Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels
Abstract
:1. Introduction
2. An Overview of Image Analysis Methods for Microfluidic Blood Phenomena Quantification
2.1. Image Segmentation and Thresholding
2.2. Blood Cell Image Segmentation and Tracking
3. ImageJ Manual Plugins
4. Automatic Image Analysis Methods
4.1. Red blood Cells Trajectory in a Glass Capillary
4.1.1. Set-Up and Working Fluids
4.1.2. Manual Method
- x [µm]: The calibrated x coordinate of the point. The pixel width and unit of length used here can be set as described above.
- y [µm]: The calibrated y coordinate of the point. The pixel height and unit of length used here can be set as described above.
4.1.3. Automatic Method
- Preprocessing is executed in order to remove noise and correct the brightness, and to enhance specific features of the image for increasing the robustness of the tracking procedure;
- A level of threshold is applied, in which it is possible to divide the image into different parts. The result is a binary image with a clear division between the background and objects of interest;
- The extraction procedure is done to obtain the objects’ characteristics necessary for the study.
4.1.4. Results
4.2. Cell-Free Layer Thickness in a Bifurcation and Confluence Microchannel
4.2.1. Set-Up and Working Fluids
4.2.2. Manual Methods
- Average intensity projection outputs an image where each pixel stores the average intensity over all images in the stack at the corresponding pixel location (cf. Figure 10a);
- Sum Slices creates a real image that is the sum of the slices in the stack (Figure 10b).
- Standard Deviation creates a real image containing the standard deviation of the slices (cf. Figure 11a);
- Median creates an image containing the median value of the slices (cf. Figure 11b).
- Minimum intensity projection (Min) creates an output image where each of the pixels contains the minimum value over all images in the stack at the particular pixel location (cf. Figure 12a).
- Maximum intensity projection (Max) creates an output image where each of the pixels contains the maximum value over all images in the stack at the particular pixel location (cf. Figure 12b).
4.2.3. Automatic Method
- Preprocessing to smooth the image and eliminate the artifacts;
- Evaluation of the intensity of all image sequences;
- Apply the binarization to the resulting image;
- Select the area to obtain the required data;
4.2.4. Results
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Lima, R.; Ishikawa, T.; Imai, Y.; Takeda, M.; Wada, S.; Yamaguchi, T. Measurement of Individual Red Blood Cell Motions Under High Hematocrit Conditions Using a Confocal Micro-PTV System. Ann. Biomed. Eng. 2009, 37, 1546–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, R.; Saadatmand, M.; Ishikawa, T. Microfluidic Devices Based on Biomechanics. In Integrated Nano-Biomechanics; Yamaguchi, T., Ishikawa, T., Imai, Y., Eds.; Micro and Nano Technologies; Elsevier: Boston, MA, USA, 2018; pp. 217–263. ISBN 978-0-323-38944-0. [Google Scholar]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, H.L.; Turitto, V.T. Rheological Aspects of Thrombosis and Haemostasis: Basic Principles and Applications. Thromb. Haemost. 1986, 55, 415–435. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.O.; Sousa, P.C.; Gaspar, J.; Bañobre-López, M.; Lima, R.; Minas, G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 2020, 16, e2003517. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.; Ishikawa, T.; Imai, Y.; Yamaguchi, T. Blood Flow Behavior in Microchannels: Past, Current and Future Trends. In Single and Two-Phase Flows on Chemical and Biomedical Engineering; Lima, R., Ishikawa, T., Imai, Y., Yamaguchi, T., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 513–547. ISBN 9781608053476. [Google Scholar]
- Brunetti, A.; Carnimeo, L.; Trotta, G.F.; Bevilacqua, V. Computer-assisted frameworks for classification of liver, breast and blood neoplasias via neural networks: A survey based on medical images. Neurocomputing 2019, 335, 274–298. [Google Scholar] [CrossRef]
- Voorneveld, J.; Saaid, H.; Schinkel, C.; Radeljic, N.; Lippe, B.; Gijsen, F.J.; Van Der Steen, A.F.; De Jong, N.; Claessens, T.; Vos, H.J.; et al. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. Ultrasound Med. Biol. 2020, 46, 805–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyrnes, S.A.; Fadnes, S.; Wigen, M.S.; Mertens, L.; Lovstakken, L. Blood Speckle-Tracking Based on High–Frame Rate Ultrasound Imaging in Pediatric Cardiology. J. Am. Soc. Echocardiogr. 2020, 33, 493–503.e5. [Google Scholar] [CrossRef]
- Nakano, A.; Sugii, Y.; Minamiyama, M.; Niimi, H. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV). Clin. Hemorheol. Microcirc. 2003, 29, 445–455. [Google Scholar] [PubMed]
- Machin, M.; Santomaso, A.; Mazzucato, M.; Cozzi, M.R.; Battiston, M.; De Marco, L.; Canu, P. Single Particle Tracking Across Sequences of Microscopical Images: Application to Platelet Adhesion Under Flow. Ann. Biomed. Eng. 2006, 34, 833–846. [Google Scholar] [CrossRef]
- Bento, D.; Rodrigues, R.O.; Faustino, V.; Pinho, D.; Fernandes, C.S.; Pereira, A.I.; Garcia, V.; Miranda, J.M.; Lima, R. Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements. Micromachines 2018, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.; Wada, S.; Tsubota, K.-I.; Yamaguchi, T. Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol. 2006, 17, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Qian, M.; Yan, L.; Yu, W.; Jiang, B.; Jin, Q.; Wang, Y.; Shandas, R.; Liu, X.; Zheng, H. Real-Time Texture Analysis for Identifying Optimum Microbubble Concentration in 2-D Ultrasonic Particle Image Velocimetry. Ultrasound Med. Biol. 2011, 37, 1280–1291. [Google Scholar] [CrossRef] [Green Version]
- Voorneveld, J.; Keijzer, L.B.; Strachinaru, M.; Bowen, D.J.; Goei, J.S.; Ten Cate, F.T.; Van Der Steen, A.F.; De Jong, N.; Vos, H.J.; Van Den Bosch, A.E.; et al. High-Frame-Rate Echo-Particle Image Velocimetry Can Measure the High-Velocity Diastolic Flow Patterns. Circ. Cardiovasc. Imaging 2019, 12, e008856. [Google Scholar] [CrossRef]
- Gates, P.E.; Gurung, A.; Mazzaro, L.; Aizawa, K.; Elyas, S.; Strain, W.D.; Shore, A.C.; Shandas, R. Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry. Ultrasound Med. Biol. 2018, 44, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Lu, W.-Q. Blood flow velocity and ultra-filtration velocity measured by CT imaging system inside a densely bundled hollow fiber dialyzer. Int. J. Heat Mass Transf. 2010, 53, 1844–1850. [Google Scholar] [CrossRef]
- Onwuzu, S.; Ugwu, A.; Mbah, G.; Elo, I. Measuring wall shear stress distribution in the carotid artery in an African population: Computational fluid dynamics versus ultrasound doppler velocimetry. Radiography 2020. [Google Scholar] [CrossRef] [PubMed]
- Moreau, H.D.; Blanch-Mercader, C.; Attia, R.; Maurin, M.; Alraies, Z.; Sanséau, D.; Malbec, O.; Delgado, M.-G.; Bousso, P.; Joanny, J.-F.; et al. Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration. Dev. Cell 2019, 49, 171–188.e5. [Google Scholar] [CrossRef]
- Lima, R.; Ishikawa, T.; Imai, Y.; Takeda, M.; Wada, S.; Yamaguchi, T. Radial dispersion of red blood cells in blood flowing through glass capillaries: The role of hematocrit and geometry. J. Biomech. 2008, 41, 2188–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, R.; Oliveira, M.S.N.; Ishikawa, T.; Kaji, H.; Tanaka, S.; Nishizawa, M.; Yamaguchi, T. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication 2009, 1, 035005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadatmand, M.; Ishikawa, T.; Matsuki, N.; Abdekhodaie, M.J.; Imai, Y.; Ueno, H.; Yamaguchi, T. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech. 2011, 44, 170–175. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ishikawa, T.; Lima, R.; Matsuki, N.; Imai, Y.; Kaji, H.; Nishizawa, M.; Yamaguchi, T. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J. Biomech. 2009, 42, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Yaginuma, T.; Oliveira, M.; Lima, R.; Ishikawa, T.; Yamaguchi, T. Red Blood Cell Deformation in Flows through a PDMS Hyperbolic Microchannel. In Proceedings of the Microtech Conference & Expo 2011, TechConnect World 2011, Boston, MA, USA, 14–16 June 2011. [Google Scholar]
- Leble, V.; Fernandes, C.; Dias, R.; Lima, R.; Ishikawa, T.; Imai, Y.; Yamaguchi, T. Flow visualization of trace particles and red blood cells in a microchannel with a diverging and converging bifurcation. In Computational Vision and Medical Image Processing: VipIMAGE 2011, Proceedings of the 3rd ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, Olhão, Portugal, 12–14 October 2011; CRC Press: Boca Raton, FL, USA, 2012; pp. 209–211. [Google Scholar]
- Di Ruberto, C.; Loddo, A.; Putzu, L. Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput. Biol. Med. 2020, 116, 103530. [Google Scholar] [CrossRef]
- The MathWorks. MatLab; The MathWorks: Natick, MA, USA, 2010. [Google Scholar]
- Carter, B.C.; Shubeita, G.T.; Gross, S.P. Tracking single particles: A user-friendly quantitative evaluation. Phys. Biol. 2005, 2, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Crocker, J.C.; Grier, D.G. Methods of Digital Video Microscopy for Colloidal Studies. J. Colloid Interface Sci. 1996, 179, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Eddins, S.L.; Gonzalez, R.C.; Woods, R.E. Digital Image Processing Using MATLAB; Gatesmark Publishing: Knoxville, TN, USA, 2002; ISBN 978-0-9820854-0-0. [Google Scholar]
- Monteiro, F. Region-Based Spatial and Temporal Image Segmentation. Ph.D. Dissertation, Universidade do Porto, Porto, Portugal, 2008. [Google Scholar]
- Chang, H.-H.; Valentino, D.J. An electrostatic deformable model for medical image segmentation. Comput. Med. Imaging Graph. 2008, 32, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.A.; Bin Deris, S.; Zaki, N. Research Review for Digital Image Segmentation Techniques. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 99–106. [Google Scholar] [CrossRef]
- Shashi, P.; Suchithra, R. Review Study on Digital Image Processing and Segmentation. Am. J. Comput. Sci. Technol. 2019, 2, 68. [Google Scholar] [CrossRef]
- Tripathy, B.; Mittal, D. Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis. Appl. Soft Comput. 2016, 46, 886–923. [Google Scholar] [CrossRef]
- Pham, D.L.; Xu, C.; Prince, J.L. Current Methods in Medical Image Segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Anilkumar, K.; Manoj, V.; Sagi, T. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern. Biomed. Eng. 2020, 40, 1406–1420. [Google Scholar] [CrossRef]
- Sharif, H. A numerical approach for tracking unknown number of individual targets in videos. Digit. Signal Process. 2016, 57, 106–127. [Google Scholar] [CrossRef]
- Rogers, S.S.; Waigh, T.A.; Zhao, X.; Lu, J.R. Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight. Phys. Biol. 2007, 4, 220–227. [Google Scholar] [CrossRef]
- Emami, N.; Sedaei, Z.; Ferdousi, R. Computerized cell tracking: Current methods, tools and challenges. Vis. Inform. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Rangayyan, R.M. Biomedical Image Analysis. Biomedical Engineering Series; Calgary, U., Ed.; University of Calgary: Calgary, AB, Canada, 2005. [Google Scholar]
- Adollah, R.; Mashor, M.Y.; Mohd Nasir, N.F.; Rosline, H.; Mahsin, H.; Adilah, H. Blood cell image segmentation: A review. IFMBE Proc. 2008, 21, 141–144. [Google Scholar] [CrossRef]
- Zamani, F.; Safabakhsh, R. An unsupervised GVF snake approach for white blood cell segmentation based on nucleus. In Proceedings of the 2006 8th international Conference on Signal Processing, Guilin, China, 16–20 November 2006; Volume 2, pp. 1–4. [Google Scholar]
- Montseny, E.; Sobrevilla, P.; Romani, S. A fuzzy approach to white blood cells segmentation in color bone marrow images. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 25–29 July 2004; Volume 1, pp. 173–178. [Google Scholar]
- Jiang, K.; Liao, Q.-M.; Dai, S.-Y. A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, Xi’an, China, 5 November 2003; Volume 5, pp. 2820–2825. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, P.; Zhou, Y.; Olivier, C. A novel color image segmentation method and its application to white blood cell image analysis. In Proceedings of the 2006 8th international Conference on Signal Processing, Guilin, China, 16–20 November 2006; Volume 2. [Google Scholar]
- Kumar, R.S.; Verma, A.; Singh, J. Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entrophy. Int. J. Signal Process. 2007, 1, 1633–1641. [Google Scholar]
- Huang, D.-C.; Hung, K.-D.; Chan, Y.-K. A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J. Syst. Softw. 2012, 85, 2104–2118. [Google Scholar] [CrossRef]
- Willenbrock, F.; Zicha, D.; Hoppe, A.; Hogg, N. Novel Automated Tracking Analysis of Particles Subjected to Shear Flow: Kindlin-3 Role in B Cells. Biophys. J. 2013, 105, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- How, K.; Bin, A.; Siong, N.; Soo, K. Red Blood Cell Segmentation Utilizing Various Image Segmentation Techniques. In Proceedings of the International Conference on Man-Machine Systems, Langkawi, Malaysia, 15–16 September 2006. [Google Scholar]
- Wang, M.; Zhou, X.; Li, F.; Huckins, J.; King, R.W.; Wong, S.T. Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 65–68. [Google Scholar]
- Li, Q.; Wang, Y.; Liu, H.; Wang, J.; Guo, F. A combined spatial-spectral method for automated white blood cells segmentation. Opt. Laser Technol. 2013, 54, 225–231. [Google Scholar] [CrossRef]
- Pan, C.; Park, D.S.; Yoon, S.; Yang, J.C. Leukocyte image segmentation using simulated visual attention. Expert Syst. Appl. 2012, 39, 7479–7494. [Google Scholar] [CrossRef]
- Sadeghian, F.; Seman, Z.; Ramli, A.R.; Kahar, B.H.A.; Saripan, M.-I. A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing. Biol. Proced. Online 2009, 11, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, N.; Cooper, J. Segmentation and border identification of cells in images of peripheral blood smear slides. Conf. Res. Pract. Inf. Technol. Ser. 2007, 62, 161–169. [Google Scholar]
- Ongun, G.; Halici, U.; Leblebicioglu, K.; Atalay, V.; Beksac, M.; Beksac, S. Feature extraction and classification of blood cells for an automated differential blood count system. In Proceedings of the IJCNN’01. International Joint Conference on Neural Networks, Washington, DC, USA, 15–19 July 2001; Volume 4, pp. 2461–2466. [Google Scholar]
- Al-Dulaimi, K.; Tomeo-Reyes, I.; Banks, J.; Chandran, V. Evaluation and benchmarking of level set-based three forces via geometric active contours for segmentation of white blood cell nuclei shape. Comput. Biol. Med. 2020, 116, 103568. [Google Scholar] [CrossRef] [PubMed]
- Maitra, M.; Gupta, R.K.; Mukherjee, M. Detection and Counting of Red Blood Cells in Blood Cell Images using Hough Transform. Int. J. Comput. Appl. 2012, 53, 13–17. [Google Scholar] [CrossRef]
- Banik, P.P.; Saha, R.; Kim, K.-D. An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell. Expert Syst. Appl. 2020, 149, 113211. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Masamoto, K.; Ito, H.; Kanno, I. Image-based vessel-by-vessel analysis for red blood cell and plasma dynamics with automatic segmentation. Microvasc. Res. 2012, 84, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A Survey. ACM Comput. Surv. 2006, 38, 13. [Google Scholar] [CrossRef]
- Miura, K. Tracking Movement in Cell Biology. Adv. Biochem. Eng. Biotechnol. 2005, 95, 267–295. [Google Scholar] [CrossRef]
- Dobbe, J.G.G.; Streekstra, G.J.; Atasever, B.; Van Zijderveld, R.; Ince, C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med. Biol. Eng. Comput. 2008, 46, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.S.; Khan, T.; Hussain, S.; Mahmood, R.; El-Ashram, S.; Abbasi, R.; Luo, B. Cell Recognition of Microscopy Images of TPEF (Two Photon Excited Florescence) Probes. Procedia Comput. Sci. 2019, 147, 77–83. [Google Scholar] [CrossRef]
- Aly, A.A.; Bin Deris, S.; Zaki, N. A New Algorithm for Cell Tracking Technique. Adv. Comput. Int. J. 2011, 2, 13–20. [Google Scholar] [CrossRef]
- Pan, Y.; Xia, Y.; Zhou, T.; Fulham, M. Cell image segmentation using bacterial foraging optimization. Appl. Soft Comput. 2017, 58, 770–782. [Google Scholar] [CrossRef]
- Möller, M.; Burger, M.; Dieterich, P.; Schwab, A. A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities. J. Vis. Commun. Image Represent. 2014, 25, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Kirisits, C.; Lang, L.F.; Scherzer, O. Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy Data. In Scale Space and Variational Methods in Computer Vision; Kuijper, A., Bredies, K., Pock, T., Bischof, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7893. [Google Scholar] [CrossRef] [Green Version]
- Niazi, E.; McDonald, J.G.; Fenech, M. An automated method for size and velocity distribution measurement in a particle-laden flow. Adv. Eng. Softw. 2019, 134, 10–21. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, W.; Yoon, G.Y.; Lee, S.J. Deep Learning-Based Super-resolution Ultrasound Speckle Tracking Velocimetry. Ultrasound Med. Biol. 2020, 46, 598–609. [Google Scholar] [CrossRef]
- Carboni, E.J.; Bognet, B.H.; Bouchillon, G.M.; Kadilak, A.L.; Shor, L.M.; Ward, M.D.; Ma, A.W. Direct Tracking of Particles and Quantification of Margination in Blood Flow. Biophys. J. 2016, 111, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Varga, L.; Kovács, A.; Grósz, T.; Thury, G.; Hadarits, F.; Dégi, R.; Dombi, J.; Dégi, R. Automatic segmentation of hyperreflective foci in OCT images. Comput. Methods Programs Biomed. 2019, 178, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, Y.; Wang, C.; Qu, Z.; Wang, F.; Syeda-Mahmood, T. Complex local phase based subjective surfaces (CLAPSS) and its application to DIC red blood cell image segmentation. Neurocomputing 2013, 99, 98–110. [Google Scholar] [CrossRef]
- Siegmund, B.J.; Kasten, A.; Kühn, J.-P.; Winter, K.; Grüttner, C.; Frerich, B. MRI-tracking of transplanted human ASC in a SCID mouse model. J. Magn. Magn. Mater. 2017, 427, 151–155. [Google Scholar] [CrossRef]
- Muller, R.; Stranik, O.; Schlenk, F.; Werner, S.; Malsch, D.; Fischer, D.; Fritzsche, W. Optical detection of nanoparticle agglomeration in a living system under the influence of a magnetic field. J. Magn. Magn. Mater. 2015, 380, 61–65. [Google Scholar] [CrossRef]
- Kucukal, E.; Man, Y.; Hill, A.; Liu, S.; Bode, A.; An, R.; Kadambi, J.; Little, J.A.; Gurkan, U.A. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. Am. J. Hematol. 2020, 95, 1246–1256. [Google Scholar] [CrossRef]
- Kucukal, E.; Man, Y.; Gurkan, U.A.; Schmidt, B.E. Blood Flow Velocimetry in a Microchannel during Coagulation Using PIV and wOFV. In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, Virtual, Online, 16–19 November 2020. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–41. [Google Scholar] [CrossRef]
- Bento, D.; Pereira, A.I.; Lima, J.; Miranda, J.M.; Lima, R. Cell-free layer measurements ofin vitroblood flow in a microfluidic network: An automatic and manual approach. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 629–637. [Google Scholar] [CrossRef]
- Bento, D.; Lopes, S.; Maia, I.; Lima, R.; Miranda, J.M. Bubbles Moving in Blood Flow in a Microchannel Network: The Effect on the Local Hematocrit. Micromachines 2020, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- Sbalzarini, I.; Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 2005, 151, 182–195. [Google Scholar] [CrossRef]
- Pinho, D.; Rodrigues, R.O.; Faustino, V.; Yaginuma, T.; Exposto, J.; Lima, R. Red blood cells radial dispersion in blood flowing through microchannels: The role of temperature. J. Biomech. 2016, 49, 2293–2298. [Google Scholar] [CrossRef]
- Lima, R. Analysis of the Blood Flow Behavior through Microchannels by a Confocal Micro-PIV/PTV System. Ph.D. Thesis, Tohoku University, Sendai, Japan, 2007; pp. 1–215. [Google Scholar]
- Meijering, E.; Smal, I.; Danuser, G. Tracking in molecular bioimaging. IEEE Signal Process. Mag. 2006, 23, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Barron, J.L.; Thacker, N.A. Tutorial: Computing 2D and 3D Optical Flow; Imaging Science and Biomedical Engineering Division, Medical School, University of Manchester: Manchester, UK, 2005; pp. 1–12. [Google Scholar]
Reference, Year | Goal | Technical | Conclusion |
---|---|---|---|
[45], 2003 | White blood cell (WBC) segmentation | Scale-space filtering and watershed clustering | Extracts the WBC region; The HSV space is better than the RGB space due to its low correlation. |
[47], 2007 | Color image segmentation | Using RGB space as the standard processing space: (1) Non-exclusive RGB segmentation. (2) Exclusive RGB segmentation. | Color images provide a better description of a scene as compared to grayscale images |
[54], 2009 | WBC segmentation: to separate the nucleus and cytoplasm | It is based on the morphological analysis and the pixel intensity threshold, respectively. | The method is able to yield 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. |
[60], 2012 | To quantify the perturbation-induced changes of the RBC and plasma passages in the individual vessels. | The image-based analytical method for time-lapse images of RBC and plasma dynamics with automatic segmentation | Arterial tones and parenchymal blood flow can be individually coordinated. |
[52], 2013 | To segment the nuclei and cytoplasm of WBCs | It is based on the pixel-wise ISAM segmentation algorithm | the accuracy of the proposed algorithm is 91.06% (nuclei) and 85.59% (cytoplasm) |
[67], 2014 | Cell tracking | Topology preservation techniques | The method has good accuracy |
[71], 2016 | Direct particle tracking | Algorithm developed in MATLAB | Results obtained confirm experimental results |
[66], 2017 | Optimize traditional edge detection | Edge detection algorithm based on bacterial liner | Identifies boundaries more effectively and provides more accurate image segmentation |
[69], 2019 | Determine particle velocity and size distributions of large groups of particles by video-microscopic systems. | Open-source computational implementation with MATLAB | It allows the automatic tracking of any fluid with particles, classifies the particles according to their size and calculates the speed. |
[70], 2020 | Particle tracking | The method is based on a convolutional neural network and deep ultrasound localization microscopy | Its robust, fast and accurate RBC localization, compared with other ULM techniques |
[76], 2020 | In vitro assessment of whole blood viscosity (WBV) and RBC adhesion | Micro-PIV | WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD. |
[77], 2021 | Measurements of the velocity of whole blood flow in a microchannel during coagulation | PIV and wavelet-based optical flow velocimetry (wOFV) | The high-resolution wOFV results yield highly detailed information regarding thrombus formation and corresponding flow evolution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, V.; Gonçalves, I.M.; Souza, A.; Souza, M.S.; Bento, D.; Ribeiro, J.E.; Lima, R.; Pinho, D. Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels. Micromachines 2021, 12, 317. https://doi.org/10.3390/mi12030317
Carvalho V, Gonçalves IM, Souza A, Souza MS, Bento D, Ribeiro JE, Lima R, Pinho D. Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels. Micromachines. 2021; 12(3):317. https://doi.org/10.3390/mi12030317
Chicago/Turabian StyleCarvalho, Violeta, Inês M. Gonçalves, Andrews Souza, Maria S. Souza, David Bento, João E. Ribeiro, Rui Lima, and Diana Pinho. 2021. "Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels" Micromachines 12, no. 3: 317. https://doi.org/10.3390/mi12030317
APA StyleCarvalho, V., Gonçalves, I. M., Souza, A., Souza, M. S., Bento, D., Ribeiro, J. E., Lima, R., & Pinho, D. (2021). Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels. Micromachines, 12(3), 317. https://doi.org/10.3390/mi12030317