In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regent and Apparatus
2.2. Design of the Microelectrode Array for Multi-Region Detection
2.3. Fabrication of the MEA
2.4. Lithium-Pilocarpine Induced Epileptic Rat Model
2.5. In Vivo Recording of Neural Signals in TLE Rat Models
2.6. Data Analysis and Statistics
3. Results
3.1. Morphology and Impedance Test of the MEAs
3.2. Spatiotemporal Variations of Neural Spikes in Multiple Hippocampal Subregions
3.3. Neural Spikes of Interneurons and Principal Cells in Epileptic Focus
3.4. Synchronized Neural Activities and Rhythmic Oscillations of Interneurons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, G.; Xu, S.; Song, Y.; Zhang, Y.; Li, Z.; Gao, F.; Xie, J.; Sha, L.; Xu, Q.; Shen, Y.; et al. In Situ Detection of Neurotransmitters and Epileptiform Electrophysiology Activity in Awake Mice Brains Using a Nanocomposites Modified Microelectrode Array. Sens. Actuators B 2019, 288, 601–610. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Xiao, G.; Xie, J.; Dai, Y.; Xing, Y.; He, E.; Wang, Y.; Xu, S.; Zhang, L.; et al. Flexible Electrocorticography Electrode Array for Epileptiform Electrical Activity Recording under Glutamate and GABA Modulation on the Primary Somatosensory Cortex of Rats. Micromachines 2020, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Song, Y.; Dai, Y.; Li, Z.; Gao, F.; Li, X.; Xiao, G.; Zhang, Y.; Wang, H.; Lu, Z.; et al. Nanoliposome-encapsulated caged-GABA for modulating neural electrophysiological activity with simultaneous detection by microelectrode arrays. Nano Res. 2020, 13, 1756–1763. [Google Scholar] [CrossRef]
- Dai, Y.; Song, Y.; Xie, J.; Xiao, G.; Li, X.; Li, Z.; Gao, F.; Zhang, Y.; He, E.; Xu, S.; et al. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS Appl. Mater. Interfaces 2020, 12, 41148–41156. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Kim, S.; Frascino, J.C.; Annese, J.; Bennett, J.; Insausti, R.; Amaral, D.G. Neuropsychological and Neuropathological Observations of a Long-Studied Case of Memory Impairment. Proc. Natl. Acad. Sci. USA. 2020, 117, 29883–29893. [Google Scholar] [CrossRef]
- Murphy, G.G. Spatial Learning and Memory-What’s TLE Got To Do With It? Epilepsy Curr. 2013, 13, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front. Neurol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E. Epilepsy: A Review of Selected Clinical Syndromes and Advances in Basic Science. J. Cereb. Blood Flow Metab. 2006, 26, 983–1004. [Google Scholar] [CrossRef] [PubMed]
- Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The Pilocarpine Model of Temporal Lobe Epilepsy. J. Neurosci. Methods 2008, 172, 143–157. [Google Scholar] [CrossRef]
- Loscher, W.; Hirsch, L.J.; Schmidt, D. The Enigma of the Latent Period in the Development of Symptomatic Acquired Epilepsy—Traditional View Versus New Concepts. Epilepsy Behav. 2015, 52, 78–92. [Google Scholar] [CrossRef]
- Lee, H.; Jung, S.; Lee, P.; Jeong, Y. Altered Intrinsic Functional Connectivity in the Latent Period of Epileptogenesis in a Temporal Lobe Epilepsy Model. Exp. Neurol. 2017, 296, 89–98. [Google Scholar] [CrossRef]
- Fekete, Z. Recent advances in silicon-based neural microelectrodes and microsystems: A review. Sens. Actuators B 2015, 215, 300–315. [Google Scholar] [CrossRef]
- Fan, X.; Song, Y.; Ma, Y.; Zhang, S.; Xiao, G.; Yang, L.; Xu, H.; Zhang, D.; Cai, X. In Situ Real-Time Monitoring of Glutamate and Electrophysiology from Cortex to Hippocampus in Mice Based on a Microelectrode Array. Sensors 2017, 17, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, M.D.; Melosh, N.A. Electronic and Ionic Materials for Neurointerfaces. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef]
- Song, E.; Li, J.; Won, S.M.; Bai, W.; Rogers, J.A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, V.; Biazi, L.; Marchiori, R.; Lago, A. Platinum metallization for MEMS application. Biomatter 2014, 4, e28822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Song, Y.; Wang, M.; Zhang, Z.; Fan, X.; Song, X.; Zhuang, P.; Yue, F.; Chan, P.; Cai, X. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. Biosens. Bioelectron. 2016, 85, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Scharfman, H.E. The Dentate Gyrus and Temporal Lobe Epilepsy: An “Exciting” Era. Epilepsy Curr. 2019, 19, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Navidhamidi, M.; Ghasemi, M.; Mehranfard, N. Epilepsy-Associated Alterations in Hippocampal Excitability. Rev. Neurosci. 2017, 28, 307–334. [Google Scholar] [CrossRef]
- Kreir, M.; De Bondt, A.; Van den Wyngaert, I.; Teuns, G.; Lu, H.R.; Gallacher, D.J. Role of Kv7.2/Kv7.3 and M1 Muscarinic Receptors in the Regulation of Neuronal Excitability in HiPSC-Derived Neurons. Eur. J. Pharmacol. 2019, 858. [Google Scholar] [CrossRef]
- He, E.; Xu, S.; Xiao, G.; Dai, Y.; Li, X.; Song, Y.; Gao, F.; Zhang, Y.; Xu, S.; Cai, X. MWCNTs/PEDOT:PSS Nanocomposites-Modified Microelectrode Array for Spatial Dynamics Recording of Epileptic Discharges in Multi-Subregion of Hippocampal Slice. Sens. Actuators B 2020, 129190. [Google Scholar] [CrossRef]
- Levesque, M.; Avoli, M.; Bernard, C. Animal Models of Temporal Lobe Epilepsy Following Systemic Chemoconvulsant Administration. J. Neurosci. Methods 2016, 260, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Shan, W.; Yang, H.; Zhu, F.; Liu, X.; Wang, Q. Neural Activities in Multiple Rat Brain Regions in Lithium-Pilocarpine-Induced Status Epilepticus Model. Front. Mol. Neurosci. 2020, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Sisterson, N.D.; Wozny, T.A.; Kokkinos, V.; Constantino, A.; Richardson, R.M. Closed-Loop Brain Stimulation for Drug-Resistant Epilepsy: Towards an Evidence-Based Approach to Personalized Medicine. Neurotherapeutics 2019, 16, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berényi, A.; Belluscio, M.; Mao, D.; Buzsáki, G. Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation. Science 2012, 337, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsaki, G.; Anastassiou, C.A.; Koch, C. The Origin of Extracellular Fields and Currents--EEG, ECoG, LFP and Spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Witter, M. Hippocampus. In The Mouse Nervous System; Watson, C., Paxinos, G., Puelles, L., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 112–139. [Google Scholar]
- Booker, S.A.; Vida, I. Morphological Diversity and Connectivity of Hippocampal Interneurons. Cell Tissue Res. 2018, 373, 619–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miri, M.L.; Vinck, M.; Pant, R.; Cardin, J.A. Altered Hippocampal Interneuron Activity Precedes Ictal Onset. Elife 2018, 7. [Google Scholar] [CrossRef]
- Toyoda, I.; Fujita, S.; Thamattoor, A.K.; Buckmaster, P.S. Unit Activity of Hippocampal Interneurons Before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy. J. Neurosci. 2015, 35, 6600–6618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsáki, G. Theta Oscillations in the Hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Song, Y.; Xie, J.; Xu, S.; Li, X.; He, E.; Yin, H.; Cai, X. In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. Micromachines 2021, 12, 659. https://doi.org/10.3390/mi12060659
Dai Y, Song Y, Xie J, Xu S, Li X, He E, Yin H, Cai X. In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. Micromachines. 2021; 12(6):659. https://doi.org/10.3390/mi12060659
Chicago/Turabian StyleDai, Yuchuan, Yilin Song, Jingyu Xie, Shengwei Xu, Xinrong Li, Enhui He, Huabing Yin, and Xinxia Cai. 2021. "In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy" Micromachines 12, no. 6: 659. https://doi.org/10.3390/mi12060659
APA StyleDai, Y., Song, Y., Xie, J., Xu, S., Li, X., He, E., Yin, H., & Cai, X. (2021). In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. Micromachines, 12(6), 659. https://doi.org/10.3390/mi12060659