The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Interdigitated Microelectrodes: Fabrication and Simulation
2.3. Cell Experiments
2.3.1. Cell Culture
2.3.2. Impedance Response Measurement of HeLa Cells
2.3.3. Cell Viability Assay
2.3.4. Immunofluorescence Staining
2.3.5. Measurement of the Number of Attached Cells Treated by Drugs
2.4. Statistical Analysis
3. Results
3.1. Screening of Experimental Conditions for Impedance Measurement
3.2. Real-Time Impedance Response of HeLa Cells to Chemotherapy Drugs
3.3. Changes in Distribution and Intensity of Vinculin after Treatment with Chemotherapy Drugs
3.4. Changes in the Number of Attached HeLa Cells Treated with Chemotherapy Drugs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kawai, S.; Suzuki, M.; Arimoto, S.; Korenaga, T.; Yasukawa, T. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. Analyst 2020, 145, 4188–4195. [Google Scholar] [CrossRef]
- Stanica, L.; Gheorghiu, M.; Stan, M. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays. J. Enzyme Inhib. Med. Chem. 2017, 32, 1079–1090. [Google Scholar] [CrossRef]
- Nahid, M.A.; Campbell, C.E.; Fong, K.S.K. An evaluation of the impact of clinical bacterial isolates on epithelial cell monolayer integrity by the electric Cell-Substrate Impedance Sensing (ECIS) method. J. Microbiol. Methods 2020, 169, 105833. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Sharek, L.; O’Brien, E.T. Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS ONE 2019, 14, e0221962. [Google Scholar] [CrossRef] [Green Version]
- Gheorghiu, M.; Enciu, A.M.; Popescu, B.O. Functional and Molecular Characterization of the Effect of Amyloid-β 42 on an in vitro Epithelial Barrier Model. J. Alzheimer Dis. 2014, 38, 787–798. [Google Scholar] [CrossRef]
- Olmo, A.; Yuste, Y.; Serrano, J.A. Electrical Modeling of the Growth and Differentiation of Skeletal Myoblasts Cell Cultures for Tissue Engineering. Sensors 2020, 20, 3152. [Google Scholar] [CrossRef]
- Wang, L.; Yin, H.; Xing, W.; Yu, Z.; Guo, M.; Cheng, J. Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosens. Bioelectron. 2010, 25, 990–995. [Google Scholar] [CrossRef]
- Láng, O.; Kőhidai, L.; Wegener, J. Label-free profiling of cell dynamics: A sequence of impedance-based assays to estimate tumor cell invasiveness in vitro. Exp. Cell Res. 2017, 359, 243–250. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, Y.; Li, G. A cell viability assessment approach based on electrical wound-healing impedance characteristics. Biosens. Bioelectron. 2019, 124, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Baek, C.; Min, J. Electric cell-substrate impedance sensing (ecis) with microelectrode arrays for investigation of cancer cell—Fibroblasts interaction. PLoS ONE 2016, 11, e0153813. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, R.; Rajput, S.; Mandal, M.; Mitra, A.; Das, S. Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell. Biosens. Bioelectron. 2014, 55, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Mitchelson, K.; Yu, Z.; Cheng, J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell–substrate impedance sensors. Biosens. Bioelectron. 2008, 24, 14–21. [Google Scholar] [CrossRef]
- Mansor, A.F.M.; Abbas, P.; Hamdan, T.H. Toxicity studies of agarwood essential oil in vero cells using electrical impedance sensor. Malays. J. Fundam. Appl. Sci. 2017, 13, 540–545. [Google Scholar] [CrossRef]
- Parekh, A.; Das, D.; Das, S. Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci. Rep. 2018, 8, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijink, I.H.; Brandenburg, S.M.; Noordhoek, J.A. Characterisation of cell adhesion in airway epithelial cell types using electric cell–substrate impedance sensing. Eur. Respi. J. 2010, 35, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Mohan, P.; Rapoport, N. Doxorubicin as a molecular nanotheranostic agent: Effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol. Pharm. 2010, 7, 1959–1973. [Google Scholar] [CrossRef] [Green Version]
- Sarder, A.; Rabbani, M.G.; Chowdhury, A.S.M.H.K. Molecular basis of drug interactions of methotrexate, cyclophosphamide and 5-fluorouracil as chemotherapeutic agents in cancer. Biomed. Res. Ther. 2015, 2, 196–206. [Google Scholar] [CrossRef]
- Zhikhoreva, A.A.; Belashov, A.V.; Bespalov, V.G. Morphological changes in the ovarian carcinoma cells of Wistar rats induced by chemotherapy with cisplatin and dioxadet. Biomed. Opt. Express 2018, 9, 5817–5827. [Google Scholar] [CrossRef]
- Dhahi, R.M. In Vitro Design of Preclinical Models for Chemotherapy Combinations in Human Breast Tumours. J. Clin. Diagn. Res. 2019, 13, FC05–FC08. [Google Scholar] [CrossRef]
- Lukyanova, N.Y.; Rusetskya, N.V.; Tregubova, N.A. Molecular and cell cycle in MCF-7 cells resistant to cisplatin and doxorubicin. Exp. Oncol. 2009, 31, 87–91. [Google Scholar]
- Mansor, A.F.M.; Nordin, A.N. Theoretical Modelling of Interdigitated Electrode Sensor for Mammalian Cell Characterization. In Proceedings of the 2018 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lampur, Malaysia, 19–20 September 2018. [Google Scholar]
- Rahman, M.S.A.; Mukhopadhyay, S.C.; Yu, P.L. Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation; Springer International Publishing: New York, NY, USA, 2014. [Google Scholar]
- Ibrahim, M.; Claudel, J.; Kourtiche, D. Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy. J. Electr. Bioimped. 2013, 4, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-T.; Chu, Y.-S.; Lo, J.-C.; Hung, Y.-H.; Lo, C.-M. Effects of electrode diameter on the detection sensitivity and frequency characteristics of electric cell-substrate impedance sensing. Sens. Actuators B Chem. 2019, 288, 707–715. [Google Scholar] [CrossRef]
- Ahmed, M.; Jamil, K. Cytotoxicity of neoplastic drugs gefitinib, cisplatin, 5-fu, gemcitabine, and vinorelbine on human cervical cancer cells (hela). Biol. Med. 2011, 3, 60–71. [Google Scholar]
- Fourre, N.; Millerot-Serrurot, E.; Garnotel, R. Extracellular matrix proteins protect human ht1080 cells against the antimigratory effect of doxorubicin. Cancer Sci. 2008, 99, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Shen, L.; Yu, M. Colon cancer cells treated with 5‑fluorouracil exhibit changes in polylactosamine‑type N‑glycans. Mol. Med. Rep. 2014, 9, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Rahim, S.; Uren, A. A real-time electrical impedance based technique to measure invasion of endothelial cell monolayer by cancer cells. J. Vis. Exp. 2011, 50, 2792. [Google Scholar] [CrossRef]
- Mansor, A.F.M.; Ibrahim, I.; Zainuddin, A.A. Modeling and development of screen-printed impedance biosensor for cytotoxicity studies of lung carcinoma cells. Med. Biol. Eng. Comput. 2018, 56, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Atienzar, F.A.; Tilmant, K.; Gerets, H.H. The Use of Real-Time Cell Analyzer Technology in Drug Discovery. J. Biomol. Screen. 2011, 16, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Ke, N.; Nguyen, K.; Irelan, J. Multidimensional GPCR profiling and screening using impedance-based label-free and real-time assay. Methods Mol. Biol. 2015, 1272, 215. [Google Scholar]
- Atienza, J.M. Label-free and real-time cell-based kinase assay for screening selective and potent receptor tyrosine kinase inhibitors using microelectronic sensor array. J. Biomol. Screen. 2006, 11, 634. [Google Scholar] [CrossRef] [Green Version]
- Puskás, L.G. A cell-microelectronic sensing technique for the screening of cytoprotective compounds. Int. J. Mol. Med. 2010, 25, 4. [Google Scholar] [CrossRef] [PubMed]
- Adcock, A.F.; Agbai, C.O.; Yang, L. Application of electric cell-substrate impedance sensing toward personalized anti-cancer therapeutic selection. J. Anal. Sci. Technol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Xu, H.; Duan, J.; Ren, L.; Yang, P.; Yang, R.; Li, W.; Zhao, D.; Shang, P.; Jiang, J.X. Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. J. Bone Miner. Metab. 2018, 36, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Atherton, P.; Ballestrem, C. Mechanotransduction at the cell-matrix interface. Semin. Cell Dev. Biol. 2017, 71, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Thievessen, I.; Fakhri, N.; Steinwachs, J.; Kraus, V.; McIsaac, R.S.; Gao, L.; Chen, B.; Baird, M.A.; Davidson, M.W.; Betzig, E.; et al. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. FASEB J. 2015, 29, 4555–4567. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, K.E.; Scott, D.W.; Christoforou, N. Vinculin force-sensitive dynamics at focal adhesions enable effective directed cell migration. Biophys. J. 2018, 114, 1680–1694. [Google Scholar] [CrossRef]
- Izard, T.; Brown, D.T. Mechanisms and functions of vinculin interactions with phospholipids at cell adhesion sites. J. Biol. Chem. 2016, 291, 2548–2555. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ouyang, Y.; Zhong, F. Silencing of ckip-1 promotes tumor proliferation and cell adhesion-mediated drug resistance via regulating akt activity in non-hodgkin’s lymphoma. Oncol. Rep. 2017, 37, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, Z.; Yu, H. Chinese herbal medicine wenxia changfu formula reverses cell adhesion-mediated drug resistance via the integrin β1-pi3k-akt pathway in lung cancer. J. Cancer 2019, 10, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Piska, K.; Koczurkiewicz, P.; Wnuk, D. Synergistic anticancer activity of doxorubicin and piperlongumine on du-145 prostate cancer cells—The involvement of carbonyl reductase 1 inhibition. Chem. Biol. Interact. 2019, 300, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xu, L.; Chen, L.; Sun, B.; Yang, Z.; Lu, K.; Yang, Z. Vinculin expression in non-small cell lung cancer. J. Int. Med. Res. 2020, 48, 1–9. [Google Scholar] [CrossRef]
- Ziegler, W.H.; Liddington, R.C.; Critchley, D.R. The structure and regulation of vinculin. Trends Cell Biol. 2006, 16, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Giaever, I.; Keese, C.R. Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. USA 1991, 88, 7896–7900. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Nguyen, D.; Greve, D.W. Simulation of microelectrode impedance changes due to cell growth. IEEE Sens. J. 2004, 4, 576–583. [Google Scholar] [CrossRef]
- Vyas, R.N.; Li, K.; Wang, B. Modifying randles circuit for analysis of polyoxometalate layer-by-layer films. J. Phys. Chem. B 2010, 114, 15818–15824. [Google Scholar] [CrossRef] [PubMed]
- Schoenbach, K.H.; Hargrave, B.Y.; Joshi, R.P. Bioelectric effects of intense nanosecond pulses. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1088–1109. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Mi, Y.; Li, C. Study of transmembrane potentials on cellular inner and outer membrane—Frequency response model and its filter characteristic simulation. IEEE Trans. Biomed. Eng. 2008, 55, 1792–1799. [Google Scholar] [PubMed]
R’s (Ω) | 41.58 ± 3.71 | 96.43 ± 3.86 | 47.79 ± 3.99 | 76.31 ± 4.19 | 59.37 ± 2.7 | 68.83 ±4.15 | 42.49 ± 1.35 | |
Rcell (Ω) | 124.74 ± 1.74 | 65.54 ± 3.01 | 45.81 ± 2.52 | 98.73 ± 3.53 | 77.47 ± 1.27 | 113.37 ± 5.16 | 89.82 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Kong, J.; Liu, Y.; Xu, Q.; Wang, K.; Huang, D.; Wei, Y.; Chen, W.; Mao, H. The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. Micromachines 2021, 12, 202. https://doi.org/10.3390/mi12020202
Du X, Kong J, Liu Y, Xu Q, Wang K, Huang D, Wei Y, Chen W, Mao H. The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. Micromachines. 2021; 12(2):202. https://doi.org/10.3390/mi12020202
Chicago/Turabian StyleDu, Xiangbin, Jinlong Kong, Yang Liu, Qianmin Xu, Kaiqun Wang, Di Huang, Yan Wei, Weiyi Chen, and Haiyang Mao. 2021. "The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs" Micromachines 12, no. 2: 202. https://doi.org/10.3390/mi12020202
APA StyleDu, X., Kong, J., Liu, Y., Xu, Q., Wang, K., Huang, D., Wei, Y., Chen, W., & Mao, H. (2021). The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. Micromachines, 12(2), 202. https://doi.org/10.3390/mi12020202