
micromachines

Article

Investigation on GaN HEMTs Based Three-Phase STATCOM
with Hybrid Control Scheme

Chao-Tsung Ma * and Zhen-Huang Gu

����������
�������

Citation: Ma, C.-T.; Gu, Z.-H.

Investigation on GaN HEMTs Based

Three-Phase STATCOM with Hybrid

Control Scheme. Micromachines 2021,

12, 464. https://doi.org/10.3390/

mi12040464

Academic Editors: Benoit Bakeroot

and Matteo Meneghini

Received: 19 March 2021

Accepted: 15 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, CEECS, National United University, Miaoli 36063, Taiwan;
M0621002@smail.nuu.edu.tw
* Correspondence: ctma@nuu.edu.tw; Tel.: +886-37-382-482; Fax: +886-37-382-488

Abstract: The modern trend of decarbonization has encouraged intensive research on renewable
energy (RE)-based distributed power generation (DG) and smart grid, where advanced electronic
power interfaces are necessary for connecting the generator with power grids and various electrical
systems. On the other hand, modern technologies such as Industry 4.0 and electrical vehicles (EV)
have higher requirements for power converters than that of conventional applications. Consequently,
the enhancement of power interfaces will play an important role in the future power generation and
distribution systems as well as various industrial applications. It has been discovered that wide-
bandgap (WBG) switching devices such as gallium nitride (GaN) high electron mobility transistors
(HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs)
offer considerable potential for outperforming conventional silicon (Si) switching devices in terms of
breakdown voltage, high temperature capability, switching speed, and conduction losses. This paper
investigates the performance of a 2kVA three-phase static synchronous compensator (STATCOM)
based on a GaN HEMTs-based voltage-source inverter (VSI) and a neural network-based hybrid
control scheme. The proportional-integral (PI) controllers along with a radial basis function neural
network (RBFNN) controller for fast reactive power control are designed in synchronous reference
frame (SRF). Both simulation and hardware implementation are conducted. Results confirm that the
proposed RBFNN assisted hybrid control scheme yields excellent dynamic performance in terms of
various reactive power tracking control of the GaN HEMTs-based three-phase STATCOM system.

Keywords: wide bandgap (WBG); gallium nitride (GaN); high electron mobility transistor (HEMT);
static synchronous compensator (STATCOM)

1. Introduction

The static synchronous compensator (STATCOM) is a power electronic-based, shunt-
type flexible AC transmission system (FACTS) device whose main functions include voltage
regulation and reactive power flow control for power transmission, distribution, and
industrial power supply systems. The STATCOM has become increasingly important
because of the modern trend of renewable energy (RE) based distributed power generation
(DG), where unpredictable fluctuations due to various weather conditions are unavoidable.
Moreover, modern technologies such as Industry 4.0 and electric vehicles (EV) have various
fast compensating requirements for their power utilization systems, including reactive
power, unbalanced and harmonic currents, etc., which can be optimally dealt with using
power electronic-based compensators [1–4].

In recent years, the investigation of STATCOM has always been very popular.
Elserougi et al. [5] proposed a three-phase STATCOM based on a hybrid full-bridge
(FB)/half-bridge (HB) 9-level boost modular converter with the aim of reducing the number
of FB sub-modules. An interesting yes/no algorithm was proposed and its effectiveness
was verified. In [6], a three-phase modular cascaded multilevel STATCOM consisting of
conventional voltage source inverters (VSIs) was proposed with three independent DC
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links and an open-end winding transformer. The control was based on PI controller and the
synchronous reference frame (SRF) theory. An isolated dual-converter-based three-phase
distribution STATCOM (D-STATCOM) was proposed in [7]. The designed separate DC
links mitigated undesired circulating currents. Optimal linear-quadratic controller was
used for the required current control objectives.

As a shunt device, a STATCOM can be supported by energy storage systems (ESSs)
and/or DG systems to perform functions such as optimal energy management and ac-
tive power feeding. Liu et al. [8] investigated the abnormality in the control of a bridge
converter-based STATCOM with battery ESS (BESS). A low pass filter (LPF) and a coor-
dinated dual-loop active/reactive power control scheme were simulated using an elec-
tromechanical transient mathematical model. In [9], a cascaded 7-level H-bridge VSI-based
grid-connected single-stage solar photovoltaic (PV)-STATCOM was presented with control
strategy based on SRF theory and positive sequence detection algorithm. A particle swarm
optimization (PSO)-based probabilistic voltage management scheme was used to investi-
gate the allocation of PV-D-STATCOMs with and without ESSs and on-load tap changers
for low- and mid-voltage distribution applications [10]. Wang et al. [11] used a STATCOM
to improve the stability of a two-area power system consisting of a 19.8 MW onshore wind
farm and a 100 MW offshore wind farm. A lead-lag power-oscillation damping controller
was proposed. In [12], a self-excited induction generator (SEIG)-based wind farm and non-
linear three-phase and single-phase loads were interfaced with a STATCOM based on fixed
capacitor bank and a state feedback-based control scheme, which allowed independent
control of SEIG and capacitor bank voltages. A D-STATCOM with BESS, wind and solar
PV generation systems was used in [13] with purpose of reducing voltage unbalance of a
distribution system connected to a microgrid. The proposed sequence-component feedback
controller significantly increased the stability of voltage and power outputs.

The core component of the STATCOM, D-STATCOM, and other power electronic-
based FACTS devices is power semiconductor switching devices, such as metal-dioxide-
semiconductor field-effect transistors (MOSFETs). In recent development trends, it is
suggested that replacing conventional silicon (Si)-based power semiconductor switching
devices with wide-bandgap (WBG) material-based ones in power converters can yield
many merits, such as higher power rating, efficiency, switching frequency, and operating
temperature. This is mainly because the WBG materials, including gallium nitride (GaN)
and silicon carbide (SiC), possess superior properties including higher band gap, electric
breakdown field, and saturated electron velocity. Moreover, GaN and SiC offer the highest
electron mobility and thermal conductivity, respectively [14]. These properties allow
the fastest and most efficient switching of the GaN high electron mobility transistors
(HEMTs) and the SiC MOSFETs. Generally, GaN HEMTs are more suitable for low- to
medium-voltage and low- to medium-power applications such as power flow controllers,
power quality controllers, and EV charging applications, and SiC MOSFETs are more
suitable for high-power and high-voltage applications such as various controllers for
power transmission systems [15–21]. GaN HEMTs can be divided into three types, i.e.,
normally on depletion mode (D-mode), normally off enhancement mode (E-mode), and
normally off cascode devices. The E-mode device offers lower conduction loss and has no
body diode but has very strict driving voltage requirement (-10–7 V, threshold < 2 V); the
cascode device offers less strict driving voltage requirement (±18 or ±20, threshold < 4V)
but results in higher conduction loss, relatively lower operating temperature, and reverse
recovery charge. The SiC MOSFET has similar structure to that of Si MOSFET yet almost
an order thinner because of higher electrical breakdown field. The reduction in thickness
results in smaller on-resistance (yet not as small as that of the GaN HEMT). Currently, the
highest ratings of commercial devices are 1.7 kV/160 A for SiC MOSFETs, and 650 V/150 A
(E-mode) and 900 V/34 A (cascode) for GaN HEMTs. [14–21].

However, successfully using the WBG switching devices requires avant-garde tech-
niques for handling issues induced by the high slew rate of such devices. As a result,
it is crucial to develop advanced driving circuits and optimize the printed circuit board
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(PCB) layout in order to obtain the best tradeoff between safety and losses [22,23]. For
mid- to high-power applications, the requirements for driving WBG devices include the
following: (1) high drive strength, (2) enough isolation between driving and power circuits
(by using isolators or isolated drivers), (3) gate voltage oscillation damping (with high
enough turn-on impedance and separated turn-on and turn-off paths), (4) gate voltage
spike limiting (by using voltage clamps), fast turn-off (with small turn-off impedance and
negative turn-off voltage) and (5) dead time optimization. For PCB layout, it is necessary
to minimize parasitic inductance and capacitance. In other words, minimized trail lengths,
device packages with small parasitic inductance, and minimized overlapping between
paths are required [24–26].

Considering that there are currently no published articles discussing the use of GaN
HEMTs for STATCOM design and applications, this paper aims to demonstrate a GaN
HEMTs-based three-phase STATCOM and a hybrid control scheme for the first time. To
explore the potential of improving dynamic control performance, the proposed GaN
HEMTs-based STATCOM is based on a voltage-source inverter (VSI) topology and con-
trolled with a dual-loop hybrid control scheme. Background knowledge of STATCOM and
GaN HEMTs is briefly addressed in the first section. Section 2 establishes the proposed
STATCOM system, including the architecture and relevant parameters. Section 3 presents
the design of the proposed dual loop hybrid control scheme, including inner loop current
controllers and outer loop DC link voltage and reactive power controllers. In this paper, a
hybrid control structure using radial basis function neural network (RBFNN) controller
alongside the PI controller is used in the reactive power control loop so that the dynamic
performance of the GaN HEMTs-based STATCOM used as a fast reactive power tracking
controller can be assessed. Simulation studies and experimental tests on a 2 kVA prototype
are respectively presented in Sections 4 and 5. A brief discussion and conclusion are given
in Section 6.

2. System Description

To focus on the control performance of the proposed GaN HEMTs-based STATCOM
incorporated with different control schemes, the test system used in this study is simple,
as shown in Figure 1. It consists of a healthy and balanced three-phase grid, a load, and a
three-phase GaN HEMTs-based STATCOM. The three-phase STATCOM adopts a voltage-
source inverter (VSI) architecture because of the simplicity, as shown in Figure 2, where Vdc
represents DC link voltage, Cdc represents DC link capacitor, A, B, and C are the switching
points of phase legs A, B, and C, respectively, N is the reference point of the VSI voltages,
L f represents the filter inductor, Ia, Ib, and Ic represent inductor currents, C f represents
the filter capacitor, Vc f ,a, Vc f ,b and Vc f ,c represents filter capacitor voltages, Igrid_a, Igrid_b
and Igrid_c represent grid currents, Vgrid_a, Vgrid_b, and Vgrid_c represent grid voltages, and n
represents grid grounding point. Relevant parameters are listed in Table 1. In this paper,
the main control function of the GaN HEMTs-based three-phase STATCOM is to provide
fast and precise reactive power regulation.
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Table 1. System specifications.

Item Value

Grid voltage, Vgrid_abc 63.5 Vrms
Grid frequency 60 Hz

Inverter capacity 2 kVA
DC link voltage, Vdc 200 V

DC link capacitor, Cdc 1360 µF/400 V
Filter inductor, L f 1 mH
Filter capacitor, C f 10 µF

DC voltage variation limit 1%
Switching frequency 100 kHz

Carrier amplitude 5 V
DC voltage sensing factor, kvd 0.012
AC voltage sensing factor, kv 0.0062
AC current sensing factor, ks 0.05

3. Controller Design

In theory, the reactive power output of a STATCOM can be controlled with its voltage
phase shifts or various reactive current control schemes. Direct reactive current control is
normally chosen because of the simplicity and easy to implement. To achieve a fast dynamic
control feature, the control strategy of the proposed STATCOM is based on the dq-axis
decoupling in SRF and a dual-loop architecture, as shown in Figure 3, where the inner loop
consists of dq-axis type-II current controllers, and the outer loop consists of two PI controllers
for both the reactive power (d-axis) and DC link voltage (q-axis). For comparison purposes,
an RBFNN controller and a PI controller are designed for the reactive power control loop in
which sinusoidal pulse width modulation (SPWM) is used to switch the GaN HEMTs.
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3.1. Design of Inductor Current Controllers

For the design of inductor current controllers, the mathematical models of the inductor
currents are obtained based on Figure 2 and Kirchhoff’s voltage law:

L f
dIa

dt
= vAN − vgrid_a − vnN ; (1)

L f
dIb
dt

= vBN − vgrid_b − vnN ; (2)

L f
dIc

dt
= vCN − vgrid_c − vnN , (3)

where vAN , vBN , and vCN represent switching point voltages, and vnN represents the
voltage difference between grid ground and VSI neutral point. Assuming that the three
phases of the VSI are balanced, we get the following:

Ia + Ib + Ic = 0. (4)

As a result, vnN can be expressed as follows:

vnN =
(vAN + vBN + vCN)− (vgrid_a + vgrid_b + vgrid_c)

3
, (5)

which allows (1)–(3) to be expressed as the following: L f
dIa
dt

L f
dIb
dt

L f
dIc
dt

 =
2
3

 1 −1
2
−1
2

−1
2 1 −1

2
−1
2
−1
2 1

(
 vAN

vBN
vCN

−
 vgrid_a

vgrid_b
vgrid_c

). (6)

Since pulse width modulation (PWM) technique is used in the control, the three-phase
modulation signals vcona, vconb and vconc are compared with carrier signal vtri respectively to
trigger the switches of the switching legs. As a result, vAN , vBN , and vCN can be expressed
as follows:

vAN = (
1
2
+

vcona

2vtri
)Vdc; (7)

vBN = (
1
2
+

vconb
2vtri

)Vdc; (8)

vCN = (
1
2
+

vconc

2vtri
)Vdc. (9)

Substituting (7)–(9) into (6) and letting Vdc
2Vtri

= Kpwm yield the following: L f
dIa
dt

L f
dIb
dt

L f
dIc
dt

 =
2
3

 1 −1
2
−1
2

−1
2 1 −1

2
−1
2
−1
2 1

(Kpwm

 vcona
vconb
vconc

−
 vgrid_a

vgrid_b
vgrid_c

). (10)

Next, (10) can be converted into dq0-axis equivalents using synchronous reference
frame (SRF) theory: L f

dId
dt

L f
dIq
dt

L f
dI0
dt

 = Kpwm

 1 0 0
0 1 0
0 0 1

 vcond
vconq
vcon0


−

 1 0 0
0 1 0
0 0 1

 vgrid_d
vgrid_q
vgrid_0

−
 0 ωL f 0
−ωL f 0 0

0 0 0

 Id
Iq
I0


(11)
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where vcond, vconq, and vcon0 represent dq0-axis modulation signals, vgrid_d, vgrid_q, and vgrid_0
represent grid dq0-axis voltages, and Id, Iq, and I0 represents inductor dq0-axis currents.
Then, block diagrams of dq-axis inductor current controllers can be graphed according to
(11), as shown in Figures 4 and 5, where type II controllers are used, id and iq represent
sensed dq-axis currents, i∗d and i∗q represent dq-axis current commands, and v∗grid_d and
v∗grid_q represent qd-axis grid voltage commands. Then, we can obtain current loop transfer
function, controller transfer function, and loop gain as follows:

Hi(s) =
ksKpwm

sL f
; (12)

Gi(s) =
k(s + z)
s(s + p)

; (13)

Li(s) = Gi(s)Hi(s) =
k(s + z)
s(s + p)

ksKpwm

sL f
. (14)
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In practical applications, the crossover frequency of a type II controller is designed
below 1/4 of the switching frequency. In this paper, the crossover frequency is designed at
1/10 of the switching frequency, the zero is designed at 1/5 of the crossover frequency, and
pole is designed at 36.15 kHz:

ωi = 100k× 2π/10 = 62832rad/s; (15)

z = ωi/5 = 1256.6rad/s; (16)
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p = 2π × 36.15k = 227140rad/s. (17)

Next, current loop gain and controller gain at crossover frequency can be obtained:

GainHi =
ksKpwm

sL f
= 0− j0.0159⇒ |GainHi| = 0.0159; (18)

GainGi =
(s + z)

s(s + p)
= 3.8634× 10−6 − j1.9492× 10−6 ⇒ |GainGi| = 4.3273× 10−6. (19)

The required gain compensation at crossover frequency can then be calculated:

k =
1

|GainHi| × |GainGi|
= 1.452× 107. (20)

As a result, controller transfer function is expressed as follows:

Gi(s) =
1.452× 107(s + 1256.6)

s(s + 227140)
. (21)

The designed proportional and integral gains are 63.9257 and 8.033188, respectively.
Figure 6 displays the Bode plot of the inductor current control loops, where the phase
margin is 63 degrees.

Micromachines 2021, 12, x  9 of 29 
 

 

 

 
Figure 6. Bode plot of the two inductor current control loops. 

3.2. DC Link Voltage Controller 
The DC link voltage control loop balances the active power between AC and DC sides 

of the VSI. By neglecting steady-state operating point, we can obtain an equivalent circuit 
of the voltage loop as illustrated in Figure 7. 

dcV
dcC

3P
VSI

+

-

acP

dcP

dcI

 
Figure 7. Equivalent circuit of VSI voltage loop. 

According to Figure 7, the instantaneous AC power at AC side in SRF can be defined 
as follows: 

_1.5ac grid q qP v I= . (22) 

Mapping AC side signals onto the DC side and assuming that the inverter is lossless, 
we obtain the following: 

Figure 6. Bode plot of the two inductor current control loops.



Micromachines 2021, 12, 464 8 of 26

3.2. DC Link Voltage Controller

The DC link voltage control loop balances the active power between AC and DC sides
of the VSI. By neglecting steady-state operating point, we can obtain an equivalent circuit
of the voltage loop as illustrated in Figure 7.
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According to Figure 7, the instantaneous AC power at AC side in SRF can be defined
as follows:

Pac = 1.5vgrid_q Iq. (22)

Mapping AC side signals onto the DC side and assuming that the inverter is lossless,
we obtain the following:

Pac = Pdc; (23)

1.5vgrid_q Iq = Vdc Idc. (24)

As a result, the relationship between DC side current and AC side current is as follows:

Idc =
1.5vgrid_q

Vdc
Iq = kdc Iq ; (25)

Cdc
dVdc

dt
= Idc ⇒ Vdc = Idc

1
s Cdc

. (26)

According to (25) and (26), we can obtain the transfer function of DC side voltage:

Vdc
Iq

=
kdc

s Cdc
, (27)

where kdc represents the conversion factor from AC side to DC side. This relationship
yields the block diagram of DC link voltage control loop, as shown in Figure 8, where
PI controller is used, and only q-axis current is controlled. Then, we can obtain DC link
voltage loop transfer function, controller transfer function, and loop gain as follows:

Hv(s) =
kvdkdc
ksCdcs

; (28)

Gv(s) =
k(s + z)

s
; (29)

Lv(s) = Gv(s)Hv(s) =
k(s + z)

s
kvdkdc
ksCdcs

. (30)
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The main purpose of the PI controller is to reduce possible interference affecting the
DC link voltage when the STATCOM regulates reactive power. Usually, the crossover
frequency of the outer loop is designed below 1/3 of that of the inner loop. The crossover
frequency is set at 1/50 of that of the current loop, and the zero is designed at 1/5 of DC
loop crossover frequency:

ωv = ωi/50 = 1256.6rad/s; (31)

z = ωv/5 = 251.328rad/s. (32)

Next, DC link voltage loop gain and controller gain at crossover frequency can be obtained:

GainHv =
kvdkdc
ksCdcs

= 0− j0.0946⇒ |GainHv| = 0.0946; (33)

GainGv =
k(s + z)

s
= 1− j0.02⇒ |GainGv| = 1.0198. (34)

The required gain compensation at crossover frequency can then be calculated:

k =
1

|GainHv| × |GainGv|
= 10.3673; (35)

As a result, controller transfer function is expressed as follows:

Gv(s) =
10.3673(s + 251.328)

s
. (36)

The designed proportional and integral gains are 10.3673 and 0.02591825, respectively.
Figure 9 displays the Bode plot of the inductor current control loops, where the phase
margin is 78 degrees.

3.3. Reactive Power Controller

The reactive power control loop regulates the reactive power output of the VSI. In-
stantaneous reactive power can be defined as follows:

Q = −1.5vgrid_q Id; (37)

Q
Id

= −1.5vgrid_q. (38)

As a result, the block diagram of reactive power control loop can be graphed as shown
in Figure 10, where PI controller is used, only d-axis current is controlled, and q and
q* represent sensed reactive power and reactive power command, respectively. In this
paper, an RBFNN controller is designed and added in the reactive power control loop.
It is designed to improve the dynamic performance of the PI controller in fast tracking
control of reactive power. By switching SW1 and SW2, the NN and PI controllers can
be activated simultaneously or separately. It is assumed that the bandwidth of current
control loop is much wider than that of the active/reactive power control loop. The
addition of the RBFNN controller can help the linear PI controller deal with transients,
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but it naturally increases complexity and cost. We can obtain reactive power loop transfer
function, controller transfer function, and loop gain as follows:

HQ(s) =
−3kvvgrid_q

2
; (39)

GQ(s) =
k(s + z)

s
; (40)

LQ(s) = GQ(s)HQ(s) =
k(s + z)

s
−3kvvgrid_q

2
. (41)
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For the PI parameters, the crossover frequency is set at 1/150 of that of the current
control loop, and the zero is designed at 10 times the crossover frequency:

ωq = ωi/150 = 418.88rad/s; (42)

z = ωq ∗ 10 = 4188.8rad/s. (43)

Next, reactive power loop gain and controller gain at crossover frequency can be obtained:

GainHQ =
−3kvvgrid

2
= 0.8352− j0⇒ |GainHdc| = 0.8352; (44)

GainGQ =
k(s + z)

s
= 1− j10⇒

∣∣GainGQ
∣∣ = 10.0499. (45)

The required gain compensation at crossover frequency can then be calculated:

k =
1∣∣GainHQ
∣∣× ∣∣GainGQ

∣∣ = 0.1191; (46)

As a result, controller transfer function is expressed as follows:

GQ(s) =
0.1191(s + 4188.8)

s
. (47)

The designed proportional and integral gains are 0.1191 and 0.0049888996, respectively.
Figure 11 displays the Bode plot of the inductor current control loops, where the phase
margin is 95.5 degrees.

Micromachines 2021, 12, x  13 of 29 
 

 

 

3
0.8352 0 0.8352

2
v grid

HQ Hdc

k v
Gain j Gain

−
= = −  = ; (44)

( ) 1 10 10.0499GQ GQ
k s zGain j Gain
s
+= = −  = . (45)

The required gain compensation at crossover frequency can then be calculated: 

1 0.1191
HQ GQ

k
Gain Gain

= =
×

; (46)

As a result, controller transfer function is expressed as follows: 

0.1191( 4188.8)( )Q
sG s
s
+= . (47)

The designed proportional and integral gains are 0.1191 and 0.0049888996, respec-
tively. Figure 11 displays the Bode plot of the inductor current control loops, where the 
phase margin is 95.5 degrees. 

 
Figure 11. Bode plot of the reactive power control loop. 

The RBFNN controller added in the reactive power controller loop is as shown in 
Figure 12. The RBFNN is a feedforward NN using Gaussian activation functions, and the 
weights of the RBFNN are determined adaptively. The RBFNN offers advantages such as 
structural and computational simplicity, high noise immunity, avoidance of local minima, 

Figure 11. Bode plot of the reactive power control loop.



Micromachines 2021, 12, 464 12 of 26

The RBFNN controller added in the reactive power controller loop is as shown in
Figure 12. The RBFNN is a feedforward NN using Gaussian activation functions, and the
weights of the RBFNN are determined adaptively. The RBFNN offers advantages such as
structural and computational simplicity, high noise immunity, avoidance of local minima,
and fast online learning. The RBFNN is widely used in applications such as parameter
identification and pattern recognition [27–29]. In this paper, 2, 4, and 1 node are designed
for the input, hidden, and output layers, respectively, determined with try and error within
the computational limitation of the adopted digital signal processor (DSP) TMS320F28335
by Texas Instruments. The adopted RBFNN controller is trained with online learning.
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4. Simulation Study

The simulation studies in this work were conducted using simulation software. The
simulation environment is as shown in Figure 13. The control objective of the designed
2 kVA GaN HEMTs-based three-phase STATCOM is fast response and precise reactive
power output based on a given reactive power command, as shown in Figure 14a. The
command consists of three states: 0, 600, and −600 VAR, and each interval is 0.2 s long. For
comparison of the designed reactive power controllers, two controller settings are arranged,
as listed in Table 2. In the following results, the values of the control signals (command and
feedback waveforms) are the actual values multiplied by their respective sensing factors
and have been converted into voltage signals, as listed in Table 3. That is, the 600 VAR
reactive power corresponds to 0.186V reactive power control signal, and the 3.15 A reactive
current corresponds to 0.1575V reactive current control signal.

Table 2. Reactive power controller setting.

Case RBFNN Controller

1 Inactivated
2 Activated

Table 3. Equivalent values of control signals.

Item Sensing Factor Equivalent Value

Reactive power & Reactive power
controller output ks ∗ kv (0.00031) 1 V→3225.8 VAR

Inductor current ks (0.05) 1 V→20 A
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4.1. Results of Simulation Case 1: PI Controller

In this case, only the PI controller is activated in the reactive power control loop. Sim-
ulation results are presented in Figures 14b, 15b and 16b. Figures 14b and 15 show that the
phases and amplitudes of three-phase currents are well controlled. In Figures 16a and 17,
it can be observed that the rise and fall times for reactive power are 3.469 ms and 3.558 ms,
respectively, and the overshoot and undershoot percentages are both 20%. In Figure 16b, it
can be observed that the accumulated reactive power control error is 3.57m at the end of
the simulation.
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4.2. Results of Simulation Case 2: PI Controller + RBFNN Controller

In this case, the PI controller in the last subsection is joined with the RBFNN controller
in the reactive power control loop. Simulation results are presented in Figures 18, 19 and 20b.
Figures 18 and 19 show that the phases and amplitudes of three-phase currents are well
controlled. In Figures 20a and 21, it can be observed that the rise and fall times for reactive
power are 3.2 ms and 3.5 ms, respectively, and the overshoot and undershoot percentages
are improved to 5% and 6%, respectively. As can be seen, the main purpose of the RBFNN
controller in this case is to suppress the overshoots and undershoots. In Figure 20b, it
can be observed that the accumulated reactive power control error is 2.44 m at the end of
the simulation.
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5. Hardware Prototype Implementation

In order to verify the simulated results of the proposed GaN HEMTs-based STATCOM
system and the control schemes, this section presents the hardware implementation of the
proposed system using previously simulated scenarios. The schematic block diagram of
the hardware implementation is illustrated in Figure 22, where the related specifications
are listed in Table 4. The proposed three-phase STATCOM was constructed using GaN
HEMT TPH3207 by Transphorm (Goleta, CA, USA). The gate driver adopted for driving the
GaN HEMTs was Si8271 by Silicon Labs (Austin, TX, USA). A programmable three-phase
power source and a delta-Y 200V/146V transformer emulated the healthy balanced grid.
DSP TMS320F28335 was used to provide efficiency and flexibility in controller design. A
photograph of the constructed GaN-based STATCOM prototype is shown in Figure 23,
while the numbered devices are listed in Table 5. For easier waveform observation, the
reactive power command was prolonged to 2 s per interval, as shown in Figure 24, where
t1 = 2 s, t2 = 4 s, t3 = 6 s, t4 = 8 s. Results of hardware implementation of two reactive power
controller settings are presented in the following subsections.

Table 4. Specifications and parameters of hardware implementation.

Item Value/Part Number

DSP TMS320F28335
Load 20 Ω per phase

Delta-Y three-phase transformer 200 V/146 V
GaN HEMT TPH3207
Gate driver Si8271

Grid voltage, vgrid_abc 63.5 Vrms
Grid frequency 60 Hz

Inverter capacity 2 kVA
DC link voltage, Vdc 200 V

DC voltage sensing factor, kvd 0.012
AC voltage sensing factor, kv 0.0062
AC current sensing factor, ks 0.05
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observed that the rise and fall times for reactive power were 4.3 ms and 4.68 ms, respec-
tively, and the overshoot and undershoot percentages were 24% and 14%, respectively. In 
Figure 29, it can be observed that the PI controller was able to control the reactive power 
but the dynamic performance was not sufficient. 
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Number Device Value/Part Number
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(11)–(13) Filter capacitors 10 µF/300 V
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Figure 24. Implementation scenario: sequence diagram of reactive power command.

5.1. Test Results of Implementation Case 1: PI Controller

In this case, only the PI controller is activated in the reactive power control loop.
Measured results are presented in Figures 25–29. Figures 25 and 26 show that the phases
and amplitudes of three-phase currents are well controlled. In Figures 27 and 28, it can be
observed that the rise and fall times for reactive power were 4.3 ms and 4.68 ms, respec-
tively, and the overshoot and undershoot percentages were 24% and 14%, respectively. In
Figure 29, it can be observed that the PI controller was able to control the reactive power
but the dynamic performance was not sufficient.
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5.2. Test Results of Implementation Case 2: PI Controller + RBFNN Controller

In this case, the PI controller in the last subsection is joined with the RBFNN controller
in the reactive power control loop. Measured implementation results are presented in
Figures 30–34. Figures 30 and 31 show that the phases and amplitudes of three-phase
currents were well controlled. In Figures 32 and 33, it can be observed that the rise and
fall times for reactive power were shortened to 3.52 ms and 4.64 ms, and the overshoot
and undershoot percentages were successfully improved to 4% and 2%, respectively.
In Figure 34, it can be observed that the RBFNN controller successfully suppressed the
overshoots and undershoots.
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6. Discussion and Conclusions

The results of all simulated and 2kVA hardware implemented scenarios are high-
lighted in Table 6. It can be observed that combining the PI controller with RBFNN
controller forming a hybrid, nonlinear control scheme can effectively improve the dy-
namic performance of reactive power control, especially in terms of regulation speed and
overshoot/undershoot suppression. Therefore, we can conclude that the proposed GaN
HEMTs-based three-phase STATCOM taking the advantages of better material features of
WBG switching devices and the advanced control scheme on both trained RBFNN and
conventional PI controllers is a highly effective design example.

Table 6. Result comparison.

Case Controllers
Rise time (ms) Fall time (ms) Overshoot (%) Undershoot (%)

Sim. Imp. Sim. Imp. Sim. Imp. Sim. Imp.

1 PI 3.469 4.3 3.558 4.68 20 24 20 14
2 PI + NN 3.2 3.52 3.5 4.64 5 4 6 2

It is important to note that the need to improve the performance of various power
converters has driven researchers around the world to investigate on new WBG switching
devices and their applications. It has been well proved that the WBG switching devices,
including GaN HEMTs and SiC MOSFETs, offer superior performance to that of conven-
tional Si-based switching devices, including higher blocking voltage, current, switching
frequency, efficiency, and operating temperature. However, in various design cases re-
ported in open literature, GaN devices tend to dominate low- to mid-voltage and low- to
mid-power converter applications, while SiC devices are suitable for higher-voltage and
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higher-power converter applications. In this aspect, this paper has demonstrated a GaN-
based three-phase STATCOM functioning as a fast reactive power regulator. The proposed
dual-loop control architecture using SRF consists of inner loop, type II current controllers
and outer loop, DC link voltage, and reactive power PI controllers. In addition, an RBFNN
controller is designed for constructing a hybrid reactive power control scheme to improve
the tracking speed and dynamic performance of the GaN HEMTs-based STATCOM. Both
simulation and measured hardware implementation results have verified the feasibility
and effectiveness of the proposed design case.
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