayer, liquid metal electrodes.
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We then characterized the response of the sensor by measuring the change in capaci-
tance when contacted. The capacitance is defined by the following equation

C =
ε0εr A

d
(6)

where C is the capacitance, ε0 is the permittivity of free space, εr is the dielectric constant of
the insulating material (PDMS), A is the area of the electrodes, and d is the distance between
them. Since ε0 and A remain constant, we see that capacitance is inversely related to the
distance between electrodes (C ∝ 1/d). Applying compressive stress to the sensor pushes
the electrodes closer together, thereby increasing the measured capacitance. Figure 7b
shows the region where the two EGaIn electrodes overlap. The overhead view shows that
the features do not merge and remain separated due to the conformal nature of the spraying
process. The cross-sectional view shows the thin dielectric layer of PDMS separates the
EGaIn layers.

Figure 7c plots the normalized change in capacitance as a function of the force applied.
The overlapping area of this sensor is 25 mm2 (each side measuring 5 mm). The capacitance
of the sensor without any contact was measured to be 25.3 pF, and the plotted values
represent the deviation from this initial value. A linear fit of the data has a slope of
0.12 N−1. The probe used for this experiment is the same shown in Figure 5e and the
applied force was measured using the Instron mechanical testing system in compression
mode. The sensor may be made more sensitive by increasing the area of the electrodes,
using a softer elastomer, or by using a material with a higher dielectric constant [87–89].
Future works may consider further characterization of sensors such as the one reported
here. Variation of the PDMS dielectric layer thickness and material may provide different
sensitivities to force and may be implemented in a variety of applications.

3. Conclusions

This work characterizes and demonstrates aerosol spray deposition of both liquid
metal and silicone to form robust electrical contacts and patterns. The resulting patterns
exhibit near bulk electrical conductivity, despite excess oxidation that may occur as a result
of aerosolizing the liquid metal into microparticles. We also showed that this process relies
on the presence of the oxide to adhere to the target substrate.

We demonstrated the effect of particle size and velocity on the processing of liquid
metal via spray deposition. Particles must possess enough kinetic energy to rupture upon
impact with the surface. Larger particles require less force to rupture and form a conductive
pathway, but even films of particles an order of magnitude greater than those produced by
spraying are insulating until a force of ~1 N is applied across the electrode area (1 cm by
5 cm). At the experimental particle velocity of 13.8 m/s, particles below 2–5 µm in diameter
do not possess sufficient kinetic energy to rupture the insulating native oxide layer on
impact, while particles above that range will rupture, merge, and form a conductive film.
The methods characterized here have implications for facile patterning of highly elastic
metallic conductors for soft and stretchable electronics, e-skins, and soft robotics.

4. Experimental
4.1. Materials

The liquid metal used here is a eutectic alloy of gallium and indium (75.5 wt % Ga,
24.5 wt % In), purchased from The Indium Corporation. The liquid metal has a melting
point of 15.5 ◦C [68,90]. Thus, it is liquid at room temperature. The metal forms a thin
native oxide, which provides a mechanical shell around a fluid that otherwise has a very
high surface tension (~640 mN·m−1) [68] and low viscosity (~2 mPa·s) [91].

Silicone elastomers used in this work are Sylgard 184 and Sylgard 186 (Dow). All
silicones were initially prepared at a 10:1 ratio of base:curing agent before dilution with
toluene to the desired concentration.
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Liquid metal particle suspensions were formed via sonication (for nanoparticles) or
mechanical mixing (for microparticles). For sonication, 1 g of bulk EGaIn was placed
in a 20 mL vial with 15 mL of ethanol. This solution was sonicated using a Q700 Probe
Sonicator (QSonica Instruments, Newtown, CT, USA) for 10 min at 50 amps and 10 amps
to produce nanoparticles (1 and 2 µm in diameter respectively). Microparticles were
prepared by placing the same EGaIn/ethanol solution on an Analog Vortex Mixer (VWR)
for mechanical mixing. The largest particles (191 µm) were mixed at full power for 1 min,
and the next set of particles (15 µm) were mixed for 5 min.

4.2. Stencil Preparation

Vinyl stencils (ORACAL 651) were prepared using a Cameo 3 Desktop Cutting System
(Silhouette America, Lindon, UT, USA). Depending on the complexity of the pattern the
stencils were adhered directly to the substrate or applied using transfer tape.

4.3. Aerosol Deposition

EGaIn was deposited in these experiments by aerosol jetting through an airbrush
nozzle with compressed air. Air was taken from a compressed air line at 30 psi. The
airbrush used was a Model G22 Gravity Feed Airbrush (Master Airbrush).

4.4. Surface Profiling

Surface profiles of liquid metal and polymer films were determined via white light
interferometry using a Profilm3D optical profiler (Filmetrics, San Diego, CA, USA) using a
10× objective lens.

4.5. Electrical Measurements

Electrical measurements were conducted using a Keithley 2400 Sourcemeter (Keithley
Instruments, Cleveland, OH, USA). For the strain sensor measurements, a constant voltage
of 1 V was applied while the samples were strained. The capacitance of the capacitive
sensor was measured using a handheld LCR meter (Agilent U1733C, Agilent Technologies,
Inc., Santa Clara, CA, USA).

4.6. Viscosity Measurements

The viscosity of the silicone solutions was measured using an AR-G2 rheometer (TA
Instruments). The viscosity of pure PDMS (Sylgard 184 or Sylgard 186) were measured
using a parallel plate geometry with a 40 mm diameter. The solutions of PDMS in toluene
were measured with a concentric cylinder geometry. The reported data is the high-shear
viscosity, gathered at a shear rate of 100 s−1.

4.7. Force Measurements

Force measurements were conducted using an Instron 5493 Universal Testing System
(Instron) in compression mode. For measuring the critical force to induce conductivity
in EGaIn particles, a modified probe with two copper electrodes attached to the face was
used. The applied force was measured using a load cell rated for up to 1 kN of force.

The PDMS samples for force measurements were prepared by first spin-coating a
sacrificial layer of polyvinyl alcohol (PVA) on a glass slide. A solution of 20 wt % PVA in
water was spun at 500 rpm for 20 s, followed by 1000 rpm for 10 s to produce a uniform
layer. Then, we sprayed PDMS onto the glass slides, followed by curing at 70 ◦C for at
least 48 h to ensure the films were completely cured and no solvent remained within the
film. Finally, the sample was placed in water to dissolve the PVA layer, freeing the PDMS
layer from the slide.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-666
X/12/2/146/s1, Figure S1: Patterned Liquid Metal Line Width, Figure S2: Measured Liquid Metal
Particle Size, Figure S3: Applied Force to Induce Conductivity, Figure S4: Schematic for Tracking
Particle Speed, Figure S5: Droplet Compression Schematic, Figure S6: Spin Coated Polymer Layer

https://www.mdpi.com/2072-666X/12/2/146/s1
https://www.mdpi.com/2072-666X/12/2/146/s1


Micromachines 2021, 12, 146 15 of 18

Thickness, Figure S7: Roughness of Sprayed Polymer Films, Table S1: Widths of stenciled liquid
metal patterns, Table S2: Contact Resistance and Trace Resistivity, Table S3: Mean height of polymer
films prepared by spraying and drop casting.
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