Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implantable Microdevice (IMD) Assembly
2.1.1. Non-Anchored IMD
2.1.2. Self-Expanding Nitinol-Anchored IMD
2.1.3. Self-Expanding Hydrogel-Anchored IMD
2.2. Minimally Invasive Implantation
2.3. IMD Dislodgement Force Testing
2.3.1. Experimental Set-Up
2.3.2. Statistical Analysis
2.4. IMD Retrieval
3. Results
3.1. Minimally Invasive Implantation and Retrieval
3.2. IMD Dislodgement Force Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trumm, C.G.; Häubler, S.M.; Muacevic, A.; Stahl, R.; Stintzing, S.; Paprottka, P.M.; Strobl, F.; Jakobs, T.F.; Reiser, M.F.; Hoffmann, R.T. CT fluoroscopy-guided percutaneous fiducial marker placement for cyberknife stereotactic radiosurgery: Technical results and complications in 222 consecutive procedures. J. Vasc. Interv. Radiol. 2014, 25, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Trumm, C.; Hoffmann, R. Diagnostic interventions: Biopsy. In CT- and MR-Guided Interventions in Radiology; Mahnken, A., Ricke, J., Eds.; Springer: New York, NY, USA, 2009; pp. 91–115. [Google Scholar]
- Saito, S.; Nagata, H.; Kosugi, M.; Toya, K.; Yorozu, A. Brachytherapy with permanent seed implantation. Int. J. Clin. Oncol. 2017, 12, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Farra, R.; Sheppard, N.F.; McCabe, L.; Neer, R.M.; Anderson, J.M.; Santini, J.T.; Cima, M.J.; Langer, R. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 2012, 4, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ring, A.; Sorg, H.; Weltin, A.; Tilkorn, D.J.; Kieninger, J.; Urban, G.; Hauser, J. In-vivo monitoring of infection via implantable microsensors: A pilot study. Biomed. Eng./Biomed. Tech. 2018, 63, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.K.L.; Chen, J.; Gordijo, C.R.; Chiang, S.; Ivovic, A.; Koulajian, K.; Giacca, A.; Wu, X.Y.; Sun, Y. In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats. Lab. Chip 2012, 12, 2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, O.; Landry, H.M.; Fuller, J.E.; Santini, J.T.; Baselga, J.; Tepper, R.I.; Cima, M.J.; Langer, R.; Langer, R. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl. Med. 2015, 7, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, O.; Oudin, M.J.; Kosciuk, T.; Whitman, M.; Gertler, F.B.; Cima, M.J.; Flaherty, K.T.; Langer, R. Parallel in vivo assessment of drug phenotypes at various time points during systemic BRAF inhibition reveals tumor adaptation and altered treatment vulnerabilities. Clin. Cancer Res. 2016, 22, 6031–6038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Implantable Microdevice in Primary Brain Tumors-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04135807?term=oliver+jonas&draw=2&rank=1 (accessed on 24 July 2020).
- Implantable Microdevice for In Vivo Drug Sensitivity Testing in Patients with Early Stage, HER2-Positive or Triple Negative Breast Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02521363 (accessed on 3 January 2021).
- Traina, T.A.; Plitas, G.; Reis-Filho, J.S.; Morris, E.A.; Hughes, M.; Sung, J.S.; Patil, S.; Piscuoglio, S.; Park, S.; Greenberg, C.; et al. Pilot trial of an implantable microdevice for In Vivo drug sensitivity testing in patients with early stage, triple negative breast cancer receiving neoadjuvant therapy. J. Clin. Oncol. 2016, 34, TPS1101. [Google Scholar] [CrossRef]
- Pilot Study of an Implantable Microdevice for Evaluating Drug Responses In Situ in Prostate Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04399876 (accessed on 24 February 2021).
- A Pilot of a Microdevice for In Situ Candidate Drug Screening in Cutaneous Lesions of T-Cell Lymphoma-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04045470 (accessed on 24 February 2021).
- Bhagavatula, S.K.; Upadhyaya, K.; Miller, B.J.; Bursch, P.; Lammers, A.; Cima, M.J.; Silverman, S.G.; Jonas, O. An interventional image-guided microdevice implantation and retrieval method for in-vivo drug response assessment. Med. Phys. 2019, 46, 5134–5143. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Wallner, K.E.; Frivold, G.P.; Ferry, D.; Jutzy, K.R.; Foster, G.P. Prostate brachytherapy seed migration to the right coronary artery associated with an acute myocardial infarction. Brachytherapy 2006, 5, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Ankem, M.K.; DeCarvalho, V.S.; Harangozo, A.M.; Hartanto, V.H.; Perrotti, M.; Han, K.; Shih, W.J.; Malka, E.; White, E.C.; Maggio, R.; et al. Implications of radioactive seed migration to the lungs after prostate brachytherapy. Urology 2002, 59, 555–559. [Google Scholar] [CrossRef]
- Chen, W.C.; Katcher, J.; Nunez, C.; Tirgan, A.M.; Ellis, R.J. Radioactive seed migration after transperineal interstitial prostate brachytherapy and associated development of small-cell lung cancer. Brachytherapy 2012, 11, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Khalid, M.; Qureshi, M.M.; Georgian-Smith, D.; Kaplan, J.A.; Buch, K.; Grinstaff, M.W.; Hirsch, A.E.; Hines, N.L.; Anderson, S.W.; et al. Stereotactic core needle breast biopsy marker migration: An analysis of factors contributing to immediate marker migration. Eur. Radiol. 2017, 27, 4797–4803. [Google Scholar] [CrossRef] [PubMed]
- Tumark Vision; Hologic, Inc.: Marlborough, MA, USA, 2019.
- SecurMark; Hologic, Inc.: Marlborough, MA, USA, 2019.
- Pinkney, D.M.; Mychajlowycz, M.; Shah, B.A. A prospective comparative study to evaluate the displacement of four commercially available breast biopsy markers. Br. J. Radiol. 2016, 89, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothary, N.; Heit, J.J.; Louie, J.D.; Kuo, W.T.; Loo, B.W.; Koong, A.; Chang, D.T.; Hovsepian, D.; Sze, D.Y.; Hofmann, L.V. Safety and Efficacy of Percutaneous Fiducial Marker Implantation for Image-guided radiation therapy. J. Vasc. Interv. Radiol. 2009, 20, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Jeoung, K.; Kim, S.H.; Ji, Y.; Son, H.; Choi, Y.; Huh, Y.-M.; Suh, J.-S.; Oh, S.J. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging. Biomed. Opt. Express 2018, 9, 1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.J.; Geisler, C.; Bosy-Westphal, A. Body composition. In Encyclopedia of Endocrine Diseases; Elsevier: Oxford, UK, 2018; pp. 406–413. [Google Scholar]
- Birckhead, B.J.; Fossum, C.C.; Deufel, C.L.; Furutani, K.M.; Merrell, K.W.; Schueler, B.A.; Mynderse, L.A.; Choo, R.; Davis, B.J. Stranded seed displacement, migration, and loss after permanent prostate brachytherapy as estimated by Day 0 fluoroscopy and 4-month postimplant pelvic X-ray. Brachytherapy 2016, 15, 714–721. [Google Scholar] [CrossRef] [PubMed]
- de Vaal, M.H.; Neville, J.; Scherman, J.; Zilla, P.; Litow, M.; Franz, T. The in vivo assessment of mechanical loadings on pectoral pacemaker implants. J. Biomech. 2010, 43, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dislodgement Force, milliNewtons (mN) | |||||
---|---|---|---|---|---|
Phantom | Liver | Kidney | Fat | Muscle | |
Non-anchored | 30.4 ± 4.9 | 13.3 ± 1.6 | 15.2 ± 2.6 | 14.8 ± 2.0 | 15.0 ± 2.9 |
Nitinol-expansion-anchored | 887.3 ± 20.7 | 737.5 ± 36.5 | 707.1 ± 40.3 | 688.3 ± 29.0 | 519.8 ± 28.1 |
Hydrogel-anchored (low absorption) | 472.9 ± 34.3 | 276.3 ± 33.4 | 269.2 ± 29.4 | 173.3 ± 21.7 | 220.1 ± 27.6 |
Hydrogel-anchored (high absorption) | 873.3 ± 43.9 | 735.2 ± 98.2 | 702.4 ± 45.5 | 456.6 ± 47.3 | 458.9 ± 38.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagavatula, S.; Thompson, D.; Dominas, C.; Haider, I.; Jonas, O. Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues. Micromachines 2021, 12, 404. https://doi.org/10.3390/mi12040404
Bhagavatula S, Thompson D, Dominas C, Haider I, Jonas O. Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues. Micromachines. 2021; 12(4):404. https://doi.org/10.3390/mi12040404
Chicago/Turabian StyleBhagavatula, Sharath, Devon Thompson, Christine Dominas, Irfanullah Haider, and Oliver Jonas. 2021. "Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues" Micromachines 12, no. 4: 404. https://doi.org/10.3390/mi12040404
APA StyleBhagavatula, S., Thompson, D., Dominas, C., Haider, I., & Jonas, O. (2021). Self-Expanding Anchors for Stabilizing Percutaneously Implanted Microdevices in Biological Tissues. Micromachines, 12(4), 404. https://doi.org/10.3390/mi12040404