Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Preparation
2.2. Film Characterization
2.3. Optical Measurements
2.4. Data Operation and FDTD Simulations
3. Results and Discussion
3.1. Anodizing Behavior
3.2. Films Morphologies
3.3. Film Optical Characterictics
3.3.1. Native Films
- The presence of a nanoscale periodic structure in the first two-layers;
- Intrinsic absorbance of light by at least three different materials—alumina, niobia V and IV, and, most likely, non-stoichiometric niobia in the transition regions;
- Interference of light reflected from the interfaces of different layers.
3.3.2. Planarized Films
3.3.3. Column-Like Films
3.4. Calculation and Discussion of Spectral Dependence of Native Film Refractive Index
3.5. Assignment of Oxide Absorbance Bands
- The authors believe that the absorbance band starting at about 5.7 eV (wavelengths less than 200 nm, anomalous dispersion region A1 on Figure 5) and extending further into the region of even shorter wavelengths (high photon energies) is due to the alumina cellular-porous structure, its purest part.
- The scatter of points in the range of 5.6–5.8 eV (no special marking) can be caused by both random reasons and errors in data processing, and insignificant optical absorbance with the participation of electronic states in the band gap of aluminum oxide, caused by disordering of the structure, impurities introduced from the electrolyte, or possibly by the presence of niobium ions dissolved in alumina.
- Based on the analysis of a large amount of literature data, the authors believe that the absorbance band found in the range 4.2–5.1 eV (anomalous dispersion region A2 on Figure 5) may be due to the presence of niobia V, stoichiometric and pure, or with an impurity of Al2O3, or/and the most contaminated part of impurities anodic alumina.
- The authors suggest that the absorbance band, which is in the range 1.9–2.8 eV (anomalous dispersion region A3 on Figure 5), may be due to the presence of mixed niobia of an indefinite composition that varies with respect to the height and diameter of the nanocolumns and the film thickness.
3.6. 2-D Photonic Crystals
3.7. Native Film Refractive Index
4. Conclusions
- Smart anodic processing of a two-layer Al/Nb system with a thickness ratio of 1000/50 nm makes it possible to completely acidify metal layers and form nanostructured films with a high degree of transparency of about 70% for all types of films obtained.
- Three types of films located on a glass substrate were obtained: native, planarized, and column-like.
- 2.1.
- Native film is a three-layer structure with the total thickness of 1408 nm, while the thickness of the not filled porous alumina is 962 nm, the height of the alumina pores filled with the niobia is 325 nm, and the sublayer of the continuous niobia NbO2 has a thickness of 115 nm.
- 2.2.
- The planarized film is also built of three layers. The first layer is the protruding vertices of niobia nanocolumns with a height of 90 nm. The second layer with 235 nm thickness is a porous alumina with niobia nanocolumns located in the pores of 65 nm in diameter at a 125 nm distance. The third layer is a niobia continuous layer NbO2.
- 2.3.
- A column-like film consisting of full free-standing niobia nanocolumns with a height of 325 nm, diameter of 65 nm and a distance of 125 nm also resting on a continuous thin layer of NbO2.
- The spectral characteristics of the film three types in near and middle UV, visible and near IR ranges have been investigated. The native film spectra are characterized by the Fabry–Perot interference, which is determined by film thickness. The reflectance spectra of all films show peaks in short- and long-wave regions. The presence of the peaks can be explained by a multi-layer composition of the films with a periodically changing refractive index in two dimensions.
- The interference pattern served as the basis for calculating the effective refractive index of native film, which varies within 1.75–1.54 in the wavelength range 190–1100 nm. The spectral characteristics of the refractive index show areas of normal and anomalous dispersion. The latter made it possible to distinguish a number of absorption bands of the native sample.
- Based on the analysis of a large amount of literature data, the identified oxide absorbance bands were assigned.
- 5.1.
- The optical absorbance band of native film starting at about 5.7 eV (wavelengths less than 200 nm) and extending further into the region of even shorter wavelengths (high photon energies) is due to the alumina cellular-porous structure, its purest part.
- 5.2.
- The scatter of points in the range of 5.6–5.8 eV can be caused by insignificant optical absorbance with the participation of electronic states in the band gap of alumina, caused by disordering of the structure, impurities introduced from the electrolyte, or possibly by the presence of niobium ions dissolved in alumina.
- 5.3.
- The absorbance band of native film found in the range 4.2–5.1 eV may be due to the presence of niobia V, stoichiometric and pure, or with an impurity of Al2O3, or/and the most contaminated part of impurities anodic alumina.
- 5.4.
- The absorbance band of native film, which is in the range 1.9–2.8 eV, may be due to the presence of mixed niobia of an indefinite composition that varies with respect to the height and diameter of the nanocolumns and the film thickness.
- The value of the effective refractive index of the native film according to the existing effective-medium models (Maxwell–Garnett model and model of the laminar structure) was calculated to be in the range of 1.63–1.68.
- The optical characteristic of the third type of the studied film with column-like structure was used in FDTD simulation to obtain the morphology of a potential 2-D photonic crystal with 92% (wavelength 462 nm) reflectance: 80 nm diameter, 700 nm height, 200 nm inter-column distance, 150 nm continuous NbO2 thickness.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhmetov, A.R. Inorganic Chemistry; University Press of the Pacific: Honolulu, HI, USA, 2001; p. 568. ISBN 978-0898756234. [Google Scholar]
- Newsome, J.W.; Heiser, H.W.; Russel, A.S.; Stumpf, H.C. Alumina Properties; Technical Report No. NP-10410; Alcoa Research Labs: New Kensington, PE, USA, 1960; p. 89. [CrossRef]
- Wang, B.; Fei, G.T.; Wang, M.; Kong, M.G.; Zhang, L.D. Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007, 18, 365601. [Google Scholar] [CrossRef]
- Said, S.; Mikhail, S.; Riad, M. Recent processes for the production of alumina nano-particles. Mater. Sci. Energy Technol. 2020, 3, 344–363. [Google Scholar] [CrossRef]
- Khranovskaya, T.M.; Savanina, N.N.; D’Yachenko, O.P. A corundum-mullite refractory material. Refract. Ind. Ceram. 2005. [Google Scholar] [CrossRef]
- Stjernberg, J.; Olivas-Ogaz, M.A.; Antti, M.L.; Ion, J.C.; Lindblom, B. Laboratory scale study of the degradation of mullite/corundum refractories by reaction with alkali-doped deposit materials. Ceram. Int. 2013, 39, 791–800. [Google Scholar] [CrossRef]
- Pletnev, P.M.; Pogrebenkov, V.M.; Vereshchagin, V.I.; Tyul’kin, D.S. Mullite-Corundum Materials Based on Mullite Binder Resistant to High-Temperature Deformation. Refract. Ind. Ceram. 2018, 58, 618–625. [Google Scholar] [CrossRef]
- Zotov, R.; Meshcheryakov, E.; Livanova, A.; Minakova, T.; Magaev, O.; Isupova, L.; Kurzina, I. Influence of the Composition, Structure, and Physical and Chemical Properties of Aluminium-Oxide-Based Sorbents on Water Adsorption Ability. Materials 2018, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faramawy, S.; El-Naggar, A.Y.; El-Fadly, A.M.; El-Sabagh, S.M.; Ibrahim, A.A. Silica, alumina and aluminosilicates as solid stationary phases in gas chromatography. Arab. J. Chem. 2016, 9, S765–S775. [Google Scholar] [CrossRef] [Green Version]
- Krell, A.; Ma, H.W.; Buse, F. New Al2O3 Membranes and Catalyst Substrates: Nanoporous Alumina and Corundum for Ultra- and Microfiltration. Key Eng. Mater. 2001, 206, 1931–1936. [Google Scholar] [CrossRef]
- Nowak, I.; Ziolek, M. Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chem. Rev. 1999, 99, 3603–3624. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, X.; Ye, L.; Chi Edman Tsang, S. Nanostructured Nb2O5 catalysts. Nano Rev. 2012, 3, 17631. [Google Scholar] [CrossRef] [Green Version]
- Leal, G.F.; Lima, S.; Graça, I.; Carrer, H.; Barrett, D.H.; Teixeira-Neto, E.; Curvelo, A.A.S.; Rodella, C.B.; Rinaldi, R. Design of Nickel Supported on Water-Tolerant Nb2O5 Catalysts for the Hydrotreating of Lignin Streams Obtained from Lignin-First Biorefining. iScience 2019, 15, 467–488. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, G.; Zhu, J.; Wan, Y. Preparation of an active SO42−/TiO2 photocatalyst for phenol degradation under supercritical conditions. J. Mol. Catal. A Chem. 2005, 226, 93–100. [Google Scholar] [CrossRef]
- Morais, L.A.; Adán, C.; Araujo, A.S.; Guedes, A.P.M.A.; Marugán, J. Synthesis, Characterization, and Photonic Efficiency of Novel Photocatalytic Niobium Oxide Materials. Glob. Chall. 2017, 1, 1700066. [Google Scholar] [CrossRef]
- Gómez, C.; Rodríguez-Páez, J. The effect of the synthesis conditions on structure and photocatalytic activity of Nb2O5 nanostructures. Process. Appl. Ceram. 2018, 12, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, A.J.; Batista, L.M.B.; Martínez-Huitle, C.A.; Alves, A.P.d.M.; Garcia-Segura, S. Niobium Oxide Catalysts as Emerging Material for Textile Wastewater Reuse: Photocatalytic Decolorization of Azo Dyes. Catalysts 2019, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Sayama, K.; Sugihara, H.; Arakawa, H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 1998, 10, 3825–3832. [Google Scholar] [CrossRef]
- Rani, R.A.; Zoolfakar, A.S.; O’Mullane, A.P.; Austin, M.W.; Kalantar-Zadeh, K. Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2014, 2, 15683–15703. [Google Scholar] [CrossRef] [Green Version]
- Coşkun, Ö.D.; Demirel, S.; Atak, G. The effects of heat treatment on optical, structural, electrochromic and bonding properties of Nb2O5 thin films. J. Alloys Compd. 2015, 648, 994–1004. [Google Scholar] [CrossRef]
- Roberson, J.A.; Rapp, R.A. Electrical properties of NbO and NbO2. J. Phys. Chem. Solids 1969, 30, 1119–1124. [Google Scholar] [CrossRef]
- Aguilar-Frutis, M.; Garcia, M.; Falcony, C. Optical and electrical properties of aluminum oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 1998, 72, 1700–1702. [Google Scholar] [CrossRef]
- Shamala, K.S.; Murthy, L.C.S.; Narasimha Rao, K. Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Mater. Sci. Eng. B 2004, 106, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Afanas’ev, V.V.; Houssa, M.; Stesmans, A.; Heyns, M.M. Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2. J. Appl. Phys. 2002, 91, 3079–3084. [Google Scholar] [CrossRef]
- Filatova, E.O.; Konashuk, A.S. Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries. J. Phys. Chem. C 2015, 119, 20755–20761. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kwon, J.-D.; Ahn, J.-H.; Park, J.-S. Compositional and electrical modulation of niobium oxide thin films deposited by plasma-enhanced atomic layer deposition. Ceram. Int. 2017, 43, 6580–6584. [Google Scholar] [CrossRef]
- Hunsche, B.; Vergöhl, M.; Neuhäuser, H.; Klose, F.; Szyszka, B.; Matthée, T. Effect of deposition parameters on optical and mechanical properties of MF-and DC-sputtered Nb2O5 films. Thin Solid Films 2001, 392, 184–190. [Google Scholar] [CrossRef]
- Chen, K.-N.; Hsu, C.-M.; Liu, J.; Liou, Y.-C.; Yang, C.-F. Investigation of Antireflection Nb2O5 Thin Films by the Sputtering Method under Different Deposition Parameters. Micromachines 2016, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, N.; Günes, O.; Zhang, C.; Koughia, C.; Li, Y.; Wen, S.-J.; Wong, R.; Kasap, S.; Yang, Q. Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 2019, 30, 9822–9835. [Google Scholar] [CrossRef]
- Venkataraj, S.; Drese, R.; Liesch, C.; Kappertz, O.; Jayavel, R.; Wuttig, M. Temperature stability of sputtered niobium–oxide films. J. Appl. Phys. 2002, 91, 4863–4871. [Google Scholar] [CrossRef]
- Jia, Y.; Zhong, M.; Yang, F.; Liang, C.; Ren, H.; Hu, B.; Liu, Q.; Zhao, H.; Zhang, Y.; Zhao, Y. Theoretical and Experimental Study on Exciton Properties of TT-, T-, and H-Nb2O5. J. Phys. Chem. C 2020, 124, 15066–15075. [Google Scholar] [CrossRef]
- Agarwal, G.; Reddy, G.B. Study of surface morphology and optical properties of Nb2O5 thin films with annealing. J. Mater. Sci. Mater. Electron. 2005, 16, 21–24. [Google Scholar] [CrossRef]
- Raba, A.M.; Bautista-Ruíz, J.; Joya, M.R. Synthesis and Structural Properties of Niobium Pentoxide Powders: A Comparative Study of the Growth Process. Mater. Res. 2016, 19, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, S.; Shinohara, T.; Kumigashira, H.; Oshima, M.; Kato, Y. Significant increase in conduction band discontinuity due to solid phase epitaxy of Al2O3 gate insulator films on GaN semiconductor. Appl. Phys. Lett. 2012, 101, 231607. [Google Scholar] [CrossRef]
- Szymanowski, H.; Zabeida, O.; Klemberg-Sapieha, J.E.; Martinu, L. Optical properties and microstructure of plasma deposited Ta2O5 and Nb2O5 films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2005, 23, 241–247. [Google Scholar] [CrossRef]
- Joshi, T.; Senty, T.R.; Borisov, P.; Bristow, A.D.; Lederman, D. Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices. J. Phys. D: Appl. Phys. 2015, 48, 335308. [Google Scholar] [CrossRef] [Green Version]
- Nakao, S.; Kamisaka, H.; Hirose, Y.; Hasegawa, T. Structural, electrical, and optical properties of polycrystalline NbO2 thin films grown on glass substrates by solid phase crystallization. Phys. Status Solidi 2017, 214, 1600604. [Google Scholar] [CrossRef]
- Stoever, J.; Boschker, J.E.; Bin Anooz, S.; Schmidbauer, M.; Petrik, P.; Schwarzkopf, J.; Albrecht, M.; Irmscher, K. Approaching the high intrinsic electrical resistivity of NbO2 in epitaxially grown films. Appl. Phys. Lett. 2020, 116, 182103. [Google Scholar] [CrossRef]
- Posadas, A.B.; O’Hara, A.; Rangan, S.; Bartynski, R.A.; Demkov, A.A. Band gap of epitaxial in-plane-dimerized single-phase NbO2 films. Appl. Phys. Lett. 2014, 104, 092901. [Google Scholar] [CrossRef]
- Young, L. Anodic Oxide Films; Academic Press: New York, NY, USA, 1961; p. 377. [Google Scholar]
- Yakovleva, N.M.; Yakovlev, A.N.; Chupakhina, E.A. Structural analysis of alumina films produced by two-step electrochemical oxidation. Thin Solid Films 2000, 366, 37–42. [Google Scholar] [CrossRef]
- Mozalev, A.; Poznyak, A.; Mozaleva, I.; Hassel, A.W. The voltage–time behaviour for porous anodizing of aluminium in a fluoride-containing oxalic acid electrolyte. Electrochem. Commun. 2001, 3, 299–305. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Laryn, T.; Salerno, M. Porous Alumina Films Fabricated by Reduced Temperature Sulfuric Acid Anodizing: Morphology, Composition and Volumetric Growth. Materials 2021, 14, 767. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Roslyakov, I.V.; Eliseev, A.A.; Byelov, D.V.; Petukhov, A.V.; Grigoryeva, N.A.; Bouwman, W.G.; Lukashin, A.V.; Chumakov, A.P.; Grigoriev, S.V. The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum. J. Phys. Chem. C 2011, 115, 23726–23731. [Google Scholar] [CrossRef]
- Knörnschild, G.; Poznyak, A.A.; Karoza, A.G.; Mozalev, A. Effect of the anodization conditions on the growth and volume expansion of porous alumina films in malonic acid electrolyte. Surf. Coat. Technol. 2015, 275, 17–25. [Google Scholar] [CrossRef]
- Mozalev, A.; Baccar, H.; Abdelghani, A. Preparation and Biosensing Performance of Porous-alumina-Assisted Gold Nanostructures on Substrates. Procedia Eng. 2016, 168, 1188–1191. [Google Scholar] [CrossRef]
- Stępniowski, W.J.; Moneta, M.; Norek, M.; Michalska-Domańska, M.; Scarpellini, A.; Salerno, M. The influence of electrolyte composition on the growth of nanoporous anodic alumina. Electrochim. Acta 2016, 211, 453–460. [Google Scholar] [CrossRef]
- Kokatev, A.N.; Stepanova, K.V.; Yakovleva, N.M.; Tolstik, V.E.; Shelukhina, A.I.; Shul’ga, A.M. Self-Organization of a Bioactive Nanostructured Oxide Layer at the Surface of Sintered Titanium Sponge Powder Subjected to Electrochemical Anodization. Tech. Phys. 2018, 63, 1334–1340. [Google Scholar] [CrossRef]
- Altomare, M.; Cha, G.; Schmuki, P. Anodic nanoporous niobium oxide layers grown in pure molten ortho-phosphoric acid. Electrochim. Acta 2020, 344, 136158. [Google Scholar] [CrossRef]
- Tesler, A.B.; Altomare, M.; Schmuki, P. Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4 F/o-H3PO4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 10646–10658. [Google Scholar] [CrossRef]
- Yoo, J.E.; Schmuki, P. Critical Factors in the Anodic Formation of Extremely Ordered Titania Nanocavities. J. Electrochem. Soc. 2019, 166, C3389. [Google Scholar] [CrossRef]
- Ziolek, M. Niobium-containing catalysts—The state of the art. Catal. Today 2003, 78, 47–64. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Santos, A.; Kumeria, T.; Losic, D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials 2014, 7, 4297. [Google Scholar] [CrossRef] [Green Version]
- Santos, A. Nanoporous anodic alumina photonic crystals: Fundamentals, developments and perspectives. J. Mater. Chem. C 2017, 5, 5581–5599. [Google Scholar] [CrossRef]
- Nunes, B.N.; Faustino, L.A.; Muller, A.V.; Polo, A.S.; Patrocinio, A.O.T. Nb2O5 Dye-Sensitized Solar Cells. In Nanomaterials for Solar Cell Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 287–322. ISBN 9780128133378. [Google Scholar] [CrossRef]
- Nunes, B.N.; Lopes, O.F.; Patrocinio, A.O.T.; Bahnemann, D.W. Recent advances in niobium-based materials for photocatalytic solar fuel production. Catalysts 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Sun, Z.; He, Q.; Sun, J.; Kaner, R.B.; Shao, Y. Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Mater. Horizons 2021, 8, 1130–1152. [Google Scholar] [CrossRef]
- Li, A.-P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina. Adv. Mater. 1999, 11, 483–487. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770. [Google Scholar] [CrossRef]
- Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T. Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 2001, 13, 189–192. [Google Scholar] [CrossRef]
- Pligovka, A.N.; Luferov, A.N.; Nosik, R.F.; Mozalev, A.M. Dielectric characteristics of thin film capacitors based on anodized Al/Ta layers. In Proceedings of the 2010 20th International Crimean Conference Microwave & Telecommunication Technology, Sevastopol, Ukraine, 13–17 September 2010; pp. 880–881. [Google Scholar] [CrossRef]
- Pligovka, A.; Lazavenka, A.; Gorokh, G. Anodic niobia column-like 3-D nanostructures for semiconductor devices. IEEE Trans. Nanotechnol. 2019, 18. [Google Scholar] [CrossRef]
- Khatko, V.; Gorokh, G.; Mozalev, A.; Solovei, D.; Llobet, E.; Vilanova, X.; Correig, X. Tungsten trioxide sensing layers on highly ordered nanoporous alumina template. Sens. Actuators B Chem. 2006. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Chen, S.S.; Wang, J.C.; Li, Y. Fabrication and properties of anodic alumina humidity sensor with through-hole structure. Chin. Sci. Bull. 2008, 53, 183–187. [Google Scholar] [CrossRef]
- Sriram, G.; Patil, P.; Bhat, M.P.; Hegde, R.M.; Ajeya, K.V.; Udachyan, I.; Bhavya, M.B.; Gatti, M.G.; Uthappa, U.T.; Neelgund, G.M.; et al. Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications. J. Nanomater. 2016, 2016, 1–24. [Google Scholar] [CrossRef]
- Georgiev, R.; Lazarova, K.; Vasileva, M.; Babeva, T. All niobia Bragg stacks for optical sensing of vapors. Opt. Quantum Electron. 2020, 52, 114. [Google Scholar] [CrossRef]
- Tomassi, P.; Buczko, Z. Aluminum Anodic Oxide AAO as a Template for Formation of Metal Nanostructures. In Electroplating of Nanostructures; IntechOpen: London, UK, 2015; pp. 75–102. ISBN 978-953-51-2213-5. [Google Scholar] [CrossRef]
- Masuda, H.; Ohya, M.; Asoh, H.; Nakao, M.; Nohtomi, M.; Tamamura, T. Photonic Crystal Using Anodic Porous Alumina. Jpn. J. Appl. Phys. 1999, 38, L1403–L1405. [Google Scholar] [CrossRef]
- Zheng, W.J.; Fei, G.T.; Wang, B.; Zhang, L. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature. Nanoscale Res. Lett. 2009, 4, 665–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podhorodecki, A.; Gaponenko, N.V.; Zatryb, G.; Molchan, I.S.; Motyka, M.; Serafinczuk, J.; Golacki, L.W.; Khoroshko, L.S.; Misiewicz, J.; Thompson, G.E. Ion–ion interaction in two-dimensional nanoporous alumina filled with cubic YAlO3: Tb3 + matrix. J. Phys. D Appl. Phys. 2013, 46, 355302. [Google Scholar] [CrossRef]
- Brzózka, A.; Brudzisz, A.; Hnida, K.; Sulka, G.D. Chemical and structural modifications of nanoporous alumina and its optical properties. In Electrochemically Engineered Nanoporous Materials, Part of the Springer Series in Materials Science, 220; Springer: Cham, Switzerland, 2015; pp. 219–288. ISBN 978-3-319-20346-1. [Google Scholar] [CrossRef]
- Valeev, R.G.; Petukhov, D.I.; Kriventsov, V.V. Structure and Optical Properties of thin Porous Anodic Alumina Films Synthesized on a Glass Surface. Phys. Procedia 2016, 84, 415–420. [Google Scholar] [CrossRef]
- Law, C.S.; Lim, S.Y.; Abell, A.D.; Voelcker, N.H.; Santos, A. Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. Nanomaterials 2018, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Ashurov, M.; Gorelik, V.; Napolskii, K.; Klimonsky, S. Anodic Alumina Photonic Crystals as Refractive Index Sensors for Controlling the Composition of Liquid Mixtures. Photonic Sens. 2020, 10, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Sadykov, A.I.; Kushnir, S.E.; Sapoletova, N.A.; Ivanov, V.K.; Napolskii, K.S. Anodic titania photonic crystals with high reflectance within photonic band gap via pore shape engineering. Scr. Mater. 2020, 178, 13–17. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Noyan, A.A.; Kushnir, S.E. Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals. Opt. Mater. 2020, 109, 110317. [Google Scholar] [CrossRef]
- Kolmychek, I.A.; Malysheva, I.V.; Novikov, V.B.; Leontiev, A.P.; Napolskii, K.S.; Murzina, T.V. Phase-matched optical second harmonic generation in a hyperbolic metamaterial based on silver nanorods. Phys. Rev. B 2020, 102, 241405. [Google Scholar] [CrossRef]
- Le Viet, A.; Jose, R.; Reddy, M.V.; Chowdari, B.V.R.; Ramakrishna, S. Nb2O5 photoelectrodes for dye-sensitized solar cells: Choice of the polymorph. J. Phys. Chem. C 2010, 114, 21795–21800. [Google Scholar] [CrossRef]
- Li, S.; Xu, Q.; Uchaker, E.; Cao, X.; Cao, G. Comparison of amorphous, pseudohexagonal and orthorhombic Nb 2 O 5 for high-rate lithium ion insertion. Cryst. Eng. Comm. 2016, 18, 2532–2540. [Google Scholar] [CrossRef] [Green Version]
- Fiz, R.; Appel, L.; Gutiérrez-Pardo, A.; Ramírez-Rico, J.; Mathur, S. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films. ACS Appl. Mater. Interfaces 2016, 8, 21423–21430. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qin, P.; Lv, D.; Wan, J.; Sun, S.; Ma, H. Characterization of anisotropy of the porous anodic alumina by the Mueller matrix imaging method. Opt. Express 2020, 28, 6740–6754. [Google Scholar] [CrossRef]
- Saito, M.; Miyagi, M. Anisotropic optical loss and birefringence of anodized alumina film. J. Opt. Soc. Am. A 1989, 6, 1895–1900. [Google Scholar] [CrossRef]
- Lutich, A.A.; Danailov, M.B.; Volchek, S.; Yakovtseva, V.A.; Sokol, V.A.; Gaponenko, S.V. Birefringence of nanoporous alumina: Dependence on structure parameters. Appl. Phys. B Lasers Opt. 2006, 84, 327–331. [Google Scholar] [CrossRef]
- Sakoda, K. Optical Properties of Photonic Crystals; Springer Series in Optical Sciences, 80; Springer: Berlin/Heidelberg, Germany, 2005; p. 271. ISBN 978-3-540-20682-8. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008; p. 304. ISBN 978-0-691-12456-8. [Google Scholar]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [Green Version]
- Takayama, O.; Cada, M. Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths. Appl. Phys. Lett. 2004, 85, 1311–1313. [Google Scholar] [CrossRef] [Green Version]
- Zvezdin, A.K.; Belotelov, V.I. Magnetooptical properties of two dimensional photonic crystals. Eur. Phys. J. B Condens. Matter 2004, 37, 479–487. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, S. Magneto-optical defects in two-dimensional photonic crystals. Appl. Phys. B 2005, 81, 369–375. [Google Scholar] [CrossRef]
- Sinitskii, A.; Knotko, A.; Tretyakov, Y. Silica photonic crystals: Synthesis and optical properties. Solid State Ion. 2004, 172, 477–479. [Google Scholar] [CrossRef]
- Schilling, J.; White, J.; Scherer, A.; Stupian, G.; Hillebrand, R.; Gösele, U. Three-dimensional macroporous silicon photonic crystal with large photonic band gap. Appl. Phys. Lett. 2005, 86, 011101. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Noda, S. Photonic Crystal Devices in Silicon Photonics. Proc. IEEE 2018, 106, 2183–2195. [Google Scholar] [CrossRef]
- Song, B.-S.; Yamada, S.; Asano, T.; Noda, S. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express 2011, 19, 11084. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Nishio, K.; Masuda, H. Fabrication of two-dimensional polymer photonic crystals by nanoimprinting using anodic porous alumina mold. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010, 28, 398–400. [Google Scholar] [CrossRef]
- Pang, L.; Nakagawa, W.; Fainman, Y. Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl. Opt. 2003, 42, 5450. [Google Scholar] [CrossRef]
- Rosenberg, A.; Tonucci, R.J.; Lin, H.-B.; Campillo, A.J. Near-infrared two-dimensional photonic band-gap materials. Opt. Lett. 1996, 21, 830. [Google Scholar] [CrossRef]
- Riedrich-Möller, J.; Kipfstuhl, L.; Hepp, C.; Neu, E.; Pauly, C.; Mücklich, F.; Baur, A.; Wandt, M.; Wolff, S.; Fischer, M.; et al. One-and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 2012, 7, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.; El kurdi, M.; Boucaud, P.; Chelnokov, A.; Le Thanh, V.; Bouchier, D.; Lourtioz, J.-M. Two-dimensional photonic crystals with Ge/Si self-assembled islands. Appl. Phys. Lett. 2003, 83, 2509–2511. [Google Scholar] [CrossRef]
- Benisty, H.; Weisbuch, C.; Labilloy, D.; Rattier, M.; Smith, C.J.M.; Krauss, T.F.; de la Rue, R.M.; Houdre, R.; Oesterle, U.; Jouanin, C.; et al. Optical and confinement properties of two-dimensional photonic crystals. J. Light. Technol. 1999, 17, 2063–2077. [Google Scholar] [CrossRef]
- Takeda, H.; Yoshino, K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors. Phys. Rev. B 2003, 67, 245109. [Google Scholar] [CrossRef]
- Fujita, M.; Ishihara, K.; Ueno, T.; Asano, T.; Noda, S.; Ohata, H.; Tsuji, T.; Nakada, H.; Shimoji, N. Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers. Jpn. J. Appl. Phys. 2005, 44, 3669–3677. [Google Scholar] [CrossRef]
- Ohnishi, D.; Okano, T.; Imada, M.; Noda, S. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Opt. Express 2004, 12, 1562. [Google Scholar] [CrossRef]
- Ok, M.-R.; Ghosh, R.; Brennaman, M.K.; Lopez, R.; Meyer, T.J.; Samulski, E.T. Surface Patterning of Mesoporous Niobium Oxide Films for Solar Energy Conversion. ACS Appl. Mater. Interfaces 2013, 5, 3469–3474. [Google Scholar] [CrossRef]
- Pligovka, A.; Turavets, U.; Hoha, A.; Zavadski, S.; Poznyak, A. Niobium and Tantalum-Anodic-Oxide Nanocolumn Arrays for 2-D Reflective Photonic-Crystals. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020. [Google Scholar] [CrossRef]
- Choi, J.; Luo, Y.; Wehrspohn, R.B.; Hillebrand, R.; Schilling, J.; Gösele, U. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 2003, 94, 4757. [Google Scholar] [CrossRef] [Green Version]
- Mizeikis, V.; Mikulskas, I.; Tomašiūnas, R.; Juodkazis, S.; Matsuo, S.; Misawa, H. Optical Characteristics of Two-Dimensional Photonic Crystals in Anodic Aluminum Oxide Films. Jpn. J. Appl. Phys. 2004, 43, 3643–3647. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K. Lasing from Two-Dimensional Photonic Crystals Using Anodic Porous Alumina. Adv. Mater. 2006, 18, 213–216. [Google Scholar] [CrossRef]
- Leontiev, A.P.; Roslyakov, I.V.; Vedeneev, A.S.; Napolskii, K.S. Preparation of thin anodic alumina membranes and their utilization for template electrodeposition. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2016, 10, 548–553. [Google Scholar] [CrossRef]
- Goszczak, A.J.; Cielecki, P.P. A Review on Anodic Aluminum Oxide Methods for Fabrication of Nanostructures for Organic Solar Cells. Curr. Nanosci. 2018, 15, 64–75. [Google Scholar] [CrossRef]
- Mozalev, A.; Smith, A.J.; Borodin, S.; Plihauka, A.; Hassel, A.W.; Sakairi, M.; Takahashi, H. Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si. Electrochim. Acta 2009, 54, 935–945. [Google Scholar] [CrossRef]
- Pastore, G.F. Transmission interference spectrometric determination of the thickness and refractive index of barrier films formed anodically on aluminum. Thin Solid Films 1985, 123, 9–17. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 2012, 20, 15734. [Google Scholar] [CrossRef] [PubMed]
- Pligovka, A. Reflectant photonic crystals produced via porous-alumina-assisted-anodizing of Al/Nb and Al/Ta systems. Surf. Rev. Lett. 2021, 2150055, 1–7. [Google Scholar] [CrossRef]
- Mozalev, A.; Sakairi, M.; Saeki, I.; Takahashi, H. Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film. Electrochim. Acta 2003, 48, 3155–3170. [Google Scholar] [CrossRef]
- Mozalev, A.; Vázquez, R.M.; Bittencourt, C.; Cossement, D.; Gispert-Guirado, F.; Llobet, E.; Habazaki, H. Formation–structure–properties of niobium-oxide nanocolumn arrays via self-organized anodization of sputter-deposited aluminum-on-niobium layers. J. Mater. Chem. C 2014, 2, 4847. [Google Scholar] [CrossRef]
- Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters. J. Phys. Conf. Ser. 2018, 987, 012006. [Google Scholar] [CrossRef]
- Gordeeva, E.O.; Roslyakov, I.V.; Sadykov, A.I.; Suchkova, T.A.; Petukhov, D.I.; Shatalova, T.B.; Napolskii, K.S. Formation Efficiency of Porous Oxide Films in Aluminum Anodizing. Russ. J. Electrochem. 2018, 54, 990–998. [Google Scholar] [CrossRef]
- Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173–1175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.H.; He, J.P.; Zhao, G.W.; Zhang, C.X.; Zhao, J.S.; Hu, H.P. Alumina nanostructures prepared by two-step anodization process. Trans. Nonferrous Met. Soc. China 2007, 17, 82–86. [Google Scholar] [CrossRef]
- Mozalev, A.; Sakairi, M.; Takahashi, H.; Habazaki, H.; Hubálek, J. Nanostructured anodic-alumina-based dielectrics for high-frequency integral capacitors. Thin Solid Films 2014, 550, 486–494. [Google Scholar] [CrossRef]
- Mozalev, A.; Sakairi, M.; Takahashi, H. Structure, Morphology, and Dielectric Properties of Nanocomposite Oxide Films Formed by Anodizing of Sputter-Deposited Ta-Al Bilayers. J. Electrochem. Soc. 2004, 151, F257. [Google Scholar] [CrossRef]
- Mozalev, A.; Gorokh, G.; Sakairi, M.; Takahashi, H. The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta-Al thin-film bilayers. J. Mater. Sci. 2005, 40, 6399–6407. [Google Scholar] [CrossRef]
- Mozalev, A.; Bendova, M.; Vazquez, R.M.; Pytlicek, Z.; Llobet, E.; Hubalek, J. Formation and gas-sensing properties of a porous-alumina-assisted 3-D niobium-oxide nanofilm. Sens. Actuators B Chem. 2016, 229, 587–598. [Google Scholar] [CrossRef]
- Mozalev, A.; Bendova, M.; Gispert-Guirado, F.; Llobet, E. Hafnium-Oxide 3-D Nanofilms via the Anodizing of Al/Hf Metal Layers. Chem. Mater. 2018, 30, 2694–2708. [Google Scholar] [CrossRef]
- Bendova, M.; Pytlicek, Z.; Prasek, J.; Mozalev, A. The growth and unique electronic properties of the porous-alumina-assisted hafnium-oxide nanostructured films. Electrochim. Acta 2019, 327, 135029. [Google Scholar] [CrossRef]
- Mozalev, A.; Pytlicek, Z.; Kamnev, K.; Prasek, J.; Gispert-Guirado, F.; Llobet, E. Zirconium oxide nanoarrays via the self-organized anodizing of Al/Zr bilayers on substrates. Mater. Chem. Front. 2021, 5, 1917–1931. [Google Scholar] [CrossRef]
- Alcalá, G.; Skeldon, P.; Thompson, G.E.; Mann, A.B.; Habazaki, H.; Shimizu, K. Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation. Nanotechnology 2002, 13, 302. [Google Scholar] [CrossRef]
- Reddy, P.R.; Ajith, K.M.; Udayashankar, N.K. Optical and mechanical studies on free standing amorphous anodic porous alumina formed in oxalic and sulphuric acid. Appl. Phys. A 2018, 124, 765. [Google Scholar] [CrossRef]
- Mozalev, A.; Vázquez, R.M.; Calavia, R.; Bittencourt, C.; Gispert-Guirado, F.; Llobet, E.; Hubálek, J.; Habazaki, H. Development of Multipurpose Metal-Oxide Films with Nanostructured Tailored Morphologies and Tunable Properties via Anodic Processing of al/NB Metal Layers. In Proceedings of the 4th International Conference—NANOCON´12, Brno, Czech Republic, 23–25 October 2012; pp. 33–38. [Google Scholar]
- Habazaki, H.; Ogasawara, T.; Konno, H.; Shimizu, K.; Nagata, S.; Asami, K.; Takayama, K.; Skeldon, P.; Thompson, G.E. Suppression of Field Crystallization of Anodic Niobia by Oxygen. J. Electrochem. Soc. 2006, 153, B173. [Google Scholar] [CrossRef]
- Tajima, S.; Baba, N.; Shimura, F.M. Einfluss von Anionen und Inhibitoren auf die primären wachstumsvorgänge der anodischen Oxidschichten auf Aluminium. Electrochim. Acta 1967, 12, 955-IN2. [Google Scholar] [CrossRef]
- Wood, G.C.; Skeldon, P.; Thompson, G.E.; Shimizu, K. A Model for the Incorporation of Electrolyte Species into Anodic Alumina. J. Electrochem. Soc. 1996, 143, 74–83. [Google Scholar] [CrossRef]
- Golovataya, S.V.; Zubarevich, O.I.; Knörnschild, G.; Muravitskaya, E.V.; Poznyak, A.A. Highly doped nanostrcturized template of anodic alumina. In Proceedings of the 2008 18th International Crimean Conference—Microwave & Telecommunication Technology, Sevastopol, Ukraine, 8–12 September 2008; pp. 581–583. [Google Scholar] [CrossRef]
- Marangos, J.; Ball, P. Faster than a speeding photon Science in motion. Nature 2000, 406, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Lipson, A.; Lipson, S.G.; Lipson, H. Optical Physics; Cambridge University Press: Cambridge, UK, 2010; p. 590. ISBN 9780521493451. [Google Scholar]
- Knight, J.C.; Arriaga, J.; Birks, T.A.; Ortigosa-Blanch, A.; Wadsworth, W.J.; Russell, P.S.J. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technol. Lett. 2000, 12, 807–809. [Google Scholar] [CrossRef]
- Botey, M.; Maymó, M.; Molinos-Gómez, A.; Dorado, L.; Depine, R.A.; Lozano, G.; Mihi, A.; Míguez, H.; Martorell, J. Light generation at the anomalous dispersion high energy range of a nonlinear opal film. Opt. Express 2009, 17, 12210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, G. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films 1997, 297, 192–201. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wood, G.C. Anodic Films on Aluminium. In Treatise on Materials Science and Technology, 23; Elsevier: Amsterdam, The Netherlands, 1983; pp. 205–329. ISBN 9780126336702. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials 2011, 4, 487. [Google Scholar] [CrossRef] [Green Version]
- Kumeria, T.; Santos, A.; Losic, D. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications. Sensors 2014, 14, 11878. [Google Scholar] [CrossRef] [Green Version]
- Manzano, C.V.; Ramos, D.; Pethö, L.; Bürki, G.; Michler, J.; Philippe, L. Controlling the Color and Effective Refractive Index of Metal-Anodic Aluminum Oxide (AAO)–Al Nanostructures: Morphology of AAO. J. Phys. Chem. C 2018, 122, 957–963. [Google Scholar] [CrossRef]
- O’Sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. Lond. A Math. Phys. Sci. 1970, 317, 511–543. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wood, G.C. Porous anodic film formation on aluminium. Nature 1981, 290, 230–232. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Wang, Z.; Brust, M. Fabrication of nanostructure via self-assembly of nanowires within the AAO template. Nanoscale Res. Lett. 2007, 2, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Yakovleva, N.M.; Yakovlev, A.N.; Gafiyatullin, M.M.; Denisov, A.I. Computer diagnostics of the mesoscopic structure of nanoporous aluminas. Inorg. Mater. 2010, 46, 1529–1535. [Google Scholar] [CrossRef]
- Gordeeva, E.O.; Roslyakov, I.V.; Napolskii, K.S. Aluminium anodizing in selenic acid: Electrochemical behaviour, porous structure, and ordering regimes. Electrochim. Acta 2019, 307, 13–19. [Google Scholar] [CrossRef]
Morphological Parameters | Column-Like Film (Real) | 2-D Photonic Crystal (FDTD Simulated) |
---|---|---|
Column diameters, nm | 65 | 80 |
Column heights, nm | 325 | 700 |
Distance between column centers, nm | 125 | 200 |
Continuous NbO2 thickness, nm | 115 | 150 |
Reflectance, % | 42 | 92 |
Wavelength, nm | 340 | 462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pligovka, A.; Poznyak, A.; Norek, M. Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. Micromachines 2021, 12, 589. https://doi.org/10.3390/mi12060589
Pligovka A, Poznyak A, Norek M. Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. Micromachines. 2021; 12(6):589. https://doi.org/10.3390/mi12060589
Chicago/Turabian StylePligovka, Andrei, Alexander Poznyak, and Małgorzata Norek. 2021. "Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns" Micromachines 12, no. 6: 589. https://doi.org/10.3390/mi12060589
APA StylePligovka, A., Poznyak, A., & Norek, M. (2021). Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films–Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. Micromachines, 12(6), 589. https://doi.org/10.3390/mi12060589