Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry
Abstract
:1. Introduction
2. Light Sources
3. Detection Setups and Optical Sensor Technology
3.1. Detection Setups
3.2. Charge-Coupled Device Based Sensors in Droplet Microflow Cytometry (DMFC)
3.3. Complementary Metal Oxide Semiconductor (CMOS) Based Sensors in DMFC
3.4. Photomultiplier Tube (PMT)-Based Sensors in DMFC
3.5. Photodiode-Based Sensors in DMFC
4. Discussion
4.1. Commercial Platforms
4.2. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Jiang, X. Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 2017, 17, 3960–3978. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, C.; Zhang, Q.; Li, C.W.; Yang, J.; Zhao, J.; Yang, M. Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal. Bioanal. Chem. 2006, 384, 1259–1268. [Google Scholar] [CrossRef]
- Pires, N.M.M.; Dong, T.; Hanke, U.; Hoivik, N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 2014, 14, 15458–15479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, T.S.; Scheler, O.; Garstecki, P. Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip 2016, 16, 2168–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joensson, H.N.; Andersson Svahn, H. Droplet Microfluidics—A Tool for Single-Cell Analysis. Angew. Chem. Int. Ed. 2012, 51, 12176–12192. [Google Scholar] [CrossRef]
- Lagus, T.P.; Edd, J.F. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J. Phys. D Appl. Phys. 2013, 46, 114005. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yelleswarapu, V.; Buser, J.R.; Haber, M.; Baron, J.; Inapuri, E.; Issadore, D. Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl. Acad. Sci. USA 2019, 116, 4489–4495. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.-X.; Li, H.-Y.; Fang, P.; Pan, J.-Z.; Fang, Q. A handheld laser-induced fluorescence detector for multiple applications. Talanta 2016, 150, 135–141. [Google Scholar] [CrossRef]
- Geng, X.; Shi, M.; Ning, H.; Feng, C.; Guan, Y. A compact and low-cost laser-induced fluorescence detector with silicon based photodetector assembly for capillary flow systems. Talanta 2018, 182, 279–284. [Google Scholar] [CrossRef]
- Stavrakis, S.; Holzner, G.; Choo, J.; DeMello, A. High-throughput microfluidic imaging flow cytometry. Curr. Opin. Biotechnol. 2019, 55, 36–43. [Google Scholar] [CrossRef]
- Regmi, R.; Mohan, K.; Mondal, P.P. Light sheet based imaging flow cytometry on a microfluidic platform. Microsc. Res. Tech. 2013, 76, 1101–1107. [Google Scholar] [CrossRef]
- Colomer-Farrarons, J.; Miribel, P.; Rodríguez-Villarreal, A.; Samitier, J.; Ll., P.; Ivon, A.; Samitier, J. Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices. In New Perspectives in Biosensors Technology and Applications; InTech: London, UK, 2011; ISBN 978-953-307-448-1. [Google Scholar]
- Saateh, A.; Kalantarifard, A.; Celik, O.T.; Asghari, M.; Serhatlioglu, M.; Elbuken, C. Real-time impedimetric droplet measurement (iDM). Lab Chip 2019, 19, 3815–3824. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.-G.; Miao, Y.-Q.; Zhang, Q.-J. Impedimetric biosensors. J. Biosci. Bioeng. 2004, 97, 219–226. [Google Scholar] [CrossRef]
- Yang, R.-J.; Fu, L.-M.; Hou, H.-H. Review and perspectives on microfluidic flow cytometers. Sens. Actuators B Chem. 2018, 266, 26–45. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, T.; Zhang, H.; Nie, J.; Guan, Z.; Ho, C.M.; Liu, S.; Fei, P. Droplet-based light-sheet fluorescence microscopy for high-throughput sample preparation, 3-D imaging and quantitative analysis on a chip. Lab Chip 2017, 17, 2193–2197. [Google Scholar] [CrossRef] [PubMed]
- BD AccuriTM C6 Plus | BD Biosciences-US. Available online: https://www.bdbiosciences.com/en-us/instruments/research-instruments/research-cell-analyzers/accuri-c6-plus (accessed on 15 April 2020).
- Cell Analysis at the Bench: Benchtop Flow Cytometers | Biocompare: The Buyer’s Guide for Life Scientists. Available online: https://www.biocompare.com/editorial-articles/146008-cell-analysis-at-the-bench-benchtop-flow-cytometers/ (accessed on 15 April 2020).
- Attune NxT Flow Cytometer | Thermo Fisher Scientific—EE. 2020. Available online: https://www.thermofisher.com/ee/en/home/life-science/cell-analysis/flow-cytometry/flow-cytometers/attune-acoustic-focusing-flow-cytometer.html (accessed on 15 April 2020).
- Shrirao, A.B.; Fritz, Z.; Novik, E.M.; Yarmush, G.M.; Schloss, R.S.; Zahn, J.D.; Yarmush, M.L. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology 2018, 6, 1–23. [Google Scholar] [CrossRef]
- Schonbrun, E.; Gorthi, S.S.; Schaak, D. Microfabricated multiple field of view imaging flow cytometry. Lab Chip 2012, 12, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Gu, Y.; Zhang, A.C.; Lo, Y.H. Review: Imaging technologies for flow cytometry. Lab Chip 2016, 16, 4639–4647. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, Q. Analytical detection techniques for droplet microfluidics—A review. Anal. Chim. Acta 2013, 787, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Watts, B.; Guo, T.; Zhang, Z.; Xu, C.; Fang, Q. Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review. Micromachines 2016, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Yotter, R.A.; Wilson, D.M. A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J. 2003, 3, 288–303. [Google Scholar] [CrossRef]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, Y. “Development and application of analytical detection techniques for droplet-based microfluidics”—A review. Anal. Chim. Acta 2020, 1113, 66–84. [Google Scholar] [CrossRef]
- Elliott, D.J. Ultraviolet Laser Technology and Applications; Academic Press: New York NY, USA, 1995; ISBN 9781483296517. [Google Scholar]
- Rawicz, A.H. Theodore Harold Maiman and the invention of laser. In Proceedings of the Photonics, Devices, and Systems IV; Tománek, P., Senderáková, D., Hrabovský, M., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7138, p. 713802. [Google Scholar]
- Schawlow, A.L.; Townes, C.H. Infrared and optical masers. Phys. Rev. 1958, 112, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Svelto, O. Principles of Lasers; Springer: New York, NY, USA, 2010; ISBN 9781441913012. [Google Scholar]
- Ready, J.F. Industrial Applications of Lasers; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 9780125839617. [Google Scholar]
- Laser Diode Tutorial. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1832 (accessed on 21 March 2020).
- Lai, M.H.; Lim, K.S.; Gunawardena, D.S.; Lee, Y.S.; Ahmad, H. CO2 Laser Applications in Optical Fiber Components Fabrication and Treatment: A Review. IEEE Sens. J. 2017, 17, 2961–2974. [Google Scholar] [CrossRef]
- Types of Lasers—Solid State Laser, Gas Laser, Liquid Laser & Semiconductor Laser. Available online: https://www.physics-and-radio-electronics.com/physics/laser/differenttypesoflasers.html (accessed on 25 May 2020).
- Legres, L.G.; Chamot, C.; Varna, M.; Janin, A. The Laser Technology: New Trends in Biology and Medicine. J. Mod. Phys. 2014, 5, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Silfvast, W.T. Laser Fundamentals, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780521541053. [Google Scholar]
- Frot, C.; Taccoen, N.; Baroud, C.N. Frugal droplet microfluidics using consumer opto-electronics. PLoS ONE 2016, 11, e161490. [Google Scholar] [CrossRef] [Green Version]
- Clausell-Tormos, J.; Lieber, D.; Baret, J.C.; El-Harrak, A.; Miller, O.J.; Frenz, L.; Blouwolff, J.; Humphry, K.J.; Köster, S.; Duan, H.; et al. Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. Chem. Biol. 2008, 15, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Sjostrom, S.L.; Bai, Y.; Huang, M.; Liu, Z.; Nielsen, J.; Joensson, H.N.; Andersson Svahn, H. High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 2014, 14, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Isozaki, A.; Mikami, H.; Hiramatsu, K.; Sakuma, S.; Kasai, Y.; Iino, T.; Yamano, T.; Yasumoto, A.; Oguchi, Y.; Suzuki, N.; et al. A Practical Guide to Intelligent Image-Activated Cell Sorting. Nat. Protoc. 2019, 14, 2370–2415. [Google Scholar] [CrossRef]
- Hung, S.-T.; Mukherjee, S.; Jimenez, R. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter. Lab Chip 2020, 15, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Sciambi, A.; Abate, A.R. Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip 2015, 15, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, H.M.; Telford, W.G. Lasers for Flow Cytometry: Current and Future Trends. Curr. Protoc. Cytom. 2018, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, T. (Ed.) The Sun and Photovoltaic Technologies; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-22402-8. [Google Scholar]
- Powering Lasers: Evaluating Bench Power Supplies | Lasers | Photonics Handbook | Photonics Buyers’ Guide. Available online: https://www.photonics.com/Articles/Powering_Lasers_Evaluating_Bench_Power_Supplies/a57160 (accessed on 30 April 2020).
- Denker, B.; Shklovsky, E. Handbook of Solid-State Lasers: Materials, Systems and Applications; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-85709-272-4. [Google Scholar]
- Light-Emitting Diodes: A Primer | Light Sources | Photonics Handbook | Photonics Buyers’ Guide. Available online: https://www.photonics.com/Articles/Light-Emitting_Diodes_A_Primer/a36706 (accessed on 17 March 2020).
- Capitán-Vallvey, L.F.; Palma, A.J. Recent developments in handheld and portable optosensing—A review. Anal. Chim. Acta 2011, 696, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Fan, N.; Yang, X.; Peng, B.; Jiang, H. New advances in microfluidic flow cytometry. Electrophoresis 2018. [Google Scholar] [CrossRef] [PubMed]
- ZEISS Microscopy Online Campus | Light-Emitting Diodes. Available online: http://zeiss-campus.magnet.fsu.edu/print/lightsources/leds-print.html (accessed on 9 March 2020).
- Bui, D.A.; Hauser, P.C. Analytical devices based on light-emitting diodes—A review of the state-of-the-art. Anal. Chim. Acta 2015, 853, 46–58. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, Y.; Li, N.; Xu, B.; Liu, J.; Song, Q.; Xu, J.; Li, D.; Liu, P.; Xu, X.; et al. Spectroscopy and diode-pumped laser operation of Pr:LaMgAl11O19 crystal. Opt. Mater. 2019, 89, 14–17. [Google Scholar] [CrossRef]
- Van Der Broeck, H.; Sauerländer, G.; Wendt, M. Power driver topologies and control schemes for LEDs. In Proceedings of the APEC 07—Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; pp. 1319–1325. [Google Scholar]
- Wang, Y.; Alonso, J.M.; Ruan, X. A Review of LED Drivers and Related Technologies. IEEE Trans. Ind. Electron. 2017, 64, 5754–5765. [Google Scholar] [CrossRef]
- Hölz, K.; Lietard, J.; Somoza, M.M. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS Sustain. Chem. Eng. 2017, 5, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Vrignon, J.; Gruner, P.; Karamitros, C.S.; Konrad, M.; Baret, J.C. Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array. Appl. Phys. Lett. 2013, 103, 203704. [Google Scholar] [CrossRef] [PubMed]
- Aswani, K.; Jinadasa, T.; Brown, C.M. Fluorescence Microscopy Light Sources. Microsc. Today 2012, 20, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Mubaid, F.; Kaufman, D.; Wee, T.L.; Nguyen-Huu, D.S.; Young, D.; Anghelopoulou, M.; Brown, C.M. Fluorescence microscope light source stability. Histochem. Cell Biol. 2019, 151, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral Identification of Lighting Type and Character. Sensors 2010, 10, 3961–3988. [Google Scholar] [CrossRef]
- Osram Metal Halide Lamp—Osram. Available online: https://www.osram.de/media/resource/hires/334186/Metal-halide-lamps.-Instructions-for-the-use-and-application.pdf (accessed on 15 April 2020).
- Chang, Y.N.; Yang, T.H.; Chan, S.Y.; Cheng, H.L. Design of electronic ballast for short-arc Xenon lamps. In Proceedings of the IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 309–314. [Google Scholar]
- Seo, S.; Mastiani, M.; Mosavati, B.; Peters, D.M.; Mandin, P.; Kim, M. Performance evaluation of environmentally benign nonionic biosurfactant for enhanced oil recovery. Fuel 2018, 234, 48–55. [Google Scholar] [CrossRef]
- Utharala, R.; Tseng, Q.; Furlong, E.E.M.; Merten, C.A. A versatile, low-cost, multi-way microfluidic sorter for droplets, cells and embryos. Anal. Chem. 2018, 90, 5982–5988. [Google Scholar] [CrossRef] [Green Version]
- Leman, M.; Abouakil, F.; Griffiths, A.D.; Tabeling, P. Droplet-based microfluidics at the femtolitre scale. Lab Chip 2015, 15, 753–765. [Google Scholar] [CrossRef]
- Hess, D.; Rane, A.; DeMello, A.J.; Stavrakis, S. High-Throughput, Quantitative Enzyme Kinetic Analysis in Microdroplets Using Stroboscopic Epifluorescence Imaging. Anal. Chem. 2015, 87, 4965–4972. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Kang, D.K.; Park, H.; Demello, A.J.; Chang, S.I. High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization. Anal. Chem. 2012, 84, 3849–3854. [Google Scholar] [CrossRef]
- Kim, M.; Pan, M.; Gai, Y.; Pang, S.; Han, C.; Yang, C.; Tang, S.K.Y. Optofluidic ultrahigh-throughput detection of fluorescent drops. Lab Chip 2015, 15, 1417–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, H.M. Practical Flow Cytometry; Wiley: Hoboken, NJ, USA, 2003; ISBN 9780471411253. [Google Scholar]
- Kaushik, A.M.; Hsieh, K.; Chen, L.; Shin, D.J.; Liao, J.C.; Wang, T.H. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens. Bioelectron. 2017, 97, 260–266. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, H.; Zhu, M.; Wu, L.; Jia, C.; Zhou, H.; Zhao, J. A Facile Strategy for Visualizing and Modulating Droplet-Based Microfluidics. Micromachines 2019, 10, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Sun, G.; Lin, N.W.; Vadanan, S.V.; Lim, S.; Chen, C.H. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Lab Chip 2020, 20, 626–633. [Google Scholar] [CrossRef]
- Yelleswarapu, V.R.; Jeong, H.H.; Yadavali, S.; Issadore, D. Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics. Lab Chip 2017, 17, 1083–1094. [Google Scholar] [CrossRef]
- Rane, A.S.; Rutkauskaite, J.; deMello, A.; Stavrakis, S. High-Throughput Multi-parametric Imaging Flow Cytometry. Chem 2017, 3, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, D.; Dusa, A.; Stahl, R.; Vanmeerbeeck, G.; de Wijs, K.; Liu, C.; Prodanov, D.; Peumans, P.; Lagae, L. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip 2015, 15, 1123–1132. [Google Scholar] [CrossRef]
- Schonbrun, E.; Abate, A.R.; Steinvurzel, P.E.; Weitz, D.A.; Crozier, K.B. High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip 2010, 10, 852. [Google Scholar] [CrossRef] [Green Version]
- Mikami, H.; Kawaguchi, M.; Huang, C.-J.; Matsumura, H.; Sugimura, T.; Huang, K.; Lei, C.; Ueno, S.; Miura, T.; Ito, T.; et al. Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 2020, 11, 1162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; You, Z. A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot. Sensors 2016, 16, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar, M.; Hengoju, S.; Weber, T.; Mahler, L.; Choudhary, M.; Becker, T.; Roth, M. One Sensor for Multiple Colors: Fluorescence Analysis of Microdroplets in Microbiological Screenings by Frequency-Division Multiplexing. Anal. Chem. 2019, 91, 3055–3061. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.H.; de Lange, N.; Gartner, Z.J.; Abate, A.R. Compact and modular multicolour fluorescence detector for droplet microfluidics. Lab Chip 2015, 15, 2754–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, B.L.; Van Buskirk, S.; Carter, K.P.; Qin, Y.; Carpenter, M.C.; Palmer, A.E.; Jimenez, R. Droplet Microfluidic Flow Cytometer For Sorting On Transient Cellular Responses Of Genetically-Encoded Sensors. Anal. Chem. 2017, 89, 711–719. [Google Scholar] [CrossRef]
- Hamamatsu Photonics. Photomultiplier Tubes—Basics and Applications, 3rd ed.; Word Tehcnical Writing, Ed.; Hamamatsu Photonics K.K.: Hamamatsu, Japan, 2007. [Google Scholar]
- Ibsen Quick Note: Calculating Quantum Efficiency from A/W. Available online: https://ibsen.com/wp-content/uploads/Tech-Note-Quantum-efficiency-conversion-note.pdf (accessed on 16 April 2020).
- Larsen, A.C.; Dunn, M.R.; Hatch, A.; Sau, S.P.; Youngbull, C.; Chaput, J.C. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 2016, 7, 11235. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Cheng, Z.; Demello, A.J.; Choo, J. Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 2016, 16, 1022–1029. [Google Scholar] [CrossRef]
- Shi, W.; Wen, H.; Lu, Y.; Shi, Y.; Lin, B.; Qin, J. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab Chip 2010, 10, 2855–2863. [Google Scholar] [CrossRef]
- Mikami, H.; Miura, T.; Ozeki, Y.; Goda, K. High-throughput fluorescence imaging flow cytometry with light-sheet excitation and machine learning (Conference Presentation). In Proceedings of the High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management; Goda, K., Tsia, K.K., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 15. [Google Scholar]
- Chen, W.P.; Eivar, P.B.; Petersen, T.; Gandhi, D.; Liu, K.; Luo, N. The sub-system validation of solid-state detector in BD Accuri C6 plus flow cytometer. In Proceedings of the Design and Quality for Biomedical Technologies XII; Liang, R., Pfefer, T.J., Hwang, J., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 10870, p. 9. [Google Scholar]
- Bonar, M.M.; Tilton, J.C. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology 2017, 505, 80–90. [Google Scholar] [CrossRef]
- Srisa-Art, M.; Dyson, E.C.; deMello, A.J.; Edel, J.B. Monitoring of Real-Time Streptavidin−Biotin Binding Kinetics Using Droplet Microfluidics. Anal. Chem. 2008, 80, 7063–7067. [Google Scholar] [CrossRef]
- Nguyen, N.T. Micro-optofluidic Lenses: A review. Biomicrofluidics 2010, 4, 031501. [Google Scholar] [CrossRef] [Green Version]
- Holst, G.C.; Lomheim, T.S. CMOS/CCD Sensors and Camera Systems, 2nd ed.; JCD Publishing: Winter Park, FL, USA, 2018; ISBN 978-0-9707-7498-9. [Google Scholar]
- Dussault, D.; Hoess, P. Noise performance comparison of ICCD with CCD and EMCCD cameras. In Proceedings of the Infrared Systems and Photoelectronic Technology; Dereniak, E.L., Sampson, R.E., Johnson, C.B., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5563, p. 195. [Google Scholar]
- Smith, N.; Coates, C.; Giltinan, A.; Howard, J.; O’Connor, A.; O’Driscoll, S.; Hauser, M.; Wagner, S. EMCCD technology and its impact on rapid low-light photometry. In Proceedings of the Optical and Infrared Detectors for Astronomy; Garnett, J.D., Beletic, J.W., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5499, p. 162. [Google Scholar]
- Robbins, M.S.; Hadwen, B.J. The noise performance of electron multiplying charge-coupled devices. IEEE Trans. Electron Devices 2003, 50, 1227–1232. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Just, F.; Leuchs, G.; Chekhova, M.V. Autonomous absolute calibration of an ICCD camera in single-photon detection regime. Opt. Express 2016, 24, 26444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigle, O.; Turcotte, J.; Gosselin, Y.; Lamy, A.S.A. Time-delay integration EMCCD. In Proceedings of the 2019 Photonics North, PN 2019, Quebec City, QC, Canada, 21–23 May 2019. [Google Scholar]
- Schühle, U. Intensified solid state sensor cameras: ICCD and IAPS. In Observing Photons in Space; Springer: New York, NY, USA, 2013; pp. 455–465. [Google Scholar]
- Introduction to SiPM Technical Note. Available online: https://www.sensl.com/downloads/ds/TN-IntrotoSPMTech.pdf (accessed on 3 May 2020).
- Lindén, J.; Knappe, C.; Richter, M.; Aldén, M. Limitations of ICCD detectors and optimized 2D phosphor thermometry. Meas. Sci. Technol. 2012, 23, 035201. [Google Scholar] [CrossRef]
- Yamada, M.; Nakashima, M.; Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 2004, 76, 5465–5471. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-H.; Zhang, Z.-L.; Xie, Y.-N.; Wang, L.; Yi, S.; Liu, K.; Liu, J.; Pang, D.-W.; Zhao, X.-Z. Flow-Focusing Generation of Monodisperse Water Droplets Wrapped by Ionic Liquid on Microfluidic Chips: From Plug to Sphere. Langmuir 2007, 23, 11924–11931. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.W.; Jin, J.S.; Choi, J.H.; Kim, H.Y.; Lee, J.S. A microfluidic chaotic mixer using ferrofluid. J. Micromech. Microeng. 2007, 17, 2077–2083. [Google Scholar] [CrossRef]
- Cecchini, M.P.; Hong, J.; Lim, C.; Choo, J.; Albrecht, T.; DeMello, A.J.; Edel, J.B. Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems. Anal. Chem. 2011, 83, 3076–3081. [Google Scholar] [CrossRef]
- Bardiya, N.; Choi, J.W.; Chang, S.I. Analysis of single nucleotide polymorphism in human angiogenin using droplet-based microfluidics. Biochip J. 2014, 8, 15–21. [Google Scholar] [CrossRef]
- Lv, S.; Yu, J.; Zhao, Y.; Li, H.; Zheng, F.; Liu, N.; Li, D.; Sun, X. A Microfluidic Detection System for Bladder Cancer Tumor Cells. Micromachines 2019, 10, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemeny, S.E.; Fossum, E.R. CMOS Active Pixel Image Sensor. IEEE Trans. Electron Devices 1994, 41, 452–453. [Google Scholar] [CrossRef]
- Fossum, E.R. Active pixel sensors: Are CCDs dinosaurs? In Proceedings of the Charge-Coupled Devices and Solid State Optical Sensors III; SPIE: Bellingham, WA, USA, 1993; Volume 1900, pp. 2–14. [Google Scholar]
- Eid, S.I.; Dickinson, A.G.; Inglis, D.A.; Ackland, B.D.; Fossum, E.R. 256 × 256 CMOS active pixel image sensor. In Proceedings of the Charge-Coupled Devices and Solid State Optical Sensors V; SPIE: Bellingham, WA, USA, 1995; Volume 2415, p. 265. [Google Scholar]
- Bermak, A.; Bouzerdoum, A.; Eshraghian, K. High fill-factor native logarithmic pixel: Simulation, design and layout optimization. In Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 28–31 May 2000; Volume 5. [Google Scholar]
- Joy, T.; Pyo, S.; Park, S.; Choi, C.; Palsule, C.; Han, H.; Feng, C.; Lee, S.; McKee, J.; Altice, P.; et al. Development of a production-ready, back-illuminated CMOS image sensor with small pixels. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 1007–1010. [Google Scholar]
- Williams, J.B.; Williams, J.B. Introduction. In The Electronics Revolution; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–4. [Google Scholar]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Gijs, M.A.M. Micro-optics for microfluidic analytical applications. Chem. Soc. Rev. 2018, 47, 1391–1458. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Wei, Q. Smartphone-based flow cytometry. In Smartphone Based Medical Diagnostics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–88. [Google Scholar]
- Skandarajah, A.; Reber, C.D.; Switz, N.A.; Fletcher, D.A. Quantitative Imaging with a Mobile Phone Microscope. PLoS ONE 2014, 9, e96906. [Google Scholar] [CrossRef] [Green Version]
- Lubsandorzhiev, B.K. On the history of photomultiplier tube invention. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 567, 236–238. [Google Scholar] [CrossRef] [Green Version]
- Photonis. Photomultiplier Tube Basics. Available online: https://psec.uchicago.edu/library/photomultipliers/Photonis_PMT_basics.pdf (accessed on 4 April 2020).
- Anashin, V.V.; Golubev, V.B.; Beschastnov, P.M.; Golubev, V.B.; Mironenko, L.A.; Salnikov, A.A.; Serednyakov, S.I. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment April 1995 ELSEVIER Nuclear Instruments and Methods. Phys. Res. A 1995, 357, 103–109. [Google Scholar] [CrossRef]
- Dhawan, S. Introduction to microchannel plate photomultipliers. IEEE Trans. Nucl. Sci. 1981, 28, 672–676. [Google Scholar] [CrossRef]
- Kishimoto, N.; Nagamine, M.; Inami, K.; Enari, Y.; Ohshima, T. Lifetime of MCP-PMT. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 564, 204–211. [Google Scholar] [CrossRef]
- Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F. Lifetime-issues of MCP-PMTs. J. Instrum. 2011, 6, C10001. [Google Scholar] [CrossRef]
- Cheng, Z.; Xu, H.; Chen, Y. Design of low noise silicon reach-through avalanche photodiodes. In Proceedings of the Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX; Fiederle, M., Burger, A., James, R.B., Payne, S.A., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10762, p. 19. [Google Scholar]
- LaserComponents Silicon Avalanche Photodiodes. Available online: https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lc/application-reports/lc-apd/si-apds.pdf (accessed on 2 May 2020).
- Hamamatsu APD Modules. Available online: https://www.hamamatsu.com/resources/pdf/ssd/apd_modules_kacc9010e.pdf (accessed on 2 May 2020).
- Nabet, B. Photodetectors: Materials, Devices and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9781782424680. [Google Scholar]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light Sci. Appl. 2019, 8, 1–28. [Google Scholar] [CrossRef]
- Engelmann, E.; Popova, E.; Vinogradov, S. Spatially resolved dark count rate of SiPMs. Eur. Phys. J. C 2018, 78. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Okumura, A.; Tajima, H.; Yamane, N.; Zenin, A. Characterization of SiPM Optical Crosstalk and its Dependence on the Protection-Window Thickness. In Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), Tokyo, Japan, 27–29 November 2019. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.K.; Gong, X.; Cho, S.; Kim, J.Y.; Edel, J.B.; Chang, S.I.; Choo, J.; Demello, A.J. 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation. Anal. Chem. 2015, 87, 10770–10778. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kobayashi, K.; Wakisaka, Y.; Deng, D.; Tanaka, S.; Huang, C.J.; Lei, C.; Sun, C.W.; Liu, H.; Fujiwaki, Y.; et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl. Acad. Sci. USA 2019, 116, 15842–15848. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Lei, C.; Kobayashi, H.; Ito, T.; Yalikun, Y.; Jiang, Y.; Tanaka, Y.; Ozeki, Y.; Goda, K. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Cytom. Part A 2017, 91, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Lei, C.; Wu, Y.; Kobayashi, H.; Ito, T.; Yalikun, Y.; Lee, S.; Isozaki, A.; Li, M.; Jiang, Y.; et al. Optofluidic time-stretch quantitative phase microscopy. Methods 2018, 136, 116–125. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, M.; Kuroda, R.; Kumagai, Y.; Chiba, A.; Miura, N.; Kuriyama, N.; Sugawa, S. An over 1 Mfps global shutter CMOS image sensor with 480 frame storage using vertical analog memory integration. In Proceedings of the Technical Digest—International Electron Devices Meeting, IEDM, San Francisco, CA, USA, 3–7 December 2016; pp. 8.5.1–8.5.4. [Google Scholar]
- Suzuki, M.; Sugama, Y.; Kuroda, R.; Sugawa, S. Over 100 Million Frames per Second 368 Frames Global Shutter Burst CMOS Image Sensor with Pixel-wise Trench Capacitor Memory Array. Sensors 2020, 20, 1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amnis® ImageStream®XMark II. Available online: https://www.luminexcorp.com/imagestreamx-mk-ii/#overview (accessed on 16 March 2021).
- Fung, P.A. 2016 Flow Cytometry Buyer’s Guide: A Researcher’s Guide to Selecting a Flow Cytometer. Available online: https://www.biocompare.com/186616-2016-Flow-Cytometry-Buyer-s-Guide/ (accessed on 14 March 2021).
- Elveflow Optical Reader for Microfluidics—Elveflow. Available online: https://www.elveflow.com/microfluidic-flow-control-archives/optical-reader-for-microfluidics/ (accessed on 27 April 2020).
- Houssin, T.; Cramer, J.; Grojsman, R.; Bellahsene, L.; Colas, G.; Moulet, H.; Minnella, W.; Pannetier, C.; Leberre, M.; Plecis, A.; et al. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections. Lab Chip 2016, 16, 1401–1411. [Google Scholar] [CrossRef]
- “Sphere Fluidics” Cyto-Mine® The Single Cell Analysis and Monoclonality Assurance System. 2018. Available online: https://spherefluidics.com/wp-content/uploads/2018/12/Cyto-Mine-Brochure-12-page-Version-October-2018.pdf?v=a57b8491d1d8 (accessed on 27 April 2020).
- Josephides, D.; Davoli, S.; Whitley, W.; Ruis, R.; Salter, R.; Gokkaya, S.; Vallet, M.; Matthews, D.; Benazzi, G.; Shvets, E.; et al. Cyto-Mine: An Integrated, Picodroplet System for High-Throughput Single-Cell Analysis, Sorting, Dispensing, and Monoclonality Assurance. SLAS Technol. 2020, 25, 177–189. [Google Scholar] [CrossRef]
- BioRad. QX200 Droplet Reader and QuantaSoft Software Instruction Manual; Bio-Rad: Hercules, CA, USA, 2019.
- Safford, H.R.; Bischel, H.N. Performance comparison of four commercially available cytometers using fluorescent, polystyrene, submicron-scale beads. Data Br. 2019, 24. [Google Scholar] [CrossRef] [PubMed]
Ref. | Sensor Technology | Light Source Technology | Optical Path Construction | Analytical Performance | Droplet Microfluidics? |
---|---|---|---|---|---|
[14] | ** | * | *** | ** | No |
[5] | ** | * | *** | ** | No |
[26] | ** | ** | ** | * | No |
[27] | ** | * | *** | *** | Yes |
[28] | ** | ** | ** | ** | No |
[30] | * | * | * | ** | Yes |
[31] | * | ** | * | ** | Yes |
Our paper | *** | ** | ** | * | Yes |
Optical Sensor | Light Source | Max. Throughput (Dps) * | Excitation Wavelength (nm) | Complexity (No. of Optical Components **) | Portable/Compact? | Imaging? | Ref. |
---|---|---|---|---|---|---|---|
APD | laser | 50 | 488 | >10 | no | no | [74] |
CCD | LED | 1150 | ~440 | 4 | no | yes | [75] |
CCD | lamp | 100 | 470–495 | >10 | no | yes | [76] |
EM-CCD | laser | 40 | 488 | 6 | no | yes | [71] |
CMOS | LED | 1,000,000 | 530 | 3 | yes | no | [77] |
CMOS | LED | 254,000 | 490 | 3 | yes | no | [72] |
CMOS | laser/LED | 96,000 | 488/640 | >10 | no | yes | [78] |
CMOS | laser | 70 | 532 | 2 | yes | yes | [79] |
sCMOS | laser | 184,000 | 532 | 5 | no | no | [80] |
sCMOS | laser | 10,000 | 488/560 | >10 | no | yes | [81] |
PMT | laser | 100,000 | 488 | 5 | no | no | [82] |
PMT | laser | 10,000 | 405/488/561/639 | 6 | no | no | [83] |
PMT | laser | 500 | 488 | 3 | no | no | [43] |
PMT | laser | 50 | 405/473 | 7 | no | no | [84] |
PMT | laser | 10 | 445 | 7 | no | no | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pärnamets, K.; Pardy, T.; Koel, A.; Rang, T.; Scheler, O.; Le Moullec, Y.; Afrin, F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. Micromachines 2021, 12, 345. https://doi.org/10.3390/mi12030345
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. Micromachines. 2021; 12(3):345. https://doi.org/10.3390/mi12030345
Chicago/Turabian StylePärnamets, Kaiser, Tamas Pardy, Ants Koel, Toomas Rang, Ott Scheler, Yannick Le Moullec, and Fariha Afrin. 2021. "Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry" Micromachines 12, no. 3: 345. https://doi.org/10.3390/mi12030345
APA StylePärnamets, K., Pardy, T., Koel, A., Rang, T., Scheler, O., Le Moullec, Y., & Afrin, F. (2021). Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. Micromachines, 12(3), 345. https://doi.org/10.3390/mi12030345