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Abstract: The tiny magnetic steel pair (TMSP), composed by two tiny magnetic steel blocks (TMSBs),
is critical for some precision instruments. Incorrect matching of TMSP may result in insufficient
instrument performance. Herein, the matching method of TMSP based on the Kuhn–Munkres
algorithm is proposed. Further, an automatic TMSP matching device is developed. Especially,
an ingenious clamp for multiple constraints of TMSB is presented and a visual/magnetism/force
hybrid control strategy is realized for the safe and efficient manipulation of TMSBs in a magnetic
environment. Moreover, with the TMSBs of a pendulum accelerometer, the matching experiments
are conducted to validate the comprehensive performance. The result of the numerical experiment
shows that the Kuhn–Munkres algorithm-based method is stable and efficient. The results of
measurement and TMSP matching experiments show that the device has good repeatability (<1 mT)
and practicability. The proposed matching method has great application prospect in various matching
and microassembly of TMSPs.

Keywords: tiny magnetic steel pair; Kuhn–Munkres algorithm; matching method; microassembly

1. Introduction

The tiny magnetic steel pair (TMSP), composed by one tiny magnetic steel block
(TMSB) and another TMSB as an opposite pole, is critical for some precision instruments
such as the accelerometer, three-floated gyroscope, small motor etc. [1–3]. The TMSP
function is to generate an even magnetic field and correspondingly apply ampere force on
coil or other objects in an air-gap, inducing them to deflect, translate, keep balance with
external forces etc. [4]. Obviously, the magnetic field is dependent on not only the size
and position of TMSBs, but also the magnetizing parameters. Therefore, to obtain satisfied
TMSP for the followed assembly, the selective TMSP matching from a certain amount of
TMSBs based on magnetic flux density is indispensable [5,6]. In related industrial areas,
most TMSP matching processes are manually operated with precise mechanical fixtures.
The subtle wear of fixtures and the unavoidable finger trembling might seriously affect the
consistency. Moreover, unexpected demagnetization often happens, owing to the personal
error. Therefore, it is urgent to develop an automatic method for TMSP matching.

The generalized process of TMSP matching can be divided into three steps:

1. Data collection. The size and surface magnetic flux density of TMSBs (n-TMSB and
s-TMSB mean the TMSBs as the N-pole and S-pole of an air-gap magnetic field) are
measured and saved.

2. Matching process. According to the surface magnetic flux density of n-TMSBs and
s-TMSBs, those qualified TMSBs are preliminarily screened out and estimated to make
sure of the possibility of TMSPs. As a result, the likely suitable TMSPs will be found
out (here ‘suitable’ means that their air-gap magnetic flux density is high enough).
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3. nResult verification. Based on the estimated combinations, the qualified TMSBs are
assembled into the corresponding magnet bases to form TMSPs. Then, the air-gap
magnetic field in each TMSP is measured to verify the performance.

Although there is no direct report about TMSP matching, some related works exist.
For example, Meyer et al. [7] proposed an automated logistics and storage solution for
TMSBs of permanent magnet motor. This solution improved the traceability of single
TMSBs and enabled to compensate variations of the magnetic properties by selective TMSB
assembly. Arbenz et al. [8] presented an approach to deduce the magnetization of TMSB. By
using the Hall sensor to scan the magnetic field, the TMSB magnetization could be inferred.
Franke [9] presented an assembly solution for magnetized high coercive TSMP, including
an automated TMSB separator and some different grippers. More recently, the patent
proposed by Apple Inc. [10] presented a device for automatic measurement of TMSBs, in
which a precision turntable was used to achieve intermittent feed movement of TMSBs.
Moreover, several Helmholtz coils were used to measure the magnetic flux density of
TMSB and to determine whether the property of TMSB was qualified. But until now, as
far as we know, the complete research on the automatic matching method had not yet
been reported. The main challenges of TMSP matching lie in: Firstly, the suitable method
needs to be developed to predict the magnetic flux density of TMSPs and to optimize its
combination [11,12]. Secondly, the strong magnetic forces might cause demagnetization or
damage of TMSBs due to collision in matching process [13]. Thirdly, the air-gap magnetic
flux density distribution is highly sensitive to assembly accuracy [14,15]. Obviously, if the
TMSB is incorrectly assembled, it will affect the matching performance.

Here, inspired from the Kuhn–Munkres (K-M) algorithm, a novel TMSP matching
method for TMSP is proposed. Additionally, the numerical experiment is performed to
verify the reliability and efficiency of the method. Further, an automatic TMSP matching
device using the matching method is developed too. Especially, an ingenious clamp
for multiple constraints of TMSB and a visual/magnetism/force hybrid control strategy
are realized for the safe and efficient manipulation of TMSBs in a complex magnetic
environment. Finally, utilizing the TMSBs from a type of pendulum accelerometer, the
matching experiments are actually conducted to validate the comprehensive performance.

2. TMSP Matching Method
2.1. Principle of Matching Algorithm

The TMSP matching can be considered the weighted bipartite graph matching problem.
Herein, the K-M algorithm about the optimal matching of the bipartite graph is utilized.
In principle, by giving each vertex a top mark, the algorithm can convert the problem of
maximizing weight matching into continuous searching an augmentation path to make the
bipartite graph [16,17]. By inputting the predicted value of Ba for each combination as the
edge weight, the optimal combination can be obtained. The matching process will not stop
until the number of matched pairs reaches the number of maximum complete matching.
The matching principle for TMSP can be described as shown in Figure 1.

1. Magnetostatics modeling. Through FEM simulation, the distribution of magnetic
flux density in TMSP is calculated. Then, an equation is built up to describe the
influence of magnetic flux densities of s-TMSBs and n-TMSBs (BS and BN) on the
air-gap magnetic flux density (Ba).

2. Weight calculation. BS and BN are measured firstly. Then, the n-TMSBs and s-TMSBs
are numbered as (Si, Nj) respectively for the left vertex and right one of bipartite
graph. Ba(i, j) is calculated by the BSi and BNj, as the weight of edge connected by
each vertex.

3. Vertex assignment. It means that the maximum edge weight (max [Ba(j)]) of all edges
connected to each S vertex on the left is assigned to the top mark (LS). Additionally,
the top mark (LN) of each N vertex on the right is assigned to zero.

4. TMSP matching. The algorithm starts from the vertex S1 on the left to search for the
corresponding vertex and augmented path (N vertex). The guideline of matching is
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to keep only the edges with the same weight Ba(i, j) and the left top mark LSi, and
to meet the requirements of LSi + LNj ≥ Ba(i, j). If one edge is not qualified or the
two edges conflict, then LS of all left vertices of the conflict path is subtracted by a top
mark adjustment d (d = min [Ba(i, j) − ( LSi + LNj)]), and LN of all right vertices is
increased by d. After that, the pairing is performed again, and the augmented path is
searched until the maximum matching number (min [i, j]) is reached.

5. Result verification. According to the matching result, s-TMSB is actually assembled
with n-TMSB to form a TMSP and then Ba is measured to verify it.
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Figure 1. Tiny magnetic steel pair (TMSP) matching method. (a) Diagram; (b) Flow chart.

The complexity of the K-M algorithm for the TMSP matching problem is as follows:
Suppose n = max[i, j], then the number of edges m (the number of all TMSP combi-

nations) is at most n2. When searching for an augmented path in step 4, both deep first
search (DFS) and breath first search (BFS) can be used. The K-M algorithm is based on the
BFS method. By increasing the intermediate array to record the change amount d of the
top mark, the repeated search of the augmented path can be reduced. The complexity of
a BFS operation is O (n), so the maximum complexity of the K-M algorithm applied is O
(n × n2 = n3) [18,19].

2.2. FEM Simulation

The data required for magnetostatics modeling is obtained by FEM. We choose the
TMSP framework from a pendulum accelerometer as shown in Figure 2. When the accel-
eration (a) is input into the pendulum accelerometer, relative displacements (deflection
angle θ) of the inertial pendulum will appear. Then, the current I being proportional to θ is
transmitted to the torque coil connected to the pendulum by the sensor and corresponding
circuit. In the air-gap magnetic field (B), a balance moment Mf is generated to balance the
inertial pendulum energized coil. It means that the air-gap magnetic field (B) can directly
affect the output of the pendulum accelerometer [20].



Micromachines 2021, 12, 316 4 of 10

Micromachines 2021, 12, x  4 of 10 
 

 

the inertial pendulum energized coil. It means that the air-gap magnetic field (B) can di-

rectly affect the output of the pendulum accelerometer [20]. 

Air-gapn-TMSB s-TMSB

Magnet base

13
mm

Torque coil

Pendulum

a

Y

X

Z

 

Figure 2. Schematic drawing of pendulum accelerometer. 

The TMSP is mainly composed of a s-TMSB and a base with a glued n-TMSB (N-pole 

of the n-TMSB and S-pole of the s-TMSB are set oppositely, and magnetized direction is 

Y-direction). With COMSOL software (COMSOL Inc. Stockholm, Sweden), the simulation 

of magnetic field distribution is carried out. Related parameters are shown in Table 1. 

Table 1. Parameters for simulation. 

Object Material 
Relative Permea-

bility 

Remanence 

(mT) 
L × W × H (mm) 

s-TMSB SmCo alloy 1.03 806~896 8 × 4 × 4.8 

n-TMSB NdFeB alloy 1.05 469~514 8 × 4 × 4.8 (Chamfer) 

Magnet base Soft magnetic alloy 4000 0 - 

Air Air 1 0 (40, 40, 40) 

The magnetic flux density distribution is shown in Figure 3a. The influence of Br-S 

and Br-N on Ba (point in the middle) is shown in Figure 3b. Ba is basically increased with 

the increase of the remanence of the two TMSBs (Br-S and Br-N) that can be described by 

Equation (1). For this TMSP of accelerometer, a is 0.502 and b is 0.192: 

𝐵𝑎 = 𝑎𝐵𝑟−𝑆 + 𝑏𝐵𝑟−𝑁. (1) 

Since here the TMSB is a rectangular permanent magnet, the relationship between 

the remanence Br and the magnetic flux density B at certain distance x from the magnet 

surface in a magnetized direction can be described [21,22]: 

𝐵𝑟 =
𝜋

𝑡𝑎𝑛−1(
𝐿𝐻

2𝑥√𝐿2 + 𝐻2 + 4𝑥2
) − 𝑡𝑎𝑛−1(

𝐿𝐻

2(𝑥 + 𝑊)√𝐿2 + 𝐻2 + 4(𝑥 + 𝑊)2
)

𝐵 = 𝛾𝐵, 
(2) 

where L, H, W are the length, height, and width of magnet, in which W is in the magnet-

ized direction. For this same kind of TMSB, α is fixed to 2.939. Thus, a’ = γ ⋅ a = 1.688, 

b’ = γ ⋅ b = 0.645 in Equation (3). The equation has been verified by Gauss meter and the 

deviation is less than 1.8%: 

𝐵𝑎 = 𝑎’𝐵𝑆 + 𝑏’𝐵𝑁. (3) 

 

Figure 2. Schematic drawing of pendulum accelerometer.

The TMSP is mainly composed of a s-TMSB and a base with a glued n-TMSB (N-pole
of the n-TMSB and S-pole of the s-TMSB are set oppositely, and magnetized direction is
Y-direction). With COMSOL software (COMSOL Inc. Stockholm, Sweden), the simulation
of magnetic field distribution is carried out. Related parameters are shown in Table 1.

Table 1. Parameters for simulation.

Object Material Relative
Permeability

Remanence
(mT) L ×W × H (mm)

s-TMSB SmCo alloy 1.03 806~896 8 × 4 × 4.8

n-TMSB NdFeB alloy 1.05 469~514 8 × 4 × 4.8
(Chamfer)

Magnet base Soft magnetic alloy 4000 0 -
Air Air 1 0 (40, 40, 40)

The magnetic flux density distribution is shown in Figure 3a. The influence of Br-S
and Br-N on Ba (point in the middle) is shown in Figure 3b. Ba is basically increased with
the increase of the remanence of the two TMSBs (Br-S and Br-N) that can be described by
Equation (1). For this TMSP of accelerometer, a is 0.502 and b is 0.192:

Ba = aBr−S + bBr−N . (1)

Since here the TMSB is a rectangular permanent magnet, the relationship between the
remanence Br and the magnetic flux density B at certain distance x from the magnet surface
in a magnetized direction can be described [21,22]:

Br =
π

tan−1( LH
2x
√

L2+H2+4x2 )− tan−1( LH
2(x+W)

√
L2+H2+4(x+W)2 )

B = γB, (2)

where L, H, W are the length, height, and width of magnet, in which W is in the magnetized
direction. For this same kind of TMSB, α is fixed to 2.939. Thus, a′ = γ · a = 1.688,
b′ = γ · b = 0.645 in Equation (3). The equation has been verified by Gauss meter and the
deviation is less than 1.8%:

Ba = a′BS + b′BN . (3)
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3. TMSP Matching Device
3.1. Device Structure

An automatic device for TMSP matching is developed as shown in Figure 4, which is
composed of the TMSB fixture module, the single-TMSB measurement module, the TMSP
matching module, and the microscopic imaging module, being installed on a 3D linear
precision motorized stage (Repeatability: ±1 µm). These parts that directly contact with
TMSBs and magnet bases are made of brass to avoid magnetization. Owing to modular
design, the device can be easily modified for various TMSBs.
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1. The TMSB fixture module is used to fix the magnet bases and s-TMSBs. At present, it
is composed of five fixtures. Every s-TMSB is placed in one socket in which the space
on its left and right is kept for the TMSB clamp fingers.

2. The single-TMSB measurement module consists of two Hall probes (Resolution: 10 nT,
range: 30 T), air slide table, and corresponding connecting parts, which are used to
measure the magnetic flux density of the n-TMSBs and the s-TMSBs, respectively.

3. The microscopic imaging module (1×, CCD resolution: 3840 × 2748, Pixel size:
1.67 µm) is used to measure the size and position of TMSBs and magnet bases.
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4. The TMSP matching module consists of the TMSB clamp, air gripper, Hall probe,
flexible mechanism, micro-force sensor, and connecting parts as shown in Figure 5.
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The TMSB clamp is used to clamp TMSB. It is composed of two fingers driven by an
air gripper. The structure of the finger hook is used to prevent the clamped TMSB from
falling off by magnetic force induced by other TMSBs. In the clamping state, TMSB is
clamped by the pressure of the side clamping surface on the side surface of the clamp. The
lower surface of the finger hook structure contacts the lower surface of TMSB.

A micro-force sensor is used to detect the force in the matching process to judge the
contact state between the clamp and TMSB. It is connected to the air gripper through a
U-shaped leaf spring. According to the experimental result, the threshold is set to 0.2 N.
With the information of contact state, the excessive squeeze in Z-direction on the clamp and
TMSB can be avoided. The front end of the clamp is equipped with a Hall probe, which
can measure in situ the air-gap magnetic flux density (Ba) in TMSP.

Complete process of TMSP matching with the device is as follows:

1. TMSB size and position measurement. The size and position are measured via the
microscopic imaging module. These parts with qualified size will be put into a list.

2. TMSB magnetic property measurement and matching prediction. The single-TMSB
measurement module is driven to measure the magnetic flux density BS and BN in
the list respectively. Then, the above-mentioned matching method is used to predict
and give the list of matching result.

3. TMSP matching. The TMSP matching module is driven to the top of first s-TMSB in
the matching list, and then the clamp is controlled to the position and pick up the s-
TMSB. Then, the clamped s-TMSB is moved to the matching position and temporarily
fixed on the magnet base. Additionally, Ba of TMSP is measured by the Hall probe in
front of the TMSB clamp.

With the magnetic flux density Ba within the required qualified range, the clamp will
release the s-TMSB and keep it on the magnet base. Otherwise, the s-TMSB will be moved
to the next matching position of magnet base. If the s-TMSB cannot be matched after whole
traversal, it will be put back to the initial position.
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3.2. Control Strategy for TMSB Positioning Task

To make the safe and efficient positioning of TMSB in a complex magnetic environment,
a visual/magnetism/force hybrid control strategy is proposed as shown in Figure 6. After
the TMSP matching module is driven to the top of the first s-TMSB in list, the clamp is
controlled to the position and then picks up the s-TMSB. The spatial positions of s-TMSBs
and magnet bases are obtained via the microscopic imaging module. According to those
photos, the coarse positioning of s-TMSB and the magnet base is realized. Using force
servo and magnetic servo, the fine positioning is completed by controlling the feedback
value of contact force and magnetic flux density.
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Figure 6. Control strategy for tiny magnetic steel block (TMSB) positioning task.

The micro-force sensor is integrated to obtain the contact force during the lowering
of the clamp to determine whether it has reached the expected position. Once the contact
force exceeds a given threshold (0.2 N), the 3D linear motorized stage stops the Z-direction
displacement to ensure the safety of the Hall probe and the TMSBs. Then, the clamp is
driven close to the TMSB along the negative Y-direction.

Once the magnetic flux density change measured by the Gauss meter is less than
a threshold (1 mT) during the process, the 3D linear stage stops and the TMSB is fully
positioned. After that, the air gripper is closed to clamp the TMSB. Then, the clamped
s-TMSB is moved to the matching position of the magnet base.

4. Experiments

The TMSB measurement experiment, numerical experiment, and TMSP matching
experiment are carried out. Before the experiments, the Gauss meter and the Hall probes
are checked by professional verification organization (measuring range: 0.04–2.00 T, uncer-
tainty: Urel = 2 × 10–5, k = 2).

The magnetic flux densities of TMSBs are measured with the visual/magnetism/force
hybrid control strategy. Each TMSB is measured five times. The results of two s-TMSBs
and two n-TMSBs are shown in Table 2. The average time for each TMSB measurement is
~15 s. The result shows that the device presents good repeatability (<1 mT) and the control
strategy can guarantee the consistency.
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Table 2. Measurement results.

Number BS-1 (mT) BS-2 (mT) BN-1 (mT) BN-2 (mT)

1 265.92 261.81 152.28 145.58
2 265.92 261.81 152.28 145.58
3 265.37 260.26 152.80 145.37
4 265.92 261.81 152.28 145.58
5 265.37 260.26 152.80 145.37

Standard deviation 0.2694 0.7593 0.2547 0.1029

To further verify reliability and efficiency of the matching method, the numerical
experiment is carried out with MATLAB. Different combinations of BS and BN are carefully
selected (BS range: 220~275 mT, BN range: 130~170 mT), and data are combined to iterate
1500 pairs. Generally, the higher average Ba of all matched TMSP in qualified range
(490~550 mT) means that the matched combinations are more appropriate. As shown in
Figure 7, the average value of air-gap magnetic flux density (Ba) by the K-M algorithm-
based method can be basically stabilized at about 515 mT. When the number of matched
pairs is small (<500), the running time is within 5 s. These results show that the method
presents an advantage in multi-group matching, and is efficient and stable for the matching
of an amount of TMSBs in production.
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Figure 7. Numerical experiment result.

By using the developed device, five sets of s-TMSBs and magnet bases are installed to
match for the experiment. The actual matching results are shown in Table 3. The qualified
range of BS here is 240~270 mT. A negative BS means that the TMSB is installed in the
wrong direction, and a zero value means that no TMSB is installed in this position. The
qualified range of BN is 140~155 mT, and the qualified range of Ba is 490~550 mT. As shown
in Table 3, Ba matched by this device is within the required qualified range, and Ba is equal
to 525 mT. These results show that the device can accurately match more suitable TMSPs
from multiple sets of TMSBs and can successfully complete the microassembly of TMSB.
The matching method and device can be modified for various TMSBs, which has great
prospect in various related-magnetism microassembly tasks.
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Table 3. TMSP matching results.

Group Number BS (mT) BN (mT) Method Prediction
Ba Result (mT)

Actual Measurement
Ba Result (mT) Ba (mT)

1

1 265.37 162.13
(S1, N5, 546.67)
(S2, N3, 525.55)
(S3, N2, 537.83)
(S4, N1, 525.70)

(S1, N5, 537.67)
(S2, N3, 515.56)
(S3, N2, 536.83)
(S4, N1, 524.66)

528.69
2 251.02 152.8
3 260.26 157.94
4 249.48 145.37
5 −213.78 153.14

2

1 264.59 142.45 (S1, N5, 502.67) (S1, N5, 520.91)

527.55
2 252.25 146.37 (S2, N4, 516.18) (S2, N4, 524.84)
3 266.17 153.97 (S3, N3, 525.34) (S3, N3, 528.47)
4 251.21 148.39 (S4, N2, 512.73) (S4, N2, 538.69)
5 262.68 152.64 (S5, N1, 506.75) (S5, N1, 524.84)

3

1 231.09 156.34 (S1, N4, 492.97) (S1, N4, 514.76)

524.8
2 234.37 145.95 (S2, N5, 492.82) (S2, N5, 504.09)
3 256.90 150.65 (S3, N3, 530.77) (S3, N3, 542.70)
4 245.61 159.55 (S4, N2, 508.69) (S4, N2, 526.49)
5 253.95 150.76 (S5, N1, 529.46) (S5, N1, 531.96)

5. Conclusions

In this paper, a Kuhn–Munkres algorithm-based method and an automatic TMSP
matching device are proposed to selectively match TMSPs from TMSBs. Especially, an
ingenious clamp for multiple constraints of TMSB and a visual/magnetism/force hybrid
control strategy are realized for safe and efficient manipulation of TMSBs in a magnetic
environment. The result of the numerical experiment shows the reliability and efficiency of
the Kuhn–Munkres algorithm-based matching method. The results of the measurement
experiment and TMSP matching experiment show that the device has good repeatability
(<1 mT) and practicability. The proposed matching method and automated device has
great prospect in various magnetism-related microassembly tasks.
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