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Abstract: A data-driven optimization strategy based on a generalized pattern search (GPS) algorithm
is proposed to automatically optimize piezoelectric energy harvesters (PEHs). As a direct search
method, GPS can iteratively solve the derivative-free optimization problem. Taking the finite element
method (FEM) as the solver and the GPS algorithm as the optimizer, the automatic interaction between
the solver and optimizer ensures optimization with minimum human efforts, saving designers’ time
and performing a more precise exploration in the parameter space to obtain better results. When
employing it for the optimization of PEHs, the optimal length and thickness of PZT were 6.0 mm and
4.6 µm, respectively. Compared with reported high-output PEHs, this optimal structure showed an
increase of 371% in output power, an improvement by 1000% in normalized power density, and a
reduction of 254% in resonant frequency. Furthermore, Spearman’s rank correlation coefficient was
calculated for evaluating the correlation among geometric parameters and output performance such
as resonant frequency and output power, which provides a data-based perspective on the design and
optimization of PEHs.

Keywords: piezoelectric; energy harvester; optimization; pattern search; FEM; PZT

1. Introduction

With the urgent demand of sustainable power supplies for low-power electronic
applications such as wireless sensor network systems [1–4] in Internet of Things, im-
plantable medical devices [5,6] and other devices in some extreme environments [7], energy
harvesting from the ambient environments has attracted broad attention and provided
potential solutions to the periodical replacement of batteries during the last few decades.
Vibration energy is ubiquitous and robust mechanical energy that exists widely, including
bridges [8], roads [9], human body [10–12], cars [7], etc. Therefore, a variety of vibration-
based piezoelectric energy harvesters (PEHs) with different structures have been proposed
and studied [13–15]. Among these, the cantilever structure is widely used due to structure
simplicity and the high average strain obtained by a given input force [2,16–19].

For cantilever PEHs, a multi-parameter coupling problem exists for obtaining high-
efficiency energy conversion. To improve the output performance of cantilever PEHs,
researchers have studied the effects of different geometric parameters on output perfor-
mance [20,21]. He et al. [22] and Jia et al. [23] proposed that the optimal mass-beam length
ratio is 0.6~0.7 within linear response. Hu et al. [18] investigated the optimal length of
the piezoelectric layers based on theoretical analysis, FEM simulation and experimental
verification, from which they discovered that the optimal length ratio of piezoelectric
layers and the beam is approximately 0.2. Furthermore, Hu et al. [18] also reported that
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the optimal PZT layout length decreases as cantilever width increases. However, investi-
gations on various geometric parameters in the studies above constitute single-variable
optimization. Moreover, the geometric parameters were manually set and tested at a fixed
interval based on the researchers’ experience and intuition, which required the researcher
to spend more time in trying each possible combination of geometric parameters to obtain
the optimal output performance. To overcome these shortcomings, several data-driven
optimization strategies combining different algorithms to maximize the output perfor-
mance of PEHs have been proposed recently. For example, data-driven optimization can
solve the optimization problems that are difficult to formulate or solve, in that they are
non-convex, multi-objective or multi-modal; it can solve optimization problems based on
derivative-free data. Ghoddus et al. [24] presented an optimization approach based on the
Particle swarm optimization (PSO) algorithm to maximize the output power of PEHs with
four different structures, which simultaneously optimized multiple geometric parameters.
In addition, Nabavi and Zhang [25,26] proposed an analytical model for PEHs with proof
mass and used a genetic algorithm to simultaneously optimize multiple objectives, includ-
ing resonant frequency, output power and device volume. However, finding the optimal
solution to complex high-dimensional problems such as the multi-parameter coupling
problem for PEHs may require expensive objective function evaluations. Therefore, as
population-based stochastic optimization techniques, the PSO and GA algorithm imple-
mented in the previous works [24–26] may encounter low efficiency when dealing with
the multi-parameter coupling problems. Moreover, parameter tuning is needed to obtain a
better convergence for the PSO algorithm and GA [27], such as particle number, accelerate
constant, inertia weight and population size. Although the global search ability of GA and
PSO may be better, the generalized pattern search (GPS) algorithm is more suitable for the
time-consuming multi-parameter coupling problem due to its effortless parameter tuning
and relatively fewer objective function evaluations [28].

In this paper, we proposed a data-driven optimization strategy based on the GPS
algorithm. The GPS algorithm is one of the direct search methods, which can be effectively
used in derivative-free optimization. By implementing the proposed scheme, multiple
geometric parameters (lp, w, tp, and tb) were simultaneously optimized for maximum
output performance based on the data without building an analytical model. Using the
proposed optimization method can not only efficiently optimize the geometric parameters
of PEHs to achieve high output performance but also save time for analytical modeling
and complex parameter tuning. Furthermore, Spearman’s rank correlation coefficient
was calculated for evaluating the correlation among geometric parameters and output
performance, providing a data-based perspective on the design of PEHs.

2. Methods

The unimorph PEH is composed of a piezoelectric layer, a structural layer, and a
proof mass. The piezoelectric layer partially covers the flexible structural layer along the
constraint end, as shown in Figure 1a. A tungsten proof mass is fixed at the free end of the
structural layer, increasing average strain under given excitation and lowering the resonant
frequency to meet the low-frequency ambient vibration. Figure 1b illustrates the annotation
of this unimorph PEH. The data-driven optimization scheme mainly includes a FEM solver
and a GPS optimizer. Figure 1c depicts the overall function of the presented strategy. In this
paper, FEM simulation was carried out using COMSOL Multiphysics (Version 5.4) and
the material properties used in FEM simulation are listed in Table 1. The GPS algorithm
was implemented in MATLAB (Version 2020a). The communications between solver
and optimizer were implemented using COMSOL LiveLinkTM for the MATLAB module,
which facilitated the data-driven optimization strategy. As direct search methods, different
types of pattern search algorithms have been utilized for solving engineering optimization
problems [28–30]. The convergence analysis of GPS algorithm has been performed by
Audet and Dennis [31].
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Figure 1. Schematic diagram of the piezoelectric energy harvester (PEH) and the proposed strat-
egy. (a) Three-dimensional view. (b) Annotation for geometric parameters of the cantilever PEH.
(c) Overview of the presented optimization working process.

Table 1. The material properties used in FEM simulation.

Parameters Young’s Modulus
GPa

Density
kg/m3 Poisson Ratio Elasticity Matrix

GPa

Piezoelectric
Coupling Matrix

C/m2

PZT - 7500 0.31

{127.205, 80.2122,
127.205, 84.6702,

84.6702, 117.436, 0, 0, 0,
22.9885, 0, 0, 0, 0,

22.9885, 0, 0, 0, 0, 0,
23.4742}

{0, 0, −6.62281, 0, 0,
−6.62281, 0, 0, 23.2403,
0, 17.0345, 0, 17.0345, 0,

0, 0, 0, 0}

Beryllium copper 128 8250 0.3 - -
Tungsten 411 19,350 0.28 - -

At each iteration, the GPS searches a set of points around the current point called
mesh, finding a better point whose value of the objective function is lower than the value
before. Then, the better point is set as the current point at the next iteration. Based on this
procedure (Polling), the GPS finds a sequence of points that approaches the optimum, and
it does not stop until the convergence is met. Specifically, let Mk denote the mesh at k-th
iteration, and x(i)k denote the i-th point in the Mk. The mesh is defined as Equation (1):

Mk ,
{

x ∈ Rn | x = x′k + ∆k · νk, k ∈ {1, 2, · · · , n}
}

(1)

where x′k denotes the current point at the k-th iteration while ∆k denotes mesh size, and
νk denotes pattern. Pattern is a set of vectors used to determine the generation of mesh.
Suppose F(x) denotes the objective function in the optimization problem. At each iteration,
GPS computes F

(
x(i)k

)
and looks for a better point x(j)

k so that F
(

x(j)
k

)
< F(xk

′); then,

x′k+1 = x(j)
k and ∆k+1 = 2 · ∆k are set. Otherwise, if the polling fails to find a better point
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at kth iteration, then x′k+1 = x′k and ∆k+1 = 1/2 · ∆k. The computation in the mesh at each
iteration is called polling. In addition, the search method runs before polling can select a
different current point, which may accelerate the optimization if tuned well. Various search
methods can be set, including the genetic algorithm, Latin hypercube search, etc.

The proposed optimization strategy uses FEM simulation as the solver and GPS
algorithm as the optimizer, whose workflow is depicted in Figure 2. The initialization step
is mainly used for setting parameters in the GPS algorithm, including initial point, the
searching and polling method, stopping criteria and other parameters used to accelerate
the optimization. Moreover, a new set of geometric parameters generated by GPS is used
for FEM modelling, and then, the FEM simulation is performed in order to extract the
solutions for feedback to the GPS algorithm. In order to efficiently harvest energy in daily
life such as cars, bridges and the human body, the development of PEHs tends to have high
output power density and low resonant frequency. Therefore, the optimization objective
function here is defined as normalized power density or output power. The definition
of normalized power density is shown as Equation (2), which is a function of various
geometric parameters and external excitation:

Pn =
P

a2 · f1 ·Ve f f
(2)

where Pn denotes the normalized power density, P denotes the output power, f1 denotes the
first-modal resonant frequency, Ve f f denotes the effective volume of the specific structure,
and a represent the excitation acceleration. The maximizing of normalized power density
may indicate the trend of maximizing output power and minimizing the first-modal
resonant frequency and effective volume. Therefore, the optimization problem is defined
as below:

maximize Pn or P
subject to 0.5mm ≤ lp ≤ 15 mm

0.5 mm ≤ w ≤ 3 mm
0.001 mm ≤ tp ≤ 0.05 mm
0.03 mm ≤ tb ≤ 0.05 mm

(3)
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3. Results and Discussion

Utilizing the well-described micromachining processes and experimental setup in our
previous work [17], we first fabricated and tested four devices with different length PZT
layers to validate the effectiveness of the proposed data-driven optimization strategy, and
then, individually optimized the PZT length and the proof mass length intending to maxi-
mize output power and compared the optimized result with the previous works [18,23].
The experimental setup is shown in Figure 3a. Controlled by the vibration controller
through the power amplifier (YE2706A, Sinocera Piezotronics, Inc., Yangzhou, China), the
force applied on different PEHs is generated by a shaker (JK-2, Sinocera Piezotronics, Inc.)
and is monitored by a force sensor (208C02, PCB Piezotronics, New York, NY, USA).
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Figure 3. (a) Photograph of the experimental setup. (b) Photograph of the fabricated harvesters with the varied PZT
layer length.

Firstly, the bulk PZT (300 µm) and beryllium bronze (50 µm) were polished so as to
increase the bonding strength. Then, the bulk PZT was bonded on the beryllium bronze
using conductive silver epoxy in a vacuum oven at 175 ◦C for 3.5 h.

Next, the bulk PZT was thinned to around 50 µm through chemical mechanical
thinning and polishing. After that, 20/200 nm Cr/Au was sputtered on the polished
surface of the bulk PZT thick film as an electrode. Finally, the cantilevered PEHs were
patterned using the ultraviolet laser method, and the proof mass was assembled at the free
end. The fabricated harvesters with different PZT layer length are illustrated in Figure 3b.
Under 1.0 g acceleration, the PEHs were connected in serial with the external resistance,
which varied from 1 kΩ to 1000 kΩ to determine the optimum load resistance and output
power. For performing FEM simulation, a geometrical configuration was considered where
the free end was mounted with a proof mass, and the upper surface of the PZT was
grounded. In addition, chamfer was added between the proof mass and structural layer to
avoid stress singularities at the reentrant corners. Meshes were created according to the
shape of the geometry. Then, the detailed meshes were determined by carrying out a mesh
convergence study. Figure 4a presents the meshes of the PEHs constructed in COMSOL
software. Here, we used skewness, the default quality measure in COMSOL software, to
evaluate the mesh quality, which is a suitable measure for most types of meshes. To extract
the optimum output power of each PEH, the FEM simulation firstly ran an eigenfrequency
study to obtain the first-modal eigenfrequency of the PEHs, and then ran a frequency
domain study under the first-modal eigenfrequency with an auxiliary sweep of different
external resistance. The excitation was set as body load with an acceleration of 1.0 g
(9.8 m/s2). Using the proposed scheme, the procedures mentioned above will not stop
until the GPS algorithm meets convergence, and the structure of PEHs will keep updated
to seek the optimum geometric parameters.

Figure 4b shows a comparison of normalized output power for the presented PEHs
with the varied PZT layer length under different external resistance between FEM simula-
tion and experimental results. Compared with the experimental data, the FEM simulation
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showed agreement in the trend of maximum output power with varied PZT layer length,
which proved the validation of the FEM simulation in determining the optimal geometric
parameters. Especially when the length of the PZT layer is 3.0 mm, the FEM simulation
fits well with the experimental data. The difference in output power corresponding to
external resistance between FEM simulation and experimental results may come from
manufacturing and testing errors. As the length of the PZT layer increases, the manufac-
turing errors accumulate. The difference between FEM and the experiment decreases as the
length of PZT decreases. Moreover, the mechanical damping (set as 0.015) was assumed
to be a constant in the FEM simulation, which may also lead to errors in power prediction
for different structure [32]. Then, two single-variable optimizations (PZT length and mass
length) for maximum output performance were performed and compared with the previous
works [18,23]. For the cantilever harvester with proof mass, Hu et al. [18] and Jia et al. [23]
have, respectively, optimized the PZT length and the mass length to maximize output power,
from which they have concluded that the optimal ratio of PZT length and total length is
approximately 0.2 (3 mm/15 mm), while the optimal mass-beam length ratio is 0.6~0.7.
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Figure 4. (a) The mesh of the PEHs in FEM simulation. Validation of the proposed scheme by
(b) comparison of normalized output power for the presented PEHs with the varied PZT layer length
under different external resistance between FEM simulation and experimental results. (c) Conver-
gence curve of output power for each single-variable optimization given by the proposed scheme.
(d) All results searched by the proposed scheme for each single-variable optimization. The applied
acceleration amplitude is 1.0 g.

Figure 4c shows the convergence curve of mass and PZT length optimization. It can
be observed that the GPS algorithm can efficiently optimize the proposed optimization
problems within two and four iterations, respectively, for PZT length and mass length
optimization. Figure 4d presents all results evaluated by the GPS algorithm, which demon-
strates the trend of output power versus varied length of the mass and PZT. The optimal
PZT length and mass length are 3.437 mm and 10.090 mm corresponding to the ratio of the
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total length of 0.229 and 0.672, respectively. The agreement of the optimized results and
that of the previous works [18,23] proves the efficiency and effectiveness of the proposed
data-driven optimization method and the FEM model. Furthermore, unlike the optimiza-
tion approaches in the previous works [18,23], by which researchers manually varied
the geometric parameters at fixed intervals to explore the parameter space for maximum
output performance, the proposed method automatically performs the optimization task
once set, saving researchers time compared to trial-and-error approaches. In addition, a
more precise exploration in the parameter space can be carried out by the proposed scheme
compared with the manual trial-and-error approaches. Respectively labeled as 1OPT-1 and
1OPT-2, the geometric parameters and output performance of the above two single-variable
optimizations are summarized in Table 2.

Table 2. Geometric parameters and results of our calculations.

Parameters lp w lm tp tb f 1 P PD Pn Runtime
mm mm mm µm µm Hz µW mW·cm−3 mW·cm−3·Hz−1·g−2 min

Ref [18] 3.000 2.50 5.00 50.00 50.00 66.96 70.28 14.80 0.221 -
1OPT-1 3.437 2.50 5.00 50.00 50.00 70.19 72.70 15.13 0.216 12
1OPT-2 3.000 2.50 10.09 50.00 50.00 81.46 116.17 15.92 0.195 13
4OPT-1 6.001 3.00 5.00 4.625 30.00 26.38 261.02 58.87 2.232 61

lb = 15.00 mm; tm = 0.20 mm; Acceleration = 1 g.

After verifying the effectiveness of the proposed scheme, further optimization for
the unimorph PEHs was implemented to obtain maximum output power and minimum
resonant frequency. The optimization problem is depicted as Equation (3). The geometric
parameters to be optimized were set as lp, w, tp and tb. As the thickness of the whole beam
becomes thinner, the higher the probability of device failure. Based on the experimental
data in the previous work [18], the upper and lower bound of tb was set as 30–50 mm from
a conservative consideration. The optimal results and the initial point in the optimization,
labeled as 4OPT-1 and Ref, are summarized in Table 2.

Figure 5a presents the trajectory of the geometric parameters and output power during
optimization, which directly shows how the GPS algorithm optimizes the defined opti-
mizable parameters to obtain better values of objectives function. Each point, respectively,
represents the best point at every iteration. As shown in Figure 5a and Table 2, the optimal
length and thickness of PZT are 6.0 mm and 4.6 µm, respectively. In addition, the reduction
in thickness of the structural layer also contributes to the improvement of output power.
Figure 5b demonstrates the comparison of the output performance between the reference
structure (Ref) and optimized structure (4OPT-1). It can be observed that the resonant
frequency of 4OPT-1 is 2.54 times lower than that of Ref, while the output power and
normalized power density were, respectively, about 3.71 and 10.10 times larger, showing a
substantial improvement in output performance. Numerically, the reduction in resonant
frequency greatly contributed to the improvement of normalized power density according
to the definition given by Equation (2). By calculating the second derivative of the tip
displacement at the first-modal vibration, the strain of the piezoelectric layer along the

arc length (S1(x, y, t) = −y ∂2z(x,t)
∂x2 ) is presented in Figure 5c, which demonstrates a higher

average strain distribution of 4OPT-1 than that of Ref, leading to an improvement in the
output performance of 4OPT-1. However, it is noted that the effects of a reduction in
material properties such as piezoelectricity with the decrease in the thickness of PZT are
neglected theoretically. Although the output performance of 4OPT-1 may be augmented
without the consideration of the effects of material properties, the optimal result (4OPT-1)
given by the proposed data-driven optimization strategy provides the trend of improving
output performance by tuning geometric parameters.

Furthermore, a comparison between the GPS algorithm and GA for the four-variable
optimization problem has been implemented and is depicted in Figure 6, which shows the
convergence curve versus the number of function evaluations using the GPS algorithm
and GA with different population size. The parameters used in GA are the default settings
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in MATLAB; that is, the mutation method and crossover method are constraint dependent,
and the selection method is stochastically uniform. Each configuration was limited to run
approximately 250 times for comparison.
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Figure 5. Evaluation of the proposed data-driven optimization strategy from various perspectives. (a) Trajectory of
the parameters during optimization. (b) Output power versus external resistance for previous reported high-output
PEH and optimized structure. (c) Strain distributions along the arc length of previous reported high-output PEH and
optimized structure.
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Figure 6. Comparison among the efficiency of generalized pattern search algorithm and genetic
algorithm with different population size.

To some extent, the number of function evaluations can reflect the running time due
to having the same solver (FEM simulation) for each configuration. Although the genetic
algorithm can obtain a higher normalized output power at the beginning, the GPS algorithm
succeeds in achieving better performance than the GA algorithm with a population size of
10 or 20 after evaluation 250 times. Furthermore, the GPS algorithm requires fewer function
evaluation than the GA. The reasons why the pattern search algorithm is more efficient
than the GA algorithm with a population size of 10 or 20 are numerous, including the
characteristics of the optimization problem, the complex parameter tuning of GA algorithm,
and the size of parameter space. Theoretically, the performance of GA may be improved
by increasing the population size, whereas the running time may increase for the proposed
optimization problem in this work, possibly leading to a low efficiency of optimization.
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Figure 7a shows a scatterplot among the geometric parameters lp, w, tp, tb, resonant
frequency and output power. It is observed that the data are not completely randomly
distributed in the parameter space due to the minimum searching characteristic of the GPS
algorithm and GA. The peak in each histogram in the first four rows indicates the preferable
geometric parameters given by the GPS algorithm and GA that may generate better output
performance. The contour of the scatterplot of the power and thickness of PZT, the power
and thickness of the structural layers, and the power and resonant frequency may present
non-linearity among the aforementioned variables. Based on the data in the scatterplot,
Spearman’s rank correlation coefficient was calculated using Equation (4) to evaluate the
strength and direction of the monotonic relationship among the geometric parameters,
resonant frequency and output power.

rs = 1−
6 ∑ d2

i
n(n2 − 1)

(4)

where di = rg(Xi)− rg(Yi), representing the difference in rank between Xi and Yi; n is the
number of observations; Xi and Yi are variables to be evaluated.
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The correlation matrix with normalized values is presented in Figure 7b. The greater
the absolute value of the correlation coefficient, the stronger the monotonic relationship
between the evaluated variables. After filtering the identical data, the amount of data
available for calculating the Spearman’s correlation coefficient is 4506. The maximum value
in the correlation matrix is 0.8744 and the corresponding p-value under t-distribution is 0,
suggesting a strong positive correlation between the thickness of the structural layers and
resonant frequency, which means that the designers may need to reduce the thickness of
the structural layers to lower the resonant frequency. The p-value under t-distribution is
calculated using Equation (5):

t = rs

√
n− 2
1− r2

s
(5)

In addition, the coefficient between power and width is 0.7488, suggesting that the
designers may increase the width to improve the output power. However, it is noted that
the coefficient of resonant frequency and width is −0.3573, indicating a weak negative
correlation between them. Expanding the width may increase the resonant frequency.
Designers may need to balance the impact of increase on width. Moreover, although the
coefficient of power and length of PZT is close to 0, its p-value (0.4475) is larger than the
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general threshold of 0.05, which indicates that this correlation may fail to reject the null
hypothesis. As shown in Figure 7a, although the scatterplot of the power and length of
PZT presented no monotonic relationship, the upper contour in the scatterplot showed a
non-linearity relationship between them, in which the optimal length of PZT is 6.0 mm
when the thickness of PZT is 4.6 µm. In addition, in the scatterplot of the power and the
length of PZT, although the length of PZT is set as the optimum (6.0 mm), the output power
may encounter poor performance without proper setup of other geometric parameters.
Therefore, it is necessary to simultaneously optimize multiple parameters for improving
the performance of PEHs using the proposed data-driven optimization strategy.

4. Conclusions

In summary, a data-driven optimization strategy based on FEM simulation (solver)
and a GPS algorithm (optimizer) was proposed and implemented, which can not only
optimize the geometric parameters of PEHs to achieve high performance but also save
time for analytical modeling and complex parameter tuning. In addition, the proposed
strategy can search the variable space more precisely than manually varied geometric
parameters at fixed intervals. The effectiveness and efficiency of the proposed scheme
were validated by comparing the optimization results with previous works [18,23] and
experimental results. Then, a four-variable (lp, w, tp and tb) optimization was further
investigated with the aim of maximum output performance. The optimal ratio of the length
of PZT and structural layer increases as the thickness of PZT decreases compared with
previous works. The optimization results showed that the optimal length ratio is 0.40
(6.0 mm/15.0 mm) when the thickness of PZT is 4.6 µm, while the optimal length ratio is
0.23 (3.4 mm/15.0 mm) when the thickness of PZT is 50 µm. Furthermore, Spearman’s rank
correlation coefficient was calculated for evaluating the correlation among geometric pa-
rameters and output performance such as resonant frequency and output power, providing
a data-based perspective on the design and optimization of piezoelectric energy harvesters.

Our evaluation showed that the GPS algorithm exhibited better performance than GA
in terms of efficiency, requiring fewer function evaluations than GA. Solving the multi-
parameter coupling problem such as that of PEHs may require expensive computation cost.
Therefore, utilizing a GPS algorithm can shorten the total optimization time for complex
high-dimensional optimization problems in real life. In addition, owing to the extensive
application of the FEM simulation, the proposed strategy is not limited to the optimization
of PEHs, but can also be used for the optimization of other structures that are challenging
to formulate, facilitating the employment of the proposed strategy in other fields.
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