Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+n−n Diodes: The Road to Reliable Vertical MOSFETs
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical Origin of Leakage Current
3.2. TCAD Simulations of Diode Breakdown
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kizilyalli, I.C.; Edwards, A.P.; Nie, H.; Disney, D.; Bour, D. High Voltage Vertical GaN p-n Diodes with Avalanche Capability. IEEE Trans. Electron Devices 2013, 60, 3067–3070. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Sun, M.; Piedra, D.; Chowdhury, N.; Palacios, T. Materials and processing issues in vertical GaN power electronics. Mater. Sci. Semicond. Process. 2018, 78, 75. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Kang, X.; Zheng, Y.; Lu, J.; Tian, X.; Wei, K.; Wu, H.; Wang, W.; Liu, X.; Zhang, G. Review of the Recent Progress on GaN-Based Vertical Power Schottky Barrier Diodes (SBDs). Electronics 2019, 8, 575. [Google Scholar]
- Zhang, Y.; Sun, M.; Piedra, D.; Azize, M.; Zhang, X.; Fujishima, T.; Palacios, T. GaN-on-Si Vertical Schottky and p-n Diodes. IEEE Electron Device Lett. 2014, 35, 618–620. [Google Scholar]
- Zhang, Y.; Wong, H.Y.; Sun, M.; Joglekar, S.; Yu, L.; Braga, N.A.; Palacios, T. Design space and origin of off-state leakage in GaN vertical power diodes. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015. [Google Scholar]
- Rackauskas, B.; Dalcanale, S.; Uren, M.J.; Kachi, T.; Kuball, M. Leakage mechanisms in GaN-on-GaN vertical pn diodes. Appl. Phys. Lett. 2018, 112, 233501. [Google Scholar] [CrossRef]
- Musolino, M.; Van Treeck, D.; Tahraoui, A.; Scarparo, L.; De Santi, C.; Meneghini, M.; Riechert, H. A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires. J. Appl. Phys. 2016, 119, 044502. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Khadar, R.A.; Matioli, E. GaN-on-Si Quasi-Vertical Power MOSFETs. IEEE Electron Device Lett. 2017, 39, 71–74. [Google Scholar] [CrossRef]
- Otake, H.; Chikamatsu, K.; Yamaguchi, A.; Fujishima, T.; Ohta, H. Vertical GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistors on GaN Bulk Substrates. Appl. Phys. Express 2018, 1, 011105. [Google Scholar] [CrossRef]
- Mukherjee, K.; Borga, M.; Ruzzarin, M.; De Santi, C.; Stoffels, S.; You, S.; Meneghini, M. Analysis of threshold voltage instabilities in semi-vertical GaN-on-Si FETs. Appl. Phys. Express 2020, 13, 024004. [Google Scholar] [CrossRef]
- Saremi, M. Modeling and Simulation of the Programmable Metallization Cells (PMCs) and Diamond-Based Power Devices. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2017. [Google Scholar]
- Saremi, M.; Hathwar, R.; Dutta, M.; Koeck, F.A.; Nemanich, R.J.; Chowdhury, S.; Goodnick, S.M. Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 2017, 111, 043507. [Google Scholar] [CrossRef]
- Mahabadi, S.E.J.; Moghadam, H.A. Comprehensive study of a 4H–SiC MES–MOSFET. Phys. E 2015, 74, 5–29. [Google Scholar] [CrossRef]
- Moghadam, H.A.; Dimitrijev, S.; Han, J.; Haasmann, D.; Aminbeidokhti, A. Transient-current method for measurement of active near-interface oxide traps in 4H-SiC MOS capacitors and MOSFETs. IEEE Trans. Electron Devices 2015, 62, 2670–2674. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.G.; Zhi, Y.S.; Wang, X.L.; Chu, X.L.; Tang, W.H. Review of gallium oxide based field-effect transistors and Schottky barrier diodes. Chin. Phys. B 2019, 28, 017105. [Google Scholar] [CrossRef]
- Palacios, T.A.; Fujishima, T. Aluminum Nitride Based Semiconductor Devices. U.S. Patent 9337301B2, 10 May 2016. [Google Scholar]
- Han, D.P.; Oh, C.H.; Kim, H.; Shim, J.I.; Kim, K.S.; Shin, D.S. Conduction Mechanisms of Leakage Currents in InGaN/GaN-Based Light-Emitting Diodes. IEEE Trans. Electron Devices 2015, 62, 587–592. [Google Scholar]
- Chiu, F.-C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, M.S.; Saddow, S.E.; Neudeck, P.G.; Lakdawala, V.K.; We, S. Observation of the D-center in 6H-SiC p-n diodes grown by chemical vapor deposition. Appl. Phys. Lett. 1994, 64, 2730. [Google Scholar] [CrossRef]
- Demchenko, D.O.; Diallo, I.C.; Reshchikov, M.A. Yellow Luminescence of Gallium Nitride Generated by Carbon Defect Complexes. Phys. Rev. Lett. 2013, 110, 087404. [Google Scholar] [CrossRef]
- Huber, M.; Silvestri, M.; Knuuttila, L.; Pozzovivo, G.; Andreev, A.; Kadashchuk, A.; Lundskog, A. Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN/GaN metal insulator semiconductor high electron mobility transistors. Appl. Phys. Lett. 2015, 107, 032106. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.M. Poole Frenkel conduction in amorphous solids. Philos. Mag. 1971, 23, 59. [Google Scholar] [CrossRef]
- Frenkel, J. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev. 1938, 54, 647. [Google Scholar] [CrossRef]
- Shan, Q.; Meyaard, D.S.; Dai, Q.; Cho, J.; Fred Schubert, E.; Kon Son, J.; Sone, C. Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Appl. Phys. Lett. 2011, 99, 253506. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Lv, J.; Yini, W.; Zhang, Y.; Zheng, C.; Liu, S. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes. Jpn. J. Appl. Phys. 2018, 57, 051003. [Google Scholar] [CrossRef]
- Simmons, J.G. Conduction in thin dielectric films. J. Phys. D Appl. Phys. 1971, 4, 613. [Google Scholar] [CrossRef]
- Kuksenkov, D.; Temkin, H.; Osinsky, A.; Gaska, R.; Khan, M. Origin of conductivity and low-frequency noise in reverse-biased GaN pn junction. Appl. Phys. Lett. 1998, 72, 1365–1367. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Tak, Y.; Kim, J.; Hong, H.G.; Yang, M.; Chung, U.I. Investigation of reverse leakage characteristics of InGaN/GaN light-emitting diodes on silicon. IEEE Electron Device Lett. 2012, 33, 1741–1743. [Google Scholar] [CrossRef]
- Jung, E.; Lee, J.K.; Kim, M.S.; Kim, H. Leakage Current Analysis of GaN-Based Light-Emitting Diodes Using a Parasitic Diode Model. IEEE Trans. Electron Devices 2015, 62, 3322–3325. [Google Scholar] [CrossRef]
- Look, D.C.; Reynolds, D.C.; Kim, W.; Aktas, Ö.; Botchkarev, A.; Salvador, A.; Morkoç, A. Deep-center hopping conduction in GaN. J. Appl. Phys. 1996, 80, 2960–2963. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lee, H.U.; Song, K.M.; Kim, J. Significant improvement of reverse leakage current characteristics of Si-based homoepitaxial InGaN/GaN blue light emitting diodes. Sci. Rep. 2019, 9, 970. [Google Scholar] [CrossRef]
- Hirsch, L.; Barrière, A.S. Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy. J. Appl. Phys. 2003, 94, 5014. [Google Scholar] [CrossRef]
- Ferdous, M.S.; Wang, X.; Fairchild, M.N.; Hersee, S.D. Effect of threading defects on InGaN/GaNInGaN/GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 2007, 91, 231107. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, J.; Tak, Y.; Chae, S.; Kim, J.; Park, Y. Effect of V-Shaped Pit Size on the Reverse Leakage Current of InGaN/GaN Light-Emitting Diodes. IEEE Electron Device Lett. 2013, 34, 1409–1411. [Google Scholar] [CrossRef]
- Hill, R.M. Hopping conduction in amorphous solids. Philos. Mag. 1971, 24, 1307. [Google Scholar] [CrossRef]
- Pollak, M.; Riess, I.J. A percolation treatment of high-field hopping transport. Phys. C Solid State Phys. 1976, 9, 2339. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, L.; Yu, G.; Yan, D.; Yang, G.; Gu, X.; Lu, H. Tunneling-Hopping Transport Model for Reverse Leakage Current in InGaN/GaN Blue Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2017, 29, 1447–1450. [Google Scholar] [CrossRef]
- Yu, D.; Wang, C.; Wehrenberg, B.L.; Guyot-Sionnest, P. Variable Range Hopping Conduction in Semiconductor Nanocrystal Solids. Phys. Rev. Lett. 2004, 92, 216802. [Google Scholar] [CrossRef] [Green Version]
- Tsou, C.; Ji, M.; Bakhtiary-Noodeh, M.; Detchprohm, T.; Dupuis, R.D.; Shen, S. Temperature-Dependent Leakage Current Characteristics of Homojunction GaN p-i-n Rectifiers Using Ion-Implantation Isolation. IEEE Trans. Electron Devices 2019, 66, 4273–4278. [Google Scholar] [CrossRef]
- Sentaurus Device User Guide; Synopsys: Mountain View, CA, USA, 2015.
- Podor, B. Thermal ionization energy of Mg acceptors in GaN: Effects of doping level and compensation. Int. Conf. Solid State Cryst. 2000, 4412, 299–303. [Google Scholar]
- Sabui, G.; Parbrook, P.J.; Arredondo-Arechavala, M.; Shen, Z.J. Modeling and simulation of bulk gallium nitride power semiconductor devices. Aip Adv. 2016, 6, 055006. [Google Scholar] [CrossRef]
- Cheng, K.; Liang, H.; Van Hove, M.; Geens, K.; De Jaeger, B.; Srivastava, P.; Chung, H. AlGaN/GaN/AlGaN Double Heterostructures Grown on 200 mm Silicon (111) Substrates with High Electron Mobility. Appl. Phys. Express 2012, 5, 011002. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, D.; Jiang, D.; Chen, P.; Zhu, J.; Liu, Z.; Du, G.T. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films. J. Vac. Sci. Technol. A 2015, 33, 021505. [Google Scholar] [CrossRef]
Layer (GaN) | Doping (cm−3) | Thickness (nm) |
---|---|---|
n+ | 5 × 1018 | 250 |
p+ body | 6 × 1019 | 400 |
n− drift | 4 × 1016 | 750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, K.; De Santi, C.; Buffolo, M.; Borga, M.; You, S.; Geens, K.; Bakeroot, B.; Decoutere, S.; Gerosa, A.; Meneghesso, G.; et al. Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+n−n Diodes: The Road to Reliable Vertical MOSFETs. Micromachines 2021, 12, 445. https://doi.org/10.3390/mi12040445
Mukherjee K, De Santi C, Buffolo M, Borga M, You S, Geens K, Bakeroot B, Decoutere S, Gerosa A, Meneghesso G, et al. Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+n−n Diodes: The Road to Reliable Vertical MOSFETs. Micromachines. 2021; 12(4):445. https://doi.org/10.3390/mi12040445
Chicago/Turabian StyleMukherjee, Kalparupa, Carlo De Santi, Matteo Buffolo, Matteo Borga, Shuzhen You, Karen Geens, Benoit Bakeroot, Stefaan Decoutere, Andrea Gerosa, Gaudenzio Meneghesso, and et al. 2021. "Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+n−n Diodes: The Road to Reliable Vertical MOSFETs" Micromachines 12, no. 4: 445. https://doi.org/10.3390/mi12040445
APA StyleMukherjee, K., De Santi, C., Buffolo, M., Borga, M., You, S., Geens, K., Bakeroot, B., Decoutere, S., Gerosa, A., Meneghesso, G., Zanoni, E., & Meneghini, M. (2021). Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+n−n Diodes: The Road to Reliable Vertical MOSFETs. Micromachines, 12(4), 445. https://doi.org/10.3390/mi12040445