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Abstract: Compared with a traditional optical system, the single-lens curved compound eye imaging
system has superior optical performance, such as a large field of view (FOV), small size, and high
portability. However, defocus and low resolution hinder the further development of single-lens
curved compound eye imaging systems. In this study, the design of a nonuniform curved compound
eye with multiple focal lengths was used to solve the defocus problem. A two-step gas-assisted
process, which was combined with photolithography, soft photolithography, and ultraviolet curing,
was proposed for fabricating the ommatidia with a large numerical aperture precisely. Ommatidia
with high resolution were fabricated and arranged in five rings. Based on the imaging experimental
results, it was demonstrated that the high-resolution and small-volume single-lens curved compound
eye imaging system has significant advantages in large-field imaging and rapid recognition.

Keywords: curved compound eye; ommatidium; multiple focal lengths; high resolution

1. Introduction

At present, optical systems are developing in the direction of compact structures,
integration, and large fields of view. Natural compound eyes have the characteristics of
a large field of view, small size, and high sensitivity to moving objects [1]. Inspired by
natural compound eyes, bionic artificial compound eyes have become a focused area of
research in recent years. Researchers have developed a variety of compound eye processing
technologies, such as ultra-precision processing [2,3], laser direct writing [4,5], femtosecond
laser etching [6], molding processes [7,8], and bottom-up technology [9,10]. However, the
development of single-lens curved compound eye imaging systems has just started, and
there are still some technical obstacles to be resolved, including the defocus between the
lens and the image sensor and the size and resolution of the ommatidia of the artificial
compound eye.

Natural compound eyes exist in insects such as dragonflies and fruit flies, but they
have nonplanar retinae that match them [11,12]. Therefore, they do not have the phe-
nomenon of defocus, and artificial compound eyes also require photosensitive components
that match the focal plane. However, commercial image sensors are mostly flat image
sensors, and the manufacturing process of curved sensors is complicated and costly [13,14].
Therefore, it needs to be solved by other methods. At present, there are generally two ways
to solve the above problem. One is adding a relay system between the compound eye and
Complementary Metal-Oxide-Semiconductor(CMOS), which is similar to the stalk in a
natural compound eye, such as freeform prisms [15,16], optical fibers [17,18], and a lens
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group [19,20]. Another method is to adopt the design of the nonuniform curved compound
eye, where the focal length of the ommatidium of each ring of the curved compound eye is
different, and they fall on the same plane [21].

Many methods have been proposed for preparing nonuniform curved compound eyes,
such as thermal reflow [22] and inkjet droplets [23]. Due to concerns about the volume
loss during the photoresist melting process and the consistency of microdroplets in inkjet
droplets, our laboratory has developed a contactless polymer hot embossing method [24].
However, in this method, the contour of the ommatidium is formed entirely by surface
tension of the polymer at the glass transition temperature. Once the surface tension limit is
exceeded, the large sag height is no longer achieved. According to the calculation, this will
greatly limit the resolution of the curved compound eye.

Based on the previous research of our laboratory [25], a two-step gas-assisted process
is proposed in this article. It is combined with photolithography, soft photolithography,
and UV curing. In the first step, the polydimethylsiloxane (PDMS) film is covered on
the microhole array to prepare a planar microlens array. In the second step, the planar
microlens array is transformed into a curved compound eye. It uses the relationship
between the deformation of the film and the air pressure, and an ommatidium with a large
height and large diameter can be achieved by changing the diameter of the ommatidium
and the value of air pressure. The lens fabricated by this method shows great uniformity
and high resolution. In order to promote further research into the practical application of
the curved compound eye, a single-lens curved compound eye camera is integrated, as
shown in Figure 1a. This camera comprises the following parts: Lens holder, lens, lens
holder base, side walls, and CMOS, as shown in Figure 1b. The lens is fixed in the lens
holder and the holder is connected with the base by thread. All the remaining parts are
assembled by screws. In the imaging experiment, the curved compound eye imaging
system can realize the large field-of-view imaging and recognize objects rapidly, which
shows that it can be applied in many fields.
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Figure 1. Three-dimensional massive structure of the compound eye camera. (a) Photo of the prototype; (b) exploded view 
of the camera. 
Figure 1. Three-dimensional massive structure of the compound eye camera. (a) Photo of the prototype; (b) exploded view
of the camera.
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2. Lens Design and Fabrication

It was found that for the ommatidia of different diameters, under the same pressure,
the sag height obtained by the gas-assisted process is approximately proportional to the
diameter of the ommatidium. For example, the simulation under 8000 Pa is shown in
Figure 2.
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Figure 2. Schematic view of the results of the simulation. The thickness of the film is 10 µm, the pressure is 8000 Pa, and the
diameters of the ommatidia are 0.1, 0.2, 0.3, and 0.4 mm. (a,b) The deformation of the ommatidia; (c) the linear relationship
between the deformation and the diameters.

Figure 3 shows the design of the ommatidium. As all the ommatidia are arranged in a
circle, each ommatidium on the same ring is symmetrical around the center and has the
same focal length, so it is sufficient to select one ommatidium for the analysis on each ring.
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The ommatidia are arranged from the center to the periphery; the central ommatidium
corresponds to the first ring, and the outermost ommatidia correspond to the nth ring. For
the nth ring, the chord length of the ommatidia will be sn, and the sag height will be hn,
while the radius of curvature of the ommatidium rn can be expressed by Equation (1):

rn =
sn

2 + hn
2

2hn
, (1)

If the pressure remains unchanged, hn can be calculated according to the linear
relationship after determining the value of sn. Substituting the value of rn from Equation (1)
into Equation (2), the focal length of the nth ring can be expressed by Equation (2):

ln = f′ =
rn

1−m
, (2)

where m is the refractive index of the lens material and θ is the angle between the optical
axis of the first ring and the optical axis of the Nth ring. R is the radius of curvature of the
plano-convex base and can be expressed as:

θ = arccos
R + l1 + h1

R + ln + hn
, (3)

representing the position of the nth ring on the plano-convex lens.
The resolution of sub-eyes can be determined according to the radius of the Airy disk,

and it can be expressed as:

rA = 1.22
λ

d/f
, (4)

If the wavelength is a fixed value, the larger the value of d/f, the higher the resolution.
Substituting Formulas (1) and (2) into Formula (5), d/f can be expressed as Equation (5):

d
f
= (1−m)

8hnd
d2 + 4hn2

, (5)

where (1−m) is a fixed value and d is the value of the diameter of the ommatidia. Equation (5)
is shown in Figure 4.
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It can be seen from Figure 3 that the larger the sag height, the smaller the diameter,
and the higher the resolution. However, increasing h and decreasing d will shorten the
focal length. There are glass packages on the surface of commercial CMOS detectors,
which will make the focal plane of the lens unable to reach the surface of the detector.
Additionally, according to the design criteria, if the diameter is too large, the number of
ommatidia that can be arranged is lower, which reduces the acuity and filling factor to a
certain extent. Therefore, five values in the range of 300–400 µm are selected for principal
verification. Their diameters are 310, 312.8, 321.8, 336.2, and 358.8 µm, and the sag heights
are, respectively, 42, 42.56, 44.36, 47.24, and 47.76 µm.

The process of fabricating the curved compound eye is mainly divided into two parts.
First, the planar microlens array (MLA) is fabricated. Preparing the photomask with
the designed pattern we need, and using photolithography, we can transfer the pattern
onto the silicon wafer. The photoresist chosen in the experiment is one of the positive
photoresists—AZ5214. It is spin-coated onto the silicon wafer at a speed of 2000 r/min
for 45 s. Then, in the step of soft baking, we put the spin-coated silicon wafer onto a hot
plate, which is heated up to 120 ◦C, for 120 s. After that, a mask alignment system (SUSS
MA6/BA6) is used to expose the photoresist for 40 s, with the prepared mask above the
wafer. The silicon wafer is immersed in the developer to remove the exposed part of the
photoresist until the expected MLA structure is obtained. Before the process of hard baking,
we need to clean the silicon wafer with deionized water to remove residual developer and
impurities. The temperature and time used in hard baking are the same as those used in
soft baking.

Next, the silicon wafer needs to be etched by plasma in the plasma etching machine
(Alcatel 601E). The pattern of the photomask has already been transferred to the photoresist;
thus, the patterned photoresist will serve as the mask in the etching process, transferring the
pattern onto the silicon wafer. The thickness of the silicon wafer is 380 microns, and it needs
to be fully etched—that is, the etching height should be 380 microns. After the etching is
completed, the silicon wafer is cleaned with acetone to remove unexposed photoresist and
organic substances used in the etching process. It is put in the boiling piranha solution (the
ratio of sulfuric acid and hydrogen peroxide is 3:1) and then rinsed with deionized water,
repeating the above process three times to complete the final cleaning.

Figure 5 shows the process of fabricating the planar MLA. The silicon wafer with
the planar microhole array is placed on the vacuum cavity mold as in Figure 5a, and it
is covered with a layer of PDMS film, as shown in Figure 5b. The mold possesses two
tubes—one is connected to the barometer, and the other channel is connected to the suction
pump. The piston is pulled, and under the action of negative air pressure, the PDMS film
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will deform. When the pressure is controlled precisely, we can obtain the expected shape.
The curing adhesive (NOA 63) is dropped on the PDMS film to replicate planar MLA of
the PDMS film, as shown in Figure 5c, and the planar MLA is achieved.
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After obtaining the planar MLA, it is fixed in the prepared PMMA mold, as shown in
Figure 6. The PDMS droplets are dropped into the mold and placed in a 60 ◦C environment
for thermal curing for 12 h. After the PDMS solution curing, a thin replicated film with a
reversed MLA of the planar MLA can be achieved.
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Figure 7 shows the manufacturing process for the curved compound eye. The PDMS
film with a concave MLA is placed on another vacuum mold. As shown in Figure 7a, the
mold also possesses two tubes. There is a circular step with a diameter of 30 mm and a
height of 1 mm on the upper surface to position the PDMS film so that the PDMS film
is located in the center of the mold. The desired radius of curvature can be obtained by
controlling the pressure inside the cavity. Under negative pressure, the PDMS film will
deform into a spherical profile. Then, the UV curing adhesive NOA63 is poured into the
concave cavity, and a piece of quartz glass with a diameter of 25.4 mm is used to cover
the top. After irradiating under the ultraviolet lamp for 5 min, we can obtain the curved
compound eye we want.
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view of the process to convert the PDMS planar MLA into the curved shape; (d) the manufactured
curved compound eye.

In this process, there are several points to note: The pressure value of the vacuum
chamber directly affects the contour of the curved compound eye. Therefore, it is necessary
to accurately control the pump suction according to the value of the barometer. The
tightness of the mold is very important, and silicone grease is used to ensure its airtightness.
At the same time, when the UV curing adhesive is dropped, if the amount of the UV curing
adhesive is too great, it will overflow when covering the quartz glass, which will affect the
surface finish of the quartz. If the amount of the UV curing adhesive is too small, it will
also cause surface defects.

3. Result and Discussion
3.1. Shape Measurement

The shape measurement of the compound eye is mainly the measurement of diameter
and height. The diameter of the ommatidium is measured with an ultra-depth-of-field
microscope (KEYENCE, VHX-1000, Osaka, Japan). Figure 8b shows the results of the
measurement, and the values of each ring are 153.74, 156.83, 161.33, 167.61, and 179.28 µm.
The bright ring is the image of the microscope light source formed by the MLA. Comparing
the actual value obtained by the measurement with the theoretical value of the design, the
deviation is less than 5%. The equipment used to measure the sag height is a step meter
(Veeco Dektak 150). The probe scans along the center of the ommatidia and the results of
the actual height are shown in Figure 8c. The sag height of each ring is 40.55, 42.8, 44.5,
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46.5, and 49 µm, respectively. These data are approximately linear, as seen in Figure 8d,
and the deviation is less than 5%. In the process, there are two steps that are prone to errors.
First, because PDMS is an elastic material, it shrinks after curing and demolding. The other
is that when the PDMS film converts from a flat surface to a curved surface, it stretches.
However, the thickness of the film is much greater than the height of the ommatidium,
so these two errors will be compensated, and the total error will decrease. In previous
experiments performed by our laboratory, it was found that the 1 mm-thick film can meet
the fabrication requirements. At the same time, the operation of the measuring researcher
and the measurement accuracy of the instrument will also produce some errors. In general,
this result of the measurement shows the high accuracy of this fabrication method.
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Finally, the stereoscopic microscope (OLYMPUS SZ61) is used to observe the surface
of the ommatidium. As shown in Figure 8e,f, the surface is smooth and clean. We can
draw a conclusion from the measurement results that the two-step gas-assisted process can
fabricate the curved compound eye perfectly.

3.2. Optical Test and Characterization

According to the design, to correct the defocus phenomenon, the focal lengths of the
ommatidia of different rings are different. In order to confirm whether the actual results
are consistent with the design expectations, the planar MLA is placed on the imaging test
platform for the imaging experiment, and the images are shown in Figure 9.
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ommatidia are in focus.

When adjusting the distance between the lens and CMOS, when the central omma-
tidium is in focus, the central image is clear, as shown in Figure 9a. As it expands to the
edge, the image clarity of the peripheral ommatidia gradually decreases. Then, if the lens
is kept away from the CMOS until the images of the outermost ommatidia are clear, the
clarity gradually decreases from the periphery to the center. Obviously, the focal lengths
are different—the closer the periphery, the longer the focal length.

In the above experiment, we have proved that each ring has a different focal length.
When the planar MLA is converted into the curved compound eye, we need to further
demonstrate that the focus of each ring has fallen on the same plane. There are generally
two ways to complete the demonstration. One is the interferometric technique [26], and
the other is the setup used in this article.

The focal length measurement generally uses a collimated laser setup to test the focus
and light intensity. The setup is shown in Figure 10a. From left to right, it is composed
of a laser, a small hole, a damping film, a curved lens, and a CMOS camera. The parallel
light emitted by the laser passes through the curved compound eye; then, by adjusting
the distance between the lens and CMOS until the focal spots are sharp, the images of
the spots are received by the CMOS. Figure 10b shows the captured focal spots. When
the focal spots can be captured clearly, the distance is 2 cm, and we can consider that the
focal length of the compound eye is 2 cm. As shown in Figure 10c, the distribution of
the intensity is uniform, which means that the focal spot of each ommatidium has fallen
on the same plane. According to the image of the focal points, the point spread function
(PSF) of each ommatidium can be obtained. The PSF can characterize the resolution
of the ommatidium. Taking the flanking ommatidium as an example, its point spread
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function is shown in Figure 10d. The spot radius magnified by a 5× objective occupies
four pixels, and the size of each pixel is 5.3 µm. Therefore, the radius of the spot is 4.12 µm.
The resolution target (THORLABS 1951 USAF R3L3S1N) is used to measure the actual
resolution of the ommatidium, and the result is shown in Figure 10e. The highest resolution
of the ommatidium is 17.95 lp/mm. In the previous study, the maximum resolution of
the nonuniform curved compound eye prepared by contactless polymer hot embossing
could only reach 8.95 lp/mm. Compared to that, the results show that the compound
eye prepared by the two-step gas-assisted method has a higher resolution, which will be
beneficial for image stitching and image recognition. However, it is found that there is a
deviation between the value of the PSF and the actual value of the resolution test. This is
because the light source used to measure the spot is a single-wavelength collimated laser, so
the aberration is relatively small. However, the light source used to measure the resolution
is white light, which causes chromatic aberration. At the same time, the larger the field of
view of the ommatidium and the larger the angle of incident light, the more serious the
coma and astigmatism [27]. Therefore, aberrations have a great impact on imaging and
need to be reduced. It is well known that aspheric lenses can reduce aberrations without
increasing the volume of the imaging system [28]. In future work, the current spherical
cap-shaped ommatidium can be turned into an aspheric ommatidium by increasing the
air pressure.

Another setup to measure the field of view of the compound eye is shown in Figure 10f.
Some letters and symbols are printed on the shadowless lamp board, and the lamp is
placed on the opposite side of the compound eye. The image captured by the camera is
shown in Figure 9g, and we can see that the letters the camera can capture are from 5 to 9.
The distance between the camera and the lamp board is 8 cm, the distance between letters
5 and 9 is 20 cm, and the field angle of the curved compound eye can be calculated as 86◦.
As this compound eye has only five rings of ommatidium, its field of view does not exceed
100◦. If the number of the rings is increased, a larger field of view (FOV) can be achieved.

3.3. System Imaging and Processing

Take the classic Lena diagram as an example. The image captured by the curved
compound eye system is shown in Figure 11a—each ommatidium has its own field of
view, each ommatidium can be an independent imaging unit, and the distance between
each ommatidium is large enough, which prevents the appearance of a ghost image.
Every sub-image is only part of the target and the neighboring sub-images have some
duplicate regions. Based on these duplicate regions, the image of the whole target can
be achieved when all the sub-images are stitched, as shown in Figure 11b. Considering
the high sensitivity of the compound eye to the moving object and using deep learning
on the compound eye image, the artificial compound eye can be used for fast recognition
in a large field of view. Deep learning is an important part of artificial intelligence and is
currently widely used in computer vision. YOLO (You Only Look Once) is a new target
detection method of deep learning, which is characterized by high speed and high accuracy.
The image of each ommatidium is inputted into a convolutional neural network to detect
the target separately. The test results are shown in Figure 11c,d. At the same time, it is
found that the image of the compound eye contains rich direction information. In the
pre-research, a 10 cm× 10 cm rectangular white block is used as the detection target. When
the target moves, the image captured by the compound eye presents a pattern. Take the
right direction of the camera image as the starting position and divide it clockwise into
360◦. The target is moved 3 cm to the left and right, respectively, and the captured image
and the analysis result are shown in Figure 11e,f. When the target is moved 3 cm to the
left, there is a large offset in the range of 0◦ to 60◦ and 250◦ to 360◦. When the target is
moved 3 cm to the right, there is a large offset in the range of 120◦ to 250◦. The closer the
ommatidium is to the periphery, the higher the sensitivity to motion information and the
greater the offset. As a multi-eye vision camera, the compound eye camera can provide
greater depth information compared with a binocular vision camera. In future research,
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this could be used to obtain the three-dimensional information and velocity vector of the
target, which are important for rapid recognition.
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4. Conclusions

In general, a multi-focusing curved compound eye is fabricated by the two-step gas-
assisted process and integrated into a single-lens curved compound eye camera. Through
the nonuniform design, the defocus problem of the curved compound eye is solved. Using
the deformation relationship between the air pressure and the film, the ommatidia with
large diameter and large sag height are accurately prepared. A total of 61 sub-eyes are
arranged in five circles on the plano-convex base, the diameters of the ommatidia range
from 153.74 to 179.28 µm, the sag height ranges from 40.55 to 49 µm, and the resolution
of the ommatidium can reach up to 17.95 lp/mm. The curved compound eye prepared
in this paper has good uniformity and small error, and the field of view angle reaches up
to 86◦. The advantages of the curved compound eye in large field-of-view imaging and
rapid recognition mean that it has great potential in a wide range of applications, such
as the detection, military, and medical fields. However, in future research, it will still be
necessary to further improve the imaging quality of the curved compound eye, optimize
the algorithm, and shorten the response time.
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