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Abstract: Under several circumstances, a nanowire transistor with a square cross-section behaves as
a circular. Taking the Gate-All-Around junctionless transistor as a primary example, we investigate
the transition of the conductive region from square to circle-like. In this case, the metamorphosis is
accentuated by smaller size, lower doping, and higher gate voltage. After defining the geometrical
criterion for square-to-circle shift, simulation results are used to document the main consequences.
This transition occurs naturally in nanowires thinner than 50 nm. The results are rather universal,
and supportive evidence is gathered from inversion-mode Gate-All-Around (GAA) MOSFETs as
well as from thermal diffusion process.
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1. Introduction

Most vertical nanowires (NW) have circular cross-sections. Even planar nanowires
tend to become round, albeit the lithography process is expected to produce rectangular
shapes. After oxidation and/or chemical etching, a square piece of semiconductor even-
tually ends up being round. In both Gate-All-Around (GAA [1,2]) field-effect transistor
(FET) and Four-Gate FET (G4-FET [3]), the current filament starts to form in the middle of
the structure and has initially a circular shape. Round current filaments are also observed
during transistor breakdown or operation of resistive memory (RRAM). Furthermore, the
photon beam in a square fiber is circular. Similar observation is for a tiny filet of falling
water from a square pipe.

There are many other examples suggesting that Mother Nature prefers small things to
be round. On the technical side, we can argue that the mechanisms leading to rounded
forms are governed by more or less similar second-order differential equations, where the
boundary conditions tend to suppress the corner effects.

In this paper, the conditions enabling the intriguing transition from squared to circular
forms are investigated. We focus on GAA square nanowires with high body doping
(Figure 1). This device is also named junctionless FET because, in principle, there is no
need for overdoping the source and drain terminals [4]. The surrounding gate controls
the extent of the depletion region—in other words, the area of the neutral section of the
nanowire where the current flows. The ON state corresponds to no depletion, and the OFF
state occurs as soon as the body of the nanowire becomes fully depleted and the current
is suppressed.

Figure 1 shows that the neutral region turns from a ‘large’ square into a ‘small’ circle.
This motivates our interest for exploring the parameters of the metamorphosis from square
to circular nanowires. A preliminary question addressed in Section 2 is: When can we
affirm that a form with central symmetry looks more similar to a circle than a square?

Section 3 contains a systematic discussion of the critical dimension, doping, and gate
bias for such a transition to occur. Section 4 shows briefly how our methodology can be
generalized to other examples taken from the nanowire processing and operation.
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Figure 1. Contours of the neutral region in (a) 50 nm wide and (b) 20 nm wide nanowires with 
variable body doping and a square cross-section. As doping decreases, the large square-shape 
neutral region transforms into a smaller size region with a circular shape. Gate bias VG = 1.5 V. 

2. From Square to Circle 
We consider p-channel depletion-mode GAA MOSFETs. A typical device features a 

square cross-section with size W between 100 nm down to 10 nm. The concentration of 
acceptor dopant (NA ≈ 1018–1020 cm−3) is selected such as to ensure a high current level 
while avoiding full depletion at low gate voltage. The gate dielectric (SiO2) is 2 nm thick 
and does not contain fixed charges or traps. The transistor is ‘long’, meaning that the 
fringing fields from source and drain terminals do not cause short-channel and 3D effects 
[5]. Numerical simulations were performed with a home-made 2D solver of the Poisson 
equation. Quantum carrier confinement and subband splitting are irrelevant for nan-
owires larger than 10 nm. 

As soon as the gate bias VG exceeds the flatband voltage, the depletion region forms 
at the surface and gradually becomes wider. Beyond the threshold voltage (VG ≥ Vth), an 
electron inversion layer starts growing at the Si–SiO2 interface, and the depletion region 
stops expanding. 

The transition from the neutral region to the depletion region is not abrupt and oc-
curs over a distance defined by the Debye length LD. An empirical expression for the 
one-dimensional (1D) profile of hole concentration in a single-gate planar device is [6] pሺxሻ = N2 1 + th ൬x − Wୢ

 Lୈ ൰൨ (1)

where x is the distance from the gate oxide interface (located at x = 0), Wd is the depletion 
depth, and α ≈ 1.7 (adjusted by calibrating Equation (1) with numerical computations). 
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Following Equation (1), the depletion depth corresponds to the position where the 

hole concentration reaches half of the doping level p(x = Wd) = NA/2. Due to the collabo-
ration of multiple gates, Wd can be higher than the theoretical 1D value in Equation (2) 
[6], but the criterion above to determine it remains valid. 

Figure 1a illustrates the behavior of a medium-size nanowire (W = 50 nm). The 
contours in Figure 1a show the maximum depletion region (or the minimum neutral re-
gion) achieved for a high enough gate voltage. The lower the doping, the more circular 
the neutral region is, until full depletion is achieved. Similar contours are observed in 

Figure 1. Contours of the neutral region in (a) 50 nm wide and (b) 20 nm wide nanowires with
variable body doping and a square cross-section. As doping decreases, the large square-shape neutral
region transforms into a smaller size region with a circular shape. Gate bias VG = 1.5 V.

2. From Square to Circle

We consider p-channel depletion-mode GAA MOSFETs. A typical device features
a square cross-section with size W between 100 nm down to 10 nm. The concentration
of acceptor dopant (NA ≈ 1018–1020 cm−3) is selected such as to ensure a high current
level while avoiding full depletion at low gate voltage. The gate dielectric (SiO2) is 2 nm
thick and does not contain fixed charges or traps. The transistor is ‘long’, meaning that
the fringing fields from source and drain terminals do not cause short-channel and 3D
effects [5]. Numerical simulations were performed with a home-made 2D solver of the
Poisson equation. Quantum carrier confinement and subband splitting are irrelevant for
nanowires larger than 10 nm.

As soon as the gate bias VG exceeds the flatband voltage, the depletion region forms
at the surface and gradually becomes wider. Beyond the threshold voltage (VG ≥ Vth), an
electron inversion layer starts growing at the Si–SiO2 interface, and the depletion region
stops expanding.

The transition from the neutral region to the depletion region is not abrupt and
occurs over a distance defined by the Debye length LD. An empirical expression for the
one-dimensional (1D) profile of hole concentration in a single-gate planar device is [6]

p(x) =
NA

2

[
1 + th

(
x−Wd
α LD

)]
(1)

where x is the distance from the gate oxide interface (located at x = 0), Wd is the depletion
depth, and α ≈ 1.7 (adjusted by calibrating Equation (1) with numerical computations).
Conventional relations for Debye and depletion length are

LD =

√
εskT
q2NA

Wd =

√
2εsψs
q NA

(2)

where εs is Si permittivity and Ψs surface potential.
Following Equation (1), the depletion depth corresponds to the position where the hole

concentration reaches half of the doping level p(x = Wd) = NA/2. Due to the collaboration
of multiple gates, Wd can be higher than the theoretical 1D value in Equation (2) [6], but
the criterion above to determine it remains valid.

Figure 1a illustrates the behavior of a medium-size nanowire (W = 50 nm). The
contours in Figure 1a show the maximum depletion region (or the minimum neutral
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region) achieved for a high enough gate voltage. The lower the doping, the more circular
the neutral region is, until full depletion is achieved. Similar contours are observed in
Figure 1b for a thinner NW (W = 20 nm) with higher doping. A parallel to the shrinking of
the neutral region is the fog that dissolves by warming a square window to leave a small
circular dot.

The choice of the contour that better represents the transition from square to circle
is challenging. Parameters based on area and perimeter are not sensitive enough; for
example, the area-to-perimeter ratio is the same (W/4) for both extreme cases (square
and circle). A more suitable choice is the distance d from the center of the nanowire to
the points located on the contour. The ratio R between the standard deviation σd and the
average distance <d> varies from 0 (perfect circle) to 0.1 (perfect square). For the contours
of Figure 1a, the form factor is R = 0.003 for NA = 4× 1018 cm−3 (quasi-circle) and R = 0.082
for NA = 2 × 1019 cm−3 (square-like). We have selected visually R = 0.025 as a criterion to
represent the square-to-circle transition. Figure 2 shows contours with 0.015 ≤ R ≤ 0.035
that illustrate the transition region. The choice of an alternative criterion will not modify
quantitatively the results discussed in the following.
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Figure 2. Contours of the neutral region selected in the vicinity of the square–circle transition defined
for a form factor R = 0.025. For R = 0.035, the shape is slightly square-like, whereas for R = 0.015, it is
more circle-like. W = 50 nm, VG = 1.5 V, NA doping range from 4.8 to 6.6 × 1018 cm−3.

3. Impact of Nanowire Size, Doping, and Bias

The boundary between square-like and circle-like shapes of the minimum neutral
region is calculated with the criterion above, for different combinations of nanowire doping
and size. Figure 3 shows that a wide NW (W ≥ 100 nm) behaves naturally as a square,
unless doping is light (NA < 1018 cm−3). In contrast, nanowires smaller than 25 nm are
either fully depleted (i.e., no neutral region) or circle-like. In medium-size NWs, the neutral
region tends to be circular, except for heavy doping (NA > 1019 cm−3 for W = 40 nm).

For the given dimensions and doping of the physical square NW, the conductive
filament can be made circular by gate action. Figure 4 reproduces the expansion of the
depletion region with gate voltage in two heavily doped and small nanowires. At flat-band
condition (i.e., VG = 0), the doping concentration is constant in the whole cross-section of
the square NW. For positive gate bias VG, the device starts to be depleted. The depletion
region emerges from the surface and follows the body contour, preserving a square shape
at low bias (VG < 1 V in Figure 4a). For increased VG, the combination of the vertical and
horizontal components of the electric field results in a higher effective field at the corners
than at the mid-gate. The depletion region expands faster from the corners, leading to a
clear rounding of the neutral region.
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The gradual change of the neutral region size and shape, from square to circle, is
clearly visible in a 20 nm large NW (Figure 4a). Only at high gate voltage (VG = 1.5 V) does
the neutral region become circular. In a very thin NW (10 nm, Figure 4b), the conductive
region is always circular except at very low bias (VG < 0.3 V). The results are summarized
in Figure 5 that shows the square-to-circle transition in VG–NA space for two nanowires.
The conducting NWs tend to be circular above each curve and square underneath. A
higher gate voltage and/or a lower doping expand the surrounding depletion region and
reinforce the circular aspect of the neutral (conductive) section.

The key point in all cases—whatever the original size, doping, and gate bias—is that
the conductive filament becomes circular when the ‘diameter’ reaches about 10 nm. This
empirical rule motivates our study. We now focus on the carrier concentration in the NWs.

Figure 6a shows the concentration of holes at the center of the NW normalized by the
nominal doping. It varies from zero (full depletion) at relatively low doping to NA (neutral
core). The smaller the NW, the slower the variation. The minimum distance d* from
the center to the periphery of the conducting section increases from zero (full depletion)
to W/2 in flat-band condition, as shown in Figure 6b. The bullets indicate the doping
corresponding to the square-to-circle transition; for lower doping, when the circular shape
is achieved, d* is obviously the radius.
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Reciprocally in Figure 6c, the depletion depth is measured from the middle of the
NW edge in the perpendicular direction: Wd = L/2 − d*. The dotted line calculated
with Equation (1) matches the numerical simulations. The situation is different when the
depletion depth is taken diagonally from the corner of the NW. Since the effective field at
the corners is higher by roughly

√
2, the depletion depth is accentuated as if the doping in

Equation (2) was lower by about 50%. This result is similar to the concept of voltage-doping
transformation proposed by Skotnicki et al. [7].

Figure 7a shows the lateral profile of hole concentration from the left edge to the center
of the nanowire. The transition between full depletion and neutral region is sharper as the
doping increases due to the reduction of Debye length, as stated in Equation (2). A good
agreement with Equation (1) is noted (dotted lines) for high doping. When the size of the
conductive region is small (for NA = 4 × 1018 cm−3 in Figure 7a), the hole concentration is
not able to reach the nominal doping level. In other words, the core of the NW is partially
neutral or partially depleted, which makes Equation (1) deviate. To recover accuracy, the
nominal doping NA needs to be replaced by an effective doping produced by the right
section of the gate, which is similar to the case of SOI MOSFETs documented in [6].

The horizontal and vertical effects of depletion can be combined to approximate the
2D distribution of holes. For example, in the bottom left quarter of the NW, we have:

p(x,y) = (NA/4) [1 + tanh((x −Wd)/αLD)]·[1 + tanh((y −Wd)/αLD). (3)

The condition p(x,y) = NA/2 yields the locus depicting the contour of the conductive
NW area:

[1 + tanh((x−Wd)/αLD)]·[1 + tanh((y−Wd)/αLD)] = 2. (4)

Equation (4) is actually an explicit function y(x):

y = αLD tanh−1 [(1-tanh((x-Wd)/αLD)) / (1 + tanh((x−Wd)/αLD))] + Wd. (5)

Figure 7b compares numerically simulated contours with those produced by Equation (5).
The contour shape is governed by the doping concentration as seen in Figure 1. A striking
aspect is that such a simple, semi-empirical Equation (5) is able to capture the full transition
from square shape (NA = 2 × 1019 cm−3) to circular shape (NA = 4 × 1018 cm−3, Figure 7b).
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The diagonal distance D* from center to contour periphery is obtained by setting x = y
in Equation (4):

x = y = (αLD/2) ln (
√

2 +1) + Wd. (6)

When the diagonal distance D* =
√

2(W/2 – x) exceeds the horizontal distance
d* = W/2 − Wd, the contour tends to a square shape. In case of a circle, obviously,
D* = d*. The doping needed to maintain a quasi-square shape strongly depends on NW
size: NA ~ 1/W2. In very small nanowires, this doping condition is hard to fulfill and the
conductive section becomes naturally round. An interesting limit case is when the circular
shape is dominant even at a flat band (Ψs = 0); this situation is encountered in extremely
small NW with a size comparable with the Debye length.

The gate biasing modifies not only the concentration of free carriers, as in any MOS
device, but also the area and the shape of the conductive channel. However, this triple
action is not sufficient to revolutionize the device performance. Figure 8 shows the integral
of the hole charge computed in two devices. In the subthreshold region, the charge
varies exponentially with gate voltage VG. The reciprocal of the slope (subthreshold
swing) is constant and corresponds to the thermionic limit of ≈60 mV/decade at room
temperature. The concomitant increase in carrier concentration and conductive area cannot
break this limit.
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Figure 8. Total hole charge versus gate voltage in two different nanowires (NWs).

4. Other Examples

The depletion-mode junctionless GAA NW discussed above served as a simple and
generic example illustrating the transition to rounded forms. More complex is the G4-FET
transistor, where the four sections of the gate are independently biased and feature distinct
surface potentials. As a result, the initial dot-like neutral region can grow from any point
within the body cross-section, not necessarily from the center. Among many other similar
situations, we address two further cases without entering into details.

Figure 9a shows the cross-section of an inversion-mode NW GAA MOSFET with
undoped body (residual doping NA = 1015 cm−3) and 10 × 10 nm2 size. A positive voltage
on the surrounding gate induces an electron inversion region that develops not at the
interface but from the center of the NW toward the edges, according to the principle of
volume inversion [8]. In the initial stages, the contours of the conductive inversion region
are perfectly round. Increasing VG makes the inversion region expand in the whole body
at the expense of a contour deformation. Once the threshold voltage is reached, most of the
electrons become confined near the interface and corners [9], so reconstructing the original
square shape of the NW.
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core NW.

The manufacturing sequence of NW devices could also lead to rounded shapes.
During the processing steps, the initially square-shaped piece of semiconductor transforms.
It can be via thermal oxidation, isotropic etching, or dopant diffusion. Specifically in
Figure 9b, we considered a 100 nm thick core–shell NW. The square core (40 nm) is highly
doped, whereas the shell is undoped. At high temperature, dopant diffusion proceeds from
the core into the shell, first rounding the corners, and eventually giving rise to a circular
core, the area of which keeps shrinking. Finally, the thermal oxidation of the same piece of
semiconductor leads to a similar transformation of the square into a circle.

5. Conclusions

The conductive region of a NW and even its physical shape can transform from
square to circular, depending on gate bias, doping level, and/or technological processes. A
criterion for this transition was defined based on systematic simulations. In junctionless
GAA NW transistors, the depletion mechanism develops preferentially from the corners,
rounding them, and it ultimately achieves a circular shape of the neutral region. Lower
doping, a smaller NW cross-section, and higher gate voltage assist this transformation.
A quasi-perfect circle is obtained for ≈10 nm diameter of the effective NW region. Since
nanodevices tend to become round anyway, circular nanowire grown vertically by epitaxy
are well adapted. Empirical relations, able to reproduce the carrier profiles and suitable for
compact models, were proposed. These results can be extended to a multitude of nano-size
devices, offering a comprehensive root for detailed physical modeling.
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