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Abstract: Immiscible liquid–liquid flows in microchannels are used extensively in various chemical
and biological lab-on-a-chip systems when it is very important to predict the expected flow pattern
for a variety of fluids and channel geometries. Commonly, biological and other complex liquids
express non-Newtonian properties in a dispersed phase. Features and behavior of such systems
are not clear to date. In this paper, immiscible liquid–liquid flow in a T-shaped microchannel was
studied by means of high-speed visualization, with an aim to reveal the shear-thinning effect on the
flow patterns and slug-flow features. Three shear-thinning and three Newtonian fluids were used as
dispersed phases, while Newtonian castor oil was a continuous phase. For the first time, the influence
of the non-Newtonian dispersed phase on the transition from segmented to continuous flow is shown
and quantitatively described. Flow-pattern maps were constructed using nondimensional complex
We0.4·Oh0.6 depicting similarity in the continuous-to-segmented flow transition line. Using available
experimental data, the proposed nondimensional complex is shown to be effectively applied for
flow-pattern map construction when the continuous phase exhibits non-Newtonian properties as
well. The models to evaluate an effective dynamic viscosity of a shear-thinning fluid are discussed.
The most appropriate model of average-shear-rate estimation based on bulk velocity was chosen and
applied to evaluate an effective dynamic viscosity of a shear-thinning fluid. For a slug flow, it was
found that in the case of shear-thinning dispersed phase at low flow rates of both phases, a jetting
regime of slug formation was established, leading to a dramatic increase in slug length.

Keywords: microfluidics; liquid–liquid flow; shear-thinning fluid; flow pattern; slug flow

1. Introduction

Microfluidic technology in conjunction with gas–liquid and liquid–liquid flows have
shown significant advances in chemical-reaction engineering and other applications at the
microscale. Microfluidic extractors [1], mixers [2], and heat exchangers [3] were proved
to intensify heat and mass transfer rates compared to conventional large-scale devices.
Generation of microdroplets using microfluidic T-junctions or flow-focusing inlets allows
quick production of uniform emulsions [4]. At the same time, small-scale flows in mi-
crochannels are convenient for precise control over biological objects when sorting and
handling them [5].

The key feature of microfluidic devices is an extremely high surface-to-volume ratio,
which provides most of the listed applications. However, since gravity and inertia become
negligible with a decrease in size, new issues are introduced in the fluid flow. Capillarity
and adhesion dominate the two-phase microfluidic systems and add complexity due to
contact lines and interfaces. Further sophistication is superimposed if one of the phases
possesses non-Newtonian properties. Many fluids used in technological processes, such as
biological fluids in organ-on-a-chip systems [6]; bio-microelectromechanical systems (bio-
MEMS), including plasmonic and electrochemical biosensors [7]; and polymer solutions
in a number of chemical technologies [8] exhibit non-Newtonian properties. The design
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and optimization of such microchannel devices require fundamental knowledge about
the flow regimes implemented in them and the physics of the processes occurring in this
case. Despite non-Newtonian fluids being ubiquitous in nature and man-made devices [9],
their flows in microgeometries remain poorly understood. The questions regarding flow-
pattern-map unification, optimal droplet-generation regimes, and calculation of effective
shear rates in two-phase flows at microscale are still open.

Microfluidics was intensively studied during the last two decades in order to under-
stand underlying phenomena in liquid–liquid and gas–liquid flows. Different flow patterns
are formed depending on flow velocities and properties of materials. Parallel or annular,
plug (also known as a slug or Taylor flow), dispersed (droplet), and some accessory types of
flow patterns are usually observed by researchers in microfluidic two-phase flows [10,11].
The onset of a particular flow pattern can be explained by the forces prevailing in the
system for given values of problem variables. Dimensional analysis performed in a series
of previous works revealed that the force balance for considered systems can be expressed
in terms of several dimensionless groups, namely Reynolds number (Re), Weber number
(We), capillary number (Ca), and Ohnesorge (Oh) or Laplace number (La) for each phase.
Some authors also consider dimensionless ratios such as viscosity ratio λ = µd/µc, rectan-
gular channel aspect ratio β = h/w, etc. These numbers and their combination in certain
powers were used for flow-pattern-map construction and unification. Waelchli et al. [12]
proposed the following composite numbers for flow-pattern maps of gas–liquid flows in
rectangular microchannels: A·ReαWeβ(ks/Dh)γ for continuous phase and ReαWeβ for
dispersed phase, where ks/Dh is a ratio of channel roughness to the hydraulic diameter; A
is a constant; and α, β, and γ are fitting parameters [12]. They obtained the best data col-
lapse for values of α = 0.2, β = 0.4, γ = 5, and A = 107. Similar dimensionless groups based
on Re and We numbers, but without consideration of channel roughness, were obtained
and tested against different flow conditions in [13]. For liquid–liquid flows, the authors
obtained negative We number powers. Other variations of the composite dimensionless
group were proposed in [14,15]. Yagodnitsyna et al. obtained a dimensionless group that
consisted of We and Oh numbers [16]. This group yields a good unification for different
liquid–liquid sets in a specified geometry, and modifications of powers to We0.4Oh0.6 pro-
vide an almost perfect prediction for a transition between parallel and segmented flow
patterns in the case of different viscosity ratios [17].

Though the use of non-Newtonian fluids is expected to impact flow-pattern transitions,
only a few investigations have been performed considering the influence of non-Newtonian
properties on flow-pattern maps. Yang and colleagues studied flow patterns of several
gas–liquid sets with a non-Newtonian continuous phase in microchannels with differ-
ent geometry [18]. A new flow pattern called chained bubble slug was observed for a
polyacrylamide (PAM) aqueous solution due to its high elasticity. The flow-pattern maps
constructed in terms of phase superficial velocities were strongly influenced by fluid rheol-
ogy. Transition boundaries were offset for different non-Newtonian solutions, and a large
deviation from existing models was reported. The related work on gas–liquid flows was
performed by Zhang et al. [19]. They used carboxymethyl cellulose (CMC) and sodium
dodecyl sulfate (SDS) solutions as a continuous phase and nitrogen as a dispersed one.
They found poor agreement when testing experimental data against existing models. A
model was proposed based on Re, Ca, viscosity ratio, and surface roughness. The model
gave better data collapse, although the usage of surface roughness as a parameter is a
questionable approach in the case of the channels made of the same material. Fu et al. [20]
conducted experimental research on liquid–liquid flow patterns in CMC aqueous solutions
and Newtonian cyclohexane. They found droplet flow to occur at a lower superficial
velocity of the continuous phase and parallel flow at a lower superficial velocity of the
dispersed phase for higher concentrated CMC aqueous solutions. Flow-pattern maps
were compared against existing dimensionless groups, including those by Waelchli et al.
and Zhang et al.; however, map unification appeared to be insufficient. The following
dimensionless combination was proposed: A·Weα(H/W)β(ks/Dh)γ(µc/µd)δ, which takes
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into account the rectangular channel aspect ratio H/W. Interestingly, this model seems to be
strongly dependent on the viscosity ratio of phases, the aspect ratio, and the dimensionless
roughness of the channel, rather than the Weber number effects.

Several research groups investigated the formation of plugs and droplets with either
dispersed or continuous phases that were non-Newtonian. Comprehensive research on the
formation of non-Newtonian droplets in a T-junction was presented by Husny et al. [21].
They proposed a model for droplet-diameter prediction, taking into account the viscosity
ratio of liquid using a modified Ca number. Filaments turning into the secondary droplet
were observed for droplets of non-Newtonian fluids at the formation stage. However, the
presence of elasticity had a negligible effect on the size of the primary drop produced.
The authors concluded that even though the presence of elasticity created a significant
difference in drop formation (necking) dynamics, this contributed little to the final drop size
and drop production rate. Starting out from the observation of Husny et al. and performing
analyses of filament self-thinning in the Boger dispersed phase, Arratia et al. measured
polymer extensional viscosity [22,23]. Lee et al. provided quantitative insights on filament
formation and self-thinning in the case of non-Newtonian dispersed phase and surfactants
added in the continuous phase [24]. They found the necking process was more rapid in the
case without surfactant or viscoelasticity. However, if either surfactant or viscoelasticity
was added to the dispersed-phase liquid, the necking rate was slowed. Sang et al. [25]
numerically simulated droplet breakup in a T-junction for power-law and Bingham fluids.
With the increase of the capillary number of continuous phases based on effective viscosity,
a laminar segment was formed in the T-junction before droplet separation. For Bingham
fluids, droplets were not spherical. The droplet extension increased with the increase
of the yield stress. Roumpea et al. found that plug lengths in the systems with non-
Newtonian continuous phase were larger than in the Newtonian one and increased with
the xanthan gum concentration, which is responsible for fluid shear-thinning behavior [26].
Linear coefficients in the Garstecki formula [27] for plug length were different for various
concentrations, indicating an influence of non-Newtonian solutions.

Currently available data show that there is a lack of flow-pattern-map unification in
the case of non-Newtonian fluids. Moreover, to our best knowledge, there are no flow-
pattern studies for cases when non-Newtonian fluids act as a dispersed phase. It is tacitly
accepted that the shear rate in the continuous phase has a crucial role in the flow-pattern
formation. Nevertheless, it still has to be proven, and the influence of the non-Newtonian
dispersed phase on flow-pattern maps should be studied in more detail. Therefore, here
we pay attention to the dispersed phase in which viscosity depends on the shear rate. To
date, the influence of the non-Newtonian dispersed phase on the plug length is still not
clear. Finally, when discussing non-Newtonian fluids, the assessment of shear rates in the
systems is another key question. In the literature presented in the survey, the authors used
at least four different approaches for shear-rate calculation, and the resulting values can
differ by orders of magnitude (see Section 3.1). The choice of an optimal model and its
application to the description of flow-pattern transition in a two-phase microfluidic flow is
an important problem that restricts the design and applications of microchannels.

In this paper, we address the questions of flow-pattern-map unification, the plug-
formation mechanism, and correct estimation of shear rates in the case of non-Newtonian
fluid flows in microchannels. The dispersed phase was chosen to be non-Newtonian
because there is a lack of data on flow-pattern maps and plug formation for such systems.
In contrast to many other research works, we utilized non-Newtonian fluids in conjunction
with Newtonian ones with different viscosities to elucidate the influence of viscosity ratio
and shear-thinning separately. Different models for shear rate were compared and analyzed
for applicability in the flow-pattern-map unification. For the first time, the influence of
the non-Newtonian dispersed phase on the transition from segmented to continuous flow
was shown and quantitatively described. The mechanism of plug formation appeared
to be dependent on the shear-thinning of the dispersed fluid when independent of the
viscosity ratio.
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2. Materials and Methods

T-shaped microchannels with rectangular cross-sections were fabricated using poly-
methylmethacrylate (PMMA) material by micromilling technique with 1 µm accuracy by
ChipShop (Germany). The scheme of the microchannels is presented in Figure 1. The
dimensions of the inlet channels were 200 × 200 µm2 with an 11.5 mm length, and the
dimensions of the outlet channel were 200 × 400 µm2 with a 22.5 mm length. The flow of
continuous and dispersed phases was organized as presented in Figure 1.
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Figure 1. The scheme of the T-shaped microchannel.

In order to reveal the influence of shear-thinning behavior of the dispersed phase
on the liquid–liquid flow, three non-Newtonian liquids were used: xanthan gum (Sigma
Aldrich) aqueous solution at a concentration of 0.5% (w/w), and sodium carboxymethyl
cellulose (CMC, Sigma Aldrich, average Mw ~ 250,000, degree of substitution 0.7) aqueous
solutions at concentrations of 0.5% (w/w) and 1.5% (w/w). Aqueous solutions of the shear-
thinning fluids were prepared by continuously pouring the powders into distilled water
and stirring for approximately 20 min until complete dilution. Three aqueous glycerol
solutions at different concentrations, further referred to as G1, G2, and G3, were used
as Newtonian dispersed phases in order to perform comparative studies of flow-pattern
boundaries and slug-flow features. The continuous phase was always castor oil in the
experiments with both Newtonian and non-Newtonian dispersed phases.

The physical properties of the liquids presented in Table 1 were measured at 23 ◦C.
The density $ was measured by weighing the known volume of fluid with a relative error
of 5%. Liquid–liquid interfacial tension σ was measured with 0.5 mN/m accuracy by
a pendant drop method using the KRUSS DSA-100 setup. The static contact angles θ

were measured by a sessile drop technique: a drop of the dispersed phase was placed on
the PMMA substrate immersed in the continuous liquid. The multiple measurements of
contact angle at different places of substrate gave a standard deviation within 4◦.

Table 1. Physical properties of the liquids used in the experiments @ 23 ◦C.

Physical Property Castor Oil CMC 0.5% CMC 1.5% XG 0.5% G1 G2 G3

$, g/cm3 0.962 0.99 0.99 0.99 1.128 1.213 1.226
σ, mN/m - 14.6 13.7 10.7 15 12.8 11.97

θ, ◦ - 159.3 151.9 165.3 168.4 167 168.5
µ, mPa·s 760 9.4–14.3 107.1–108 29–1232 4.7 130 506

The dynamic viscosity of liquids µ was measured using a rotational viscosimeter with
coaxial cylinders. During the measurements, the liquid was thermostated at 23 ± 0.1 ◦C.
The relative errors of the dynamic viscosity measurements were within 3% and 4% for
Newtonian and non-Newtonian liquids, respectively. The dependences of the measured
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dynamic viscosity of the shear-thinning liquids on the applied shear rate are presented
in Figure 2. Over the range of applied shear rates, the aqueous solution of xanthan gum
exhibited strong shear-thinning behavior. The dynamic viscosity of the fluid changed
by two orders of magnitude, with a variation in the shear rate from 2.7 to 1312 s−1. The
dynamic viscosity of the CMC aqueous solutions rapidly decreased at low shear rates,
further showing the properties of a Newtonian liquid.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 16 
 

 

Table 1. Physical properties of the liquids used in the experiments @ 23 °C. 

Physical Property Castor Oil CMC 0.5% CMC 1.5% XG 0.5% G1 G2 G3 
ρ, g/cm3 0.962 0.99 0.99 0.99 1.128 1.213 1.226 
σ, mN/m - 14.6 13.7 10.7 15 12.8 11.97 
θ, ° - 159.3 151.9 165.3 168.4 167 168.5 

μ, mPa·s 760 9.4–14.3 107.1–108 29–1232 4.7 130 506 

The dynamic viscosity of liquids μ was measured using a rotational viscosimeter 
with coaxial cylinders. During the measurements, the liquid was thermostated at 23 ± 0.1 
°C. The relative errors of the dynamic viscosity measurements were within 3% and 4% 
for Newtonian and non-Newtonian liquids, respectively. The dependences of the meas-
ured dynamic viscosity of the shear-thinning liquids on the applied shear rate are pre-
sented in Figure 2. Over the range of applied shear rates, the aqueous solution of xanthan 
gum exhibited strong shear-thinning behavior. The dynamic viscosity of the fluid 
changed by two orders of magnitude, with a variation in the shear rate from 2.7 to 1312 
s−1. The dynamic viscosity of the CMC aqueous solutions rapidly decreased at low shear 
rates, further showing the properties of a Newtonian liquid. 

 
Figure 2. Dynamic viscosity of shear-thinning liquids depending on shear rate. 

To approximate the dependence of viscosity on shear rate, the Bird–Carreau model 
was applied [28]: 

µ = µ∞ + ൫µ − µ∞൯ · ሾ1 + (𝑘𝛾ሶ)ଶሿିଵଶ  (1) 

where µ is the dynamic viscosity at zero shear rate, µ∞ is the dynamic viscosity at an 
infinite shear rate, k is the relaxation time, and n is the power index. For nonlinear ap-
proximation, the Levenberg–Marquardt algorithm was used. The coefficient of determi-
nation R2 was 0.99 for the xanthan gum solution and 0.96 for the CMC solutions. The 
values of approximated parameters are presented in Table 2. 

Table 2. The parameters of the Bird–Carreau model for non-Newtonian liquids. 

Parameter CMC 0.5% CMC 1.5% XG 0.5% 
µ, mPa·s 200 372.9 1313 
µ∞, mPa·s 9.44 107.1 8.7 

k, s 10.68 8.9 0.457 𝑛 −0.014 −0.67 0.129 
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To approximate the dependence of viscosity on shear rate, the Bird–Carreau model
was applied [28]:

u = u∞ + (u0 − u∞)·
[
1 +

(
k

.
γ
)2
] n−1

2 (1)

where u0 is the dynamic viscosity at zero shear rate, u∞ is the dynamic viscosity at an
infinite shear rate, k is the relaxation time, and n is the power index. For nonlinear approxi-
mation, the Levenberg–Marquardt algorithm was used. The coefficient of determination
R2 was 0.99 for the xanthan gum solution and 0.96 for the CMC solutions. The values of
approximated parameters are presented in Table 2.

Table 2. The parameters of the Bird–Carreau model for non-Newtonian liquids.

Parameter CMC 0.5% CMC 1.5% XG 0.5%

u0, mPa·s 200 372.9 1313

u∞, mPa·s 9.44 107.1 8.7

k, s 10.68 8.9 0.457

n −0.014 −0.67 0.129

A study of the degradation of the resulting solutions over time was carried out. For
this, the physical properties of liquids were measured immediately after the preparation
of the solution, after 24 h, and after 10 days. It was found that the physical properties of
liquids varied within the measurement error.

Flow rates of dispersed and continuous phases were controlled by a double syringe
pump (Gemini 88, KD Scientific) with a relative accuracy of 0.35%. A Zeiss AxioObserver.Z1
inverted microscope with a 5×magnification lens and a mounted halogen lamp was used to
visualize the flow. Flow images were recorded by a high-speed CMOS camera (pco.1200 hs)
with a frame rate up to 500 Hz. Flow patterns were visualized in transmitted light due to
the refractive index difference of continuous and dispersed phases in the T-junction zone,
and 15 mm away from the T-junction. The resolution of the flow images was 2.7 µm/pix.
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For each flow rate of the continuous and dispersed phases, 500 images were recorded. The
reproducibility of the experiments was checked by ensuring the identical flow regimes at
specified superficial velocities and the flow properties, such as slug length and velocity.

3. Results and Discussion
3.1. Flow Patterns

High-speed visualization of the immiscible liquid–liquid flow was performed in a
wide range of superficial velocities of dispersed and continuous phases from 29 µm/s
to 2300 µm/s. The typical flow patterns that were revealed are presented in Figure 3, in
which flow pictures for CMC 0.5%–castor oil are presented as an instance. At a low flow
rate of the dispersed phase, slug flow was observed (Figure 3a). At a high flow rate of the
continuous phase and a low flow rate of the dispersed phase, the droplet flow was realized,
with a droplet diameter less than or equal to the channel width (Figure 3c). An increase in
bulk velocity led the microdroplets to break off from the rear of the slug or droplet due to
the formation of V-shaped contact lines on the top and bottom channel walls (Figure 3b,d).
This phenomenon was observed previously in [29] for flows of liquids with low viscosity
ratio λ = µd/µc. With a further increase in the bulk velocity, for high flow rates of the
dispersed phase and low flow rates of the continuous phase, we observed a rivulet regime
with wavy boundaries (Figure 3e). In this regime, the rivulet of the dispersed phase flowed
along the upper and/or lower walls of the microchannel. At the highest available bulk
velocities, a parallel flow was established, in which the dispersed phase also moved along
the side wall of the channel, thus wetting three walls (Figure 3f).

The main difference in the flow patterns for XG–castor oil from the previous set of
fluids was the presence of a rivulet regime with parallel boundaries. For a set of CMC
1.5%–castor oil, the rivulet flow was not found in the range of the investigated superficial
velocities. High-speed visualization of the flow of the castor oil–G1 aqueous glycerol
solution made it possible to elicit the following flow regimes: slug flow, slug flow with
microdroplets, droplet flow, droplet flow with microdroplets, rivulet, and parallel flow. For
the G1 and G2 aqueous glycerol solutions and castor oil, flow, slug, droplet, and parallel
flow were observed. Since these liquid–liquid sets do not feature a low viscosity ratio λ,
flow regimes with microdroplet break-off from the rear meniscus of the slugs and droplets
were not recorded.
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Flow-pattern maps were constructed based on the high-speed visualization of flow
regimes for all six sets of immiscible fluids. Flow-pattern maps for the cases when the
dispersed phase was non-Newtonian are presented in Figure 4 in terms of superficial
velocities Uc and Ud of the continuous and dispersed phases. One can see that the flow
regimes’ mutual arrangement on all three flow-pattern maps was the same. However, the
boundaries between the flow regimes were shifted relative to each other along the axis
representing the dispersed phase superficial velocity.
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One of the important tasks in developing microfluidic devices using immiscible
liquids is to determine the boundaries between segmented (slug, droplet) and continuous
(parallel, rivulet, annular) flow regimes. For example, when carrying out liquid–liquid
extraction in microchannels, in most cases, it is optimal to operate in slug or droplet flow
regimes—the circulation of velocity inside the slugs intensifies the mass transfer, which
increases the extraction efficiency. However, in the presence of surfactants or nanoparticles
in the system, the separation of substances after extraction in the slug regime is largely
difficult; therefore, continuous operation, in this case, is favorable. In order to compare the
boundary position between continuous and segmented flow patterns for all liquid–liquid
sets with Newtonian and non-Newtonian dispersed phase, they were drawn on one plot
(Figure 5). As expected, the boundaries drawn in terms of superficial velocities of the
dispersed and continuous phases did not coincide. When comparing the boundaries, one
can see that they are shifted by one order of magnitude for G1 and G2, and by half an
order of magnitude for G2 and G3. Continuous-flow regimes prevailed for an aqueous
glycerol solution with a higher viscosity (G3) due to the energy dissipation into viscous
friction, which prevented forming a new interface (slugs and droplets). Thus, the boundary
between segmented and continuous-flow regimes lay at lower superficial velocities of the
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dispersed phase. A decrease in the viscosity of aqueous glycerol solutions led to an increase
in the dispersed-phase superficial velocity, at which segmented flow regimes were realized.
It should be noted that the boundaries between segmented and continuous flow regimes
had the same slope (parallel to each other) for all three Newtonian dispersed phases. For
the liquid–liquid flows with non-Newtonian dispersed phase, the boundaries were not
parallel to each other or to those of the Newtonian dispersed phase cases. At low flow
rates of phases (low shear rates), the viscosity of the XG was very high, and energy was
spent on viscous friction; thus, continuous regimes prevailed on the flow-pattern map.
With an increase in the flow rates of the phases, the effective dynamic viscosity of the
shear-thinning liquid decreased, and the curve of the separation of the flow regimes bent.
The boundary between flow regimes for CMC 0.5% and CMC 1.5% behaved in a similar
way. In the case of these non-Newtonian fluids, the curves deviated from the straight line
to the least extent and lay near the boundaries for the aqueous glycerol solution G1 and G2.
This was due to the smallest variation in the effective viscosity of the given non-Newtonian
fluids compared to XG (see Table 1). Thus, it can be concluded that the dynamic viscosity
of the dispersed phase was the governing parameter that affected the flow regimes of the
immiscible liquids.

Micromachines 2021, 12, x FOR PEER REVIEW 9 of 16 
 

 

vailed on the flow-pattern map. With an increase in the flow rates of the phases, the ef-
fective dynamic viscosity of the shear-thinning liquid decreased, and the curve of the 
separation of the flow regimes bent. The boundary between flow regimes for CMC 0.5% 
and CMC 1.5% behaved in a similar way. In the case of these non-Newtonian fluids, the 
curves deviated from the straight line to the least extent and lay near the boundaries for 
the aqueous glycerol solution G1 and G2. This was due to the smallest variation in the 
effective viscosity of the given non-Newtonian fluids compared to XG (see Table 1). Thus, 
it can be concluded that the dynamic viscosity of the dispersed phase was the governing 
parameter that affected the flow regimes of the immiscible liquids. 

 
Figure 5. Boundaries between segmented and continuous-flow rates for liquid–liquid flows with Newtonian and 
non-Newtonian dispersed phases. 

To quantitatively determine the effect of the viscosity of liquids on the flow-regime 
maps, the dependencies of the Ohnesorge number (Oh) for each dispersed phase used in 
the experiment on the bulk velocity were plotted (Figure 6a). The physical meaning of the 
Ohnesorge number can be obtained by multiplying its numerator and denominator by 
the square of the channel hydraulic diameter and the bulk velocity: 

𝑂ℎ = µඥ𝐷𝜎𝜌 = µ𝑢𝐷ଶඥ𝐷ଷ𝜎𝜌𝑢ଶ = µ 𝑢𝐷 𝐷ଶ ∙ 𝐷ඥ(𝜌𝑢ଶ𝐷ଷ) ∙ (𝜎𝐷ଶ) (2) 

The numerator contains energy dissipation due to viscous forces, and the denomi-
nator is the geometric mean of the kinetic energy of the system and the surface energy. 
The lower the Ohnesorge number, the weaker the frictional losses due to viscous forces, 
i.e., most of the energy is converted into creating a new surface due to surface-tension 
forces, and a drop is formed. At high values of the Ohnesorge number, all the energy of 
the system dissipates due to viscous forces, and drops are not formed. As the Ohnesorge 
number is directly proportional to the dynamic viscosity of the liquid, it is essential to 
estimate the last properly. In non-Newtonian fluids, the dynamic viscosity is 
shear-dependent, and the determination of corresponding shear rates in multiphase 
systems is a distinct task. There are several main approaches that are usually utilized by 
researchers. The first and the most common one is to assess effective viscosity and effec-
tive shear rates considering Poiseuille flow in a pipe of, for example, power-law fluid 
[30]. This approach gives an effective shear rate as (8Uavg/Dh)*f(n), where f(n) is a certain 
function of the fluid power-law index, Uavg is an average velocity, and Dh is an equivalent 
diameter, which coincides with the cross-section diameter in the case of the circular pipe. 
In this work, we used this approach to consider the influence of fluid bulk velocity on the 

Figure 5. Boundaries between segmented and continuous-flow rates for liquid–liquid flows with
Newtonian and non-Newtonian dispersed phases.

To quantitatively determine the effect of the viscosity of liquids on the flow-regime
maps, the dependencies of the Ohnesorge number (Oh) for each dispersed phase used in
the experiment on the bulk velocity were plotted (Figure 6a). The physical meaning of the
Ohnesorge number can be obtained by multiplying its numerator and denominator by the
square of the channel hydraulic diameter and the bulk velocity:

Oh =
µ√

Dhσρ
=

µuD2
h√

D3
hσρu2

=
µ u

Dh
D2

h·Dh√(
ρu2D3

h
)
·
(
σD2

h
) (2)

The numerator contains energy dissipation due to viscous forces, and the denominator
is the geometric mean of the kinetic energy of the system and the surface energy. The lower
the Ohnesorge number, the weaker the frictional losses due to viscous forces, i.e., most
of the energy is converted into creating a new surface due to surface-tension forces, and
a drop is formed. At high values of the Ohnesorge number, all the energy of the system
dissipates due to viscous forces, and drops are not formed. As the Ohnesorge number is
directly proportional to the dynamic viscosity of the liquid, it is essential to estimate the
last properly. In non-Newtonian fluids, the dynamic viscosity is shear-dependent, and the
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determination of corresponding shear rates in multiphase systems is a distinct task. There
are several main approaches that are usually utilized by researchers. The first and the most
common one is to assess effective viscosity and effective shear rates considering Poiseuille
flow in a pipe of, for example, power-law fluid [30]. This approach gives an effective
shear rate as (8Uavg/Dh)*f(n), where f(n) is a certain function of the fluid power-law index,
Uavg is an average velocity, and Dh is an equivalent diameter, which coincides with the
cross-section diameter in the case of the circular pipe. In this work, we used this approach
to consider the influence of fluid bulk velocity on the viscosity of non-Newtonian dispersed
phase, and took Uavg = Ubulk. Neglecting the influence of power-law index n on the shear
rate, thus assuming f(n) equal to unity in this formula for effective shear rate, and letting
Uavg = Uc, one can obtain a Spisak model for shear-rate estimation, which is frequently
used in gas–liquid flows. The Spisak approach to viscosity estimation in conjunction with
power-law fluid models can be found in [18,19]. Roumpea et al. [26] calculated effective
capillary numbers in their work using a model by Linder et al. [30], proposed for Hele–
Shaw geometry and purportedly a good approximation in the case of strong shear-thinning
behavior of power-law fluid (n < 0.65). Chiarello et al. assessed shear rates based on the
averaging of the parabolic velocity profile, and introduced an effective capillary number
derived from the comparison of differential equation terms. This approach was shown to
be very effective in the description of plug formation for non-Newtonian fluids. Another
example is a simple evaluation of shear rate as Uc/Dh, applied together with the Bird–
Carreau model in [31]. The key notes of shear-rate estimations by various authors are
summarized in Table 3.

Table 3. Different approaches to shear-rate estimation in two-phase microfluidic flows.

Authors Shear-Rate Estimation
.
γ Comments on the Estimation of Effective Viscosity

Zhang et al. [19] and Yang et al. [18]
.
γ = 8Uc

Dh
Power-law fluid: µe f f = k

.
γ

n−1

Roumpea et al. [26] .
γ =

2Uc(1 + 2n)
Dh(1 + n) Power-law fluid: µe f f = k

.
γ

n−1

Chiarello et al. [32]
.
γ = 3Uc

δ

Here δ is a smallest size of a rectangular channel
cross-section. The authors introduced effective capillary

number Ca’ = n Ca(µeff)

Fu et al. [20]
.
γ = Uc

Dh

Viscosity was calculated using the Bird–Carreau model
(Equation (1))
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The difference in non-Newtonian viscosity estimated using listed models can achieve
an order of magnitude for low shear rates in strongly shear-thinning fluids, e.g., the XG
solution in the current work. Here, we used the approach described above with a shear-rate
estimation of 8Ubulk/h, where h is the smallest dimension of the microchannel, i.e., its
height. Since the flow rates of both phases influence the flow pattern transitions, the bulk
velocity Ubulk is used as a characteristic velocity value instead of the superficial velocity of
a single phase Uc or Ud. The necessity of considering the impact of flow rates from both
phases is evident from experiments and indicated by the nonzero slope of the transition
boundaries (see Figure 5). The term f(n) that appears for power-law fluids introduces
difficulties in the case of shear-thinning fluids, which are not described well by a power-
law approximation such as for the CMC solutions used. Therefore, we also neglected the
influence of this term on the shear rate, supposing it to be equal or close to unity (the
power-law approximation gives n = 0.24 and f(n) = 1.15 for the XG solution).

Our previous studies of the viscosity influence on the flow-pattern map of immiscible
liquid–liquid flows in a T-shaped microchannel [17] let us conclude that the nondimensional
complex We0.4·Oh0.6 allows the construction of a universal flow-pattern map that takes
into account all properties of the liquids. Thus, here we employed this complex to plot
the boundary between segmented and continuous-flow patterns for the liquid–liquid
flows with Newtonian and non-Newtonian dispersed phases (Figure 6b). The agreement
between the boundaries for both the Newtonian and non-Newtonian dispersed phases
proved that the applied shear-rate estimation to calculate the effective Ohnesorge number
was correct. All other models presented in Table 1 underpredicted the effective shear
rates in the case of segmented-to-continuous-flow pattern transition. The reason for this is
possibly a significant difference in the local shear rates for various flow patterns. Thus, the
models appropriate for the slug formation, in which only the continuous phase superficial
velocity Uc is considered, failed to predict the transition from slug to parallel-flow regimes.

A comparison with available literature data on non-Newtonian fluid flows in mi-
crochannels was performed in order to test an assumption about effective viscosity de-
pendence on the bulk velocity with regard to flow-pattern transition from segmented
to continuous flow. We used data from Yang et al. [18] for non-Newtonian solutions of
XG, CMC, and PAM in gas–liquid flows. An effective viscosity was calculated using a
power-law model with values of n and k provided by the authors and using a shear rate
estimated as 8Ubulk/h. The resulting unification of flow-pattern boundaries is presented
in Figure 7, in which the boundary for XG solution from current work is presented as a
reference. One can see that the proposed shear-rate estimation gave a reasonable unification
of transition boundaries for different non-Newtonian solutions. The comparison with our
results showed a similar slope of the transition lines, indicating that the mechanism of flow
pattern transition was the same, and the churn-to-annular transition from Yang et al. can
be considered as a segmented-flow/continuous-flow boundary. Finally, the mismatch in
the absolute values may be explained by the influence of the channel-inlet configuration
or the aspect ratio, which were not taken into account in the proposed dimensionless
complex. In addition, channel-wall wettability could also have influenced the two-phase
flow-pattern boundaries in the microchannels, since adhesion forces were not considered
in the proposed nondimensional complex.
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the current work in the unified dimensionless coordinates.

3.2. Slug Flow

In order to reveal the influence of the shear-thinning dispersed phase on the slug flow,
slug length was measured for all liquid–liquid sets and compared with the cases of the
Newtonian dispersed phase. Slug length was measured at the end of the microchannel
using DMV video-processing software [33]. The processing steps included background
subtraction and slug-edge detection, with subsequent filling of the inner part of the slugs.
For each flow rate of the dispersed and continuous phases, the averaging was performed
for 20–30 slugs. The measurement uncertainty of the slug length did not exceed 5.4 µm.
The slug-length plots normalized by the microchannel width depending on the flow rate
ratio of the dispersed and continuous phases at different flow rates of the dispersed phase
are presented in Figure 8. Comparison of the plots allowed us to conclude that at lower
flow rates of the non-Newtonian dispersed phase, the increase of the flow rate ratio led
to the considerable growth of the slug length, in contrast to the case of the Newtonian
dispersed phase. This discrepancy occurred at a low flow-rate ratio and the low flow rate
of the dispersed phase. The higher the flow rate of the dispersed phase, the higher the
flow rate ratio at which deviation from Newtonian dispersed phase case occurred. Slug
formation at the T-junction was examined in detail for the Newtonian and non-Newtonian
dispersed phases. The pictures of slug formation at Qd = 0.278 µL/min, Qc = 0.278 µL/min
are presented in Figure 9. The high dynamic viscosity of the dispersed phase at small flow
rates resisted the slug break-off at the entrance of the mixing channel, which prompted
the dispersed phase to flow further downstream, and the slug-formation mechanism
changed to the jetting regime. An increase in the dispersed-phase flow rate decreased
the effective dynamic viscosity of the non-Newtonian liquid, and the discrepancy in slug
formation vanished.
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4. Conclusions

An influence of the shear-thinning feature of the dispersed phase on the flow of immis-
cible liquids in a T-shaped microchannel was studied based on high-speed visualization.
Three non-Newtonian solutions with different rheological characteristics were used as a
dispersed phase, while three aqueous glycerol solutions with different viscosities were
used as Newtonian dispersed phases to conduct a comparative study. Castor oil was
always a continuous phase in the experiments. Typical flow patterns were visualized in a
wide range of superficial velocities of the dispersed and continuous phases. Flow-patterns
maps were drawn for all liquid–liquid sets. The following concluding observations can be
highlighted:
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1. The boundaries between segmented and continuous-flow patterns drawn on the
flow-pattern maps in terms of superficial velocities of the phases were shifted relative
to each other for the cases of shear-thinning and Newtonian dispersed phases with
different viscosities. While the boundaries for Newtonian liquids were parallel to each
other, the boundaries for the case of the non-Newtonian dispersed phase were not.

2. The most appropriate model of average shear-rate estimation based on bulk veloc-
ity was chosen and applied to evaluate an effective dynamic viscosity of a shear-
thinning fluid.

3. The nondimensional complex We0.4·Oh0.6 could be successfully utilized for universal
flow-pattern-map construction for both Newtonian and non-Newtonian dispersed
phases, for which the Ohnesorge number was calculated using an effective viscosity
based on the average shear rate in a microchannel.

4. Comparison with the experimental data from literature showed that the proposed
nondimensional complex We0.4·Oh0.6 unified flow-pattern boundaries when the con-
tinuous phase exhibited non-Newtonian properties.

5. The shear-thinning dispersed phase influenced the slug-formation mechanism and
slug length. At low flow rates of the dispersed and continuous phases, a jetting regime
of slug formation was established, leading to a dramatic increase in slug length.
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Abbreviations

Symbol Formula Description

Dh, m hydraulic diameter
w, m microchannel width
U, m/s superficial velocity
Ubulk, m/s bulk velocity
Q, m3/s flow rate
µ, Pa·s dynamic viscosity
σ, N/m interfacial tension
$, kg/m3 density
θ, ◦ contact angle
Ca µU

σ capillary number
Oh µ√

Dhσρ
Ohnesorge number

Re ρUDh
µ Reynolds number

We ρU2Dh
σ Weber number

d dispersed phase
c continuous phase
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