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Abstract: In this research article, a mini-review study is performed on the additive manufacturing
(AM) of the polymeric matrix composites (PMCs) and nanocomposites. In this regard, some methods
for manufacturing and important and applied results are briefly introduced and presented. AM of
polymeric matrix composites and nanocomposites has attracted great attention and is emerging as it
can make extensively customized parts with appreciably modified and improved mechanical proper-
ties compared to the unreinforced polymer materials. However, some matters must be addressed
containing reduced bonding of reinforcement and matrix, the slip between reinforcement and matrix,
lower creep strength, void configurations, high-speed crack propagation, obstruction because of filler
inclusion, enhanced curing time, simulation and modeling, and the cost of manufacturing. In this
review, some selected and significant results regarding AM or three-dimensional (3D) printing of
polymeric matrix composites and nanocomposites are summarized and discuss. In addition, this
article discusses the difficulties in preparing composite feedstock filaments and printing issues with
nanocomposites and short and continuous fiber composites. It is discussed how to print various
thermoplastic composites ranging from amorphous to crystalline polymers. In addition, the ana-
lytical and numerical models used for simulating AM, including the Fused deposition modeling
(FDM) printing process and estimating the mechanical properties of printed parts, are explained
in detail. Particle, fiber, and nanomaterial-reinforced polymer composites are highlighted for their
performance. Finally, key limitations are identified in order to stimulate further 3D printing research
in the future.

Keywords: additive manufacturing; polymeric matrix composite; mechanical properties

1. Introduction

Nowadays, AM is a highly discussed topic and subject in scientific and industrial
societies and is a new vision to the unknown modern world, as it is considered the fifth
industrial revolution. Updated special academic investigations in AM and 3D printing
fields are very limited particularly a small encyclopedia of AM and obtained results. AM
materials’ future involves essential changes such as employing parallel methods and
technologies. Considerable and significant developments have been obtained in the fields
of four-dimensional (4D) and five-dimensional (5D) printing based on AM or 3D printing
techniques. Some possibilities for the future of AM technologies may lie in the medical
sciences and tissue engineering [1,2]. Additionally, AM enables the development of drug
delivery systems with tailored forms, sizes, colors, and tastes for patient choice, thereby
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increasing patient compliance [3–5]. Recently, researchers have investigated AM for the
release of multiple medicines from a single tablet (multilets) and to attain a programmed
drug release profile using a combination of Fused deposition modeling (FDM) and injection
molding [6], as well as for directly printing certain structures [7,8]. These structures may be
easily adjusted to obtain the desired release profile based on the drug’s characteristics and
physiological and environmental conditions. Pharmaceutical substances must be released
based on knowledge of the underlying release processes and their specific properties [9].
For example, AM may be beneficial in challenges posed by COVID-19. Besides, it is
predictable that AM will create innovative materials with new technologies in the near
future. The study on AM is vital and necessary for generating the subsequent developments
that are beneficial and vital for human beings and life [1,2]. This research article presents a
concise review of AM, polymeric composites, and applied results published in recent years.
Tables 1 and 2 present the nomenclature and abbreviation used in this research article.

Table 1. Description of the scientific symbols.

Symbol Description, (Unit), Address

L0 The initial length of the specimen, (m), Equation (1)
∆L Change in length, (m), Equation (1)
∆T Temperature changes, (K), Equation (1)
γ Surface tension, (Pa), Equation (2)
θ Contact angle, (degree), Equation (2)
Ts Sintering Temperature
Tc Crystallization temperature
Tm Melting temperature

Table 2. Abbreviation used in the article.

Abbreviations Abbreviations

3D Three-dimensional PAEK Poly aryl ether ketone
ABS Acrylonitrile butadiene styrene PBF Powder bed fusion
AM Additive manufacturing PBS Phosphate-buffered saline

CAD Computer-aided design PCL Polycaprolactone
CF Carbon fiber PDMS Polydimethylsiloxane

CLTE Coefficient of linear thermal expansion PE Polyethylene
CNT Carbon nanotubes PEEK Polyether ether ketone
CTE Coefficient of thermal expansion PLA Polylactic acid
DED Directed energy deposition PLLA Poly-L-lactic acid
DLP Digital light processing PLGA poly(lactic-co-glycolic acid)

DMD Direct metal deposition PMC Polymer matrix composite
DMLS Direct metal laser sintering PP Polypropylene
DRAM Distributed recycling for additive manufacturing RBF Radial basis function
EBM Electron beam melting s-AMS Smart metallic additive manufacturing System
FDM Fused deposition modeling SEM Scanning electron microscope
FFF Fused filament fabrication SF6 Sulfur hexafluoride
FRC Fiber-reinforced composites SL Solid–liquid (interactions)
GA Genetic algorithm SLA Stereolithography
GF Glass fiber SLM Selective laser melting

HPLC High-performance liquid chromatography SLS Selective laser sintering
HA Hydroxyapatite SOMS Smart optical monitoring system
KF Kevlar fiber SS Solid–solid (interactions)
LL Liquid–liquid (interactions) TMA Thermo-mechanical analysis

LPT Longest processing time first UAV Unmanned aerial vehicle
LS Laser sintering UV Ultraviolet
PA Polyamide

Compared to conventional subtractive manufacturing methods, AM, or 3D printing,
it is characterized as adding materials layer by layer to manufacture constructs based on
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the computer-aided designed (CAD) 3D models. In over more than three decades of AM
development, many novel AM methods have been introduced in different applications, in-
cluding medicine, aerospace, tissue engineering, automotive, biomedical, and architectural
design [1,2]. Recently, significant advances have been made in the 3D printing of polymer
matrix fiber-reinforced composites (FRCs) and possible design and analysis methods for
these 3D printed structures. To consider the challenges in AM of polymer matrix compos-
ites (PMCs) reinforced with fibers, the most recent developments and improvements to
existing methods have been analyzed thoroughly [2].

The rapid progress in AM of polymeric composites has paved the way for a modern
circular economy focused on mass production and distributed recycling. Circular economy
“circularity” is an economic process and structure aimed at eliminating waste and ensuring
the continued use of resources, as illustrated in Figure 1 [4,10]. The concept of distributed
recycling for additive manufacturing (DRAM) refers to using recycled materials in the
process chain of 3D printing through a mechanical recycling process. The circular economy
has the potential to reduce material, waste, and manufacturing costs significantly [10].
Many advantages of AM process make it one of the most suitable routes for fabricating com-
plicated scaffold structures. Figure 2 illustrates examples of AM processes 3D constructs in
the form of scaffolds [11].
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Figure 2. Examples of 3D scaffold structures manufactured using AM technology [11].

FDM is a flexible AM technique used for 3D printing of polymers and PMCs. To build
a 3D object, material is deposited using a computer-controlled 3D printer in successive
layers. FDM-based polymer research has been increased in recent years because of its
versatility in developing polymers and PMCs [12]. FDM-based polymers have the high
potential to be utilized in the diverse applications; Figure 3a depicts the numerous ranges
of FDM-based polymers in several applications [12]. FDM produces low-cost components
with an acceptable surface finish and high durability. The raw material for FDM is often
wire or filament with a diameter of 2.85 mm or 1.75 mm, depending on the 3D printer
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utilized [13]. As can be seen in Figure 3b [14], FDM printers operate by the controlled
extrusion of thermoplastic filaments. In an FDM process, filaments melt into a semi-liquid
state at the nozzle and are extruded layer by layer onto the build platform, where they fuse
and solidify into final specimens [14].
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FDM has been used to manufacture polymer-based fiber composites in recent years [15].
Incorporating fiber into the thermoplastic matrix resulted in an increase in modulus, tensile
strength, and bending strength compared to the pristine thermoplastic material [2,16]. This
enhances the likelihood of FDM-printed materials being used in load-bearing applications.
However, uncertainties associated with the FDM manufacturing process, such as the for-
mation of voids, defects, and inefficient layer bonding, increase the likelihood of polymer
and composite failure [17]. Regardless of the benefits of FDM, the material performance is
critical in determining the materials’ durability and reliability. The performance of FDM
components is affected by a variety of parameters, including the following: (i) the effect
of printing parameters; (ii) the effect of bonding characteristics; (iii) the effect of material
and reinforcement; and (iv) the effect of the FDM process faults. All of these aspects con-
tribute significantly to the mechanical strength of 3D printed fiber composites [18]. Powder
bed fusion (PBF) is the most often used AM method for the fabrication of load-bearing
biomaterials [19]. The layer thickness on the platform is generally 100 µm for polymer
powders and 20 to 100 µm for metal and ceramic powders in laser-based processes such as
selective laser sintering (SLS), selective laser melting (SLM), and direct metal laser sintering
(DMLS). However, electron beam-based PBF (i.e., electron beam melting, EBM) commonly
uses a layer thickness of 50 to 200 µm [20,21]. There are two sets of relationships to be
considered for any fabricating process downstream of polymerization, such as PBF: (1) the
interactions between the input polymer structure and properties and the manufacturing
technology that enables successful production (“printability triad”), and (2) the effect of
processing conditions on the obtained microstructure and properties of manufactured
parts. Figure 4 illustrates these two triads graphically for polymer PBF manufacturing [22].
The triads describe two unique aims of fundamental polymer manufacturing science: (1)
fabricating a component with PBF and (2) fabricating a component with specific attributes
using PBF. Transitioning between the triads necessitates a paradigm change for specific
polymer characteristics [22].
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It is worth mentioning that directed energy deposition (DED), another metal additive
manufacturing technology, uses bigger particles and higher layer thicknesses. Han et al. [23]
found that the DED of several high-entropy alloys typically has a layer thickness of 100
to 800 µm. SLM, SLS, DMLS, and EBM are all PBF technologies. Heat is utilized to fuse
the powdered materials in all of these processes. The distinctions between these methods
are in their energy source and powder composition [24]. In contrast to most other additive
manufacturing procedures, the powder bed around the created components acts as a
support framework, allowing for the manufacture of support-free pieces. Apart from
the cost benefits, the elimination of support structures enables more geometric flexibility
of design and quicker component manufacturing [25]. SLS is primarily employed in
the fabrication of polymers and ceramics, while SLM, DMLS, and EBM are employed
exclusively in the fabrication of metals and alloys [26,27]. Stereolithography (SLA) is a
procedure that involves selective curing of a photoreactive resin while a platform moves
the component after each new layer is formed [21]. In an SLA process, a UV laser is directed
in an intended path into the resin reservoir, where the photocurable resin polymerizes,
forming a two-dimensional (2D) patterned layer. After curing each layer, the platform is
lowered, exposing another uncured resin layer ready for patterning [14,28]. In Figure 5,
the resin components of SLA are depicted [29]. SLA printing process is used to fabricate
structures such as channels with dimensions less than 100 µm, valves and pumps, and
multiplexers for mixing [29].

The process is utilized to fabricate polymer, ceramic, and polymer-ceramic composites
with high resolution and accuracy. Nonetheless, limited photoresist materials, residual toxic
moieties, and the need for post-processing remain to be obstacles in the biomedical use of
SLA scaffolds. In contrast to SLS, SLM employs a high-energy density laser to fully melt the
material, hence increasing the component’s mechanical strength and surface quality [30,31].
Powders employed need a homogenous distribution of spherical particles of uniform size.
The smaller the size, the more accurate and precise the resolution. When EBM is utilized,
a high-vacuum electron-beam gun scans and melts only conductive metal powder (even
those with high melting points) materials to produce a part. Scaffolds manufactured with
EBM exhibit a significant degree of surface roughness and poor precision [21,31].
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Selective laser sintering (SLS) is a method for 3D printing that is based on using
powders as printing material. In the SLS process, the laser sinters the powder in the
powder bed layer-by-layer selectively to generate a 3D structure. Wax, ceramics, metals,
and polymers are major SLS topics [31–42]. Nylon, i.e., polyamide (PA) [2,34–37,40,43–49],
and semi-crystalline thermoplastics (polyethylene (PE) [2,50–52], polyether ether ketone
(PEEK) [2,53,54], and polycaprolactone (PCL) [2,55–60]), are among the major polymers
used as material in SLS as schematically is shown in Figure 6 [61]. PEEK is an organic
thermoplastic polymer that is colorless and belongs to the poly aryl ether ketone (PAEK)
family utilized in engineering. The dialkylation of bisphenolate salts results in step-growth
polymerization of PEEK polymers. PEEK is a semicrystalline thermoplastic material with
good mechanical properties and good chemical resistance and can withstand elevated
temperatures. The crystallinity and the mechanical properties of PEEK can be influenced
by the manufacturing conditions used to shape it. The tensile strength of PEEK is in the
range of 90–100 MPa, and its modulus of elasticity is about 3.6 GPa. The melting point of
PEEK is 343 ◦C, while its glass transition temperature is about 143 ◦C. Some grades of PEEK
can withstand temperatures as high as 250 ◦C. Between ambient and solidus temperatures,
the thermal conductivity of PEEK increases almost linearly. It is used to produce pumps,
bearings, piston parts, compressor plate valves, high-performance liquid chromatography
(HPLC) columns, and electrical cable insulation, among other things, because of its hard-
ness. PEEK is one of the limited and desired types of plastics that can endure and withstand
ultra-high vacuum, making it ideal for many industries like aerospace, shuttles, automotive,
electronics, and chemicals. Additionally, PEEK is a novel and innovative biomaterial that
is applied in medical implants, like partial replacement skull in neurosurgical applications
and spinal fusion devices and reinforcing rods. Moreover, PEEK, also named and known
as polyketone, is a thermoplastic with exceptional mechanical properties. In this regard,
Ts is very close to crystallization curling occurs due to premature crystallization, and the
fabricated component is distorted after being released from the powder bed. The premature
crystallization can be avoided if the process temperature is a bit higher, but in this case,
the temperature is too close to melting, resulting in a lack of precision in the fabricated
part. The particles of powder that are close to the laser trace can be stuck on the lateral
growth melted surfaces and prevent having desired precision of the manufactured part.
Another extreme example of premature crystallization for an unsuitable SLS powder is
when crystallization happens too quickly, which in this case, various laser traces are also
isolated. Some other essential factors need to be considered for the efficient application of
polymer powders in the SLS process, such as melt viscosity, surface tension, and optical
properties, apart from the appropriate thermal transitions (Tm and Tc) [38].
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PCL is a widely used biopolymer that has great biocompatibility and biodegradabil-
ity [62]. PCL degrades slowly in human body fluid due to the hydrolysis of ester bonds,
producing harmless substances such as carbon dioxide and water [63]. Additionally, due
to its superior processing capability, it has been frequently employed as a feedstock mate-
rial for extrusion-based AM. Another class of synthetic biopolymers based on polyesters
include polyglycolic acid (PGA), PLA, and their copolymer poly (lactic-co-glycolic acid)
(PLGA), which have attracted considerable interest for biomedical applications. PLA is
made from various renewable resources, including corn starch, tapioca roots, and sugar-
cane [64]. PLA presented slow degradation rate, which resulted in a long in vivo life time
that might degrade within 3–5 years. The degradation rate is dependent on the hydrolysis
of backbone ester groups and is related to the crystallinity of the PLA, the amount of Mw
and its distribution, the morphology of the polymer, the rate of water diffusion into the
polymer, and the stereoisomeric content [65]. Kanczler et al. [66] presented the process
of porous PLA scaffold fabrication using surface selective laser sintering (SSLS). PLGA,
a copolymer of PLA and PGA, is a material that is often used in AM techniques. Lee
et al. [67] described a method for producing porous PLGA scaffolds using an indirect 3D
printing procedure [68]. Because of the biocompatibility of polydimethylsiloxane (PDMS)
polymer, it has been extensively employed in biomedical applications as sensors, medical
equipment, and tissue implants. Lee et al. [69] fabricated PDMS surface patterns using
fused filament fabrication in additive manufacturing. The findings of this research suggest
the use of additive manufacturing to rapidly fabricate scalable structures with anisotropic
material characteristics for various applications [69].

The higher strength-to-weight ratio of composite materials over unreinforced poly-
mers or metals is well known and is currently widely used in industry, where the fibers,
due to their narrow cross-section, have fewer defects than bulk materials and demonstrate
greater strength throughout their lengths [70]. Manufacturing composite material com-
ponents using additive manufacturing rather than well-established traditional processes
such as compression molding provides several benefits, including the ability to create com-
plicated geometric components with thin extended areas and quicker processing [13,71].
The use of composite powders in powder-based AM processes has shown a number of
benefits. First, reinforcements may aid manufactured components in achieving increased
mechanical properties, fire resistance, thermal conductivity, electrical conductivity, bio-
compatibility, and piezoelectric characteristics, among other characteristics. Second, the
incorporation of nanoparticles such as silica and carbon nanotubes (CNTs) enhances the
flowability and light absorption capacity of polymeric powders, facilitating the deposition
and fusing processes [72]. Tekinalp et al. [73] found that when the amount of short carbon
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fiber in the FDM-printed beads rose, the porosity inside the beads increased while the
voids between the beads decreased. Matsuzaki et al. [74] investigated composite fiber
materials, i.e., fibers infused into PLA for 3D printing, with the goal of improving the
mechanical characteristics of the AM components [75]. The influence of modifying the
mesostructure of AM-processed CNT-reinforced poly(lactic acid) (PLA) nanocomposites
on their mechanical and thermal properties has been investigated [76]. The results showed
that the conditions of thermal processing used during AM process had a major effect on
the nanocomposites’ crystallization behavior. Therefore, the thermal conditions of AM
process should be considered to estimate the mechanical characteristics of the fabricated
part. The thermo-mechanical analysis (TMA) above the Tg of AM nanocomposites was
used for indexing the residual thermal stresses. The bigger dimensional change above
Tg has been regarded as a measure of the residual stress build-up during AM processes.
The structure–property relationship in the AM nanocomposites was analyzed by altering
the infill percentage, layer thickness, and infill pattern [76]. Despite having a lower infill
percentage in a specified unit of area, the fracture in the specimens with the honeycomb
pattern of infill displayed specifications comparable to 0/90, such as similar strands’ in-
plain failure at the same cross-section. The partial alignment of extruder strands with the
loading direction led to a major increase in stiffness and a slight improvement in tensile
strength compared to the specimens with the −45/+45 criss-cross infill pattern. The lower
improvement in tensile strength in comparison to stiffness may be because of the higher
likelihood of formation of structural faults due to the large intra and trans-raster bonding
regions, resulting in an earlier fracture. Nevertheless, in terms of achieving better tensile
properties, the infill pattern of honeycomb could be an alternate to the 0/90 pattern [76].

It is worth noting that, in recent years, AM of polymeric composites (and other types
of materials) in tissue engineering has become increasingly popular in scientific societies,
especially in the medical field [60,77–83]. It should be mentioned that the significant
parameter of “CLTE” (coefficient of linear thermal expansion) is in the following form [80],

CLTE =
∆L

∆T × L0
(1)

In which, L0 represents the primary length of the sample, and ∆L and ∆T are respec-
tively the length and temperature changes. Also, the important relationship between the
surface free energy and contact angle has been introduced and presented as the following,

γSS = γSL + γLL × cos θ (2)

In which, γ represents the surface tension, with the subscripts SS, SL, and LL referring
to the solid-solid, solid-liquid, and liquid-liquid interactions, respectively, and θ is the
contact angle [80].

Due to the existing 3D porous structures for cell ingrowth and matter transport,
facilitating new tissue formation and biodegradation, scaffold-based techniques show
significant potential for tissue engineering and regenerative medicine [84–86]. As a result,
more attention has been paid to designing and developing innovative 3D porous scaffolds
for tissue and organ regeneration. 3D printing technology has made significant advances in
tissue engineering over the last several decades, enabling the fabrication of patient-specific
scaffolds/constructs with specified features [84,85]. The area of tissue engineering and
regenerative medicine has been revolutionized by 3D printing technology, which provides
unparalleled control, flexibility, speed, and accuracy compared to traditional production
processes. A critical but constraining component of 3D printing design and application
is selecting appropriate materials for use as biomaterial inks [85–89]. In research [80],
the inclusion of various forms of biodegradable and biocompatible iron-based metallic
reinforcements (stainless steel 316L and monolithic iron) in PLA-based 3D printed scaffolds
was studied through analysis of their properties. Stainless steel 316L and iron powders
were used as fillers for manufacturing of 3D printed biodegradable PLA, PLA/316L, and
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PLA/Iron scaffolds for bone tissue engineering applications employing the fused filament
fabrication (FFF) process [80].

Figure 7a–f show the surface morphology of monolithic PLA and PLA-based com-
posite specimens after one-week and one-month immersion in PBS solution [80]. It is
worth noting that after one week of immersion for the monolithic PLA scaffold specimen,
significant delamination between layers was observed. This issue could be because of the
hydrolysis mechanism, which weakens the node’s connection. The delamination did not
happen in all PLA specimens. However, it suggested that the 3D printed PLA scaffold
samples could be failed at the layer’s intersections during the early stages of operation; the
swelling in the PLA/316L scaffold specimens after one week of immersion, as well as in
the monolithic PLA specimens after one month of immersion, can be seen in Figure 7b,c,
respectively. This could be because of PBS’s penetration through voids and other defects,
lowering the strut’s modulus and strength. As can be observed in Figure 7e, the corro-
sion products have covered the surface in the PLA/Iron scaffold specimen. As shown in
Figure 7b,d, the surface of PLA and PLA/316L scaffold samples remained undamaged
even after one month of immersion, showing their higher resistance to degradation than
the PLA/Iron specimens [80]. In the magnified images in Figure 7b,d, a different corrosion
product could be seen between layers, which could be the PLA’s hydrolysis product. Peel-
ing off this corrosion product on the PLA/316L scaffold samples can cause delamination
between layers, as shown in Figure 7d. However, since no explicit swelling or delamination
was found in Figure 7f, it may be concluded that the corrosion agent in the PLA/Iron
scaffolds protects the propagation of defects. Furthermore, the scaffold’s voids may be
filled by the broad surface area of iron oxide because of the iron’s high Pilling–Bedworth
ratio [80].
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Wiria et al. [90] presented the use of the SLS method to fabricate a PCL/hydroxyapatite
(HA) composite scaffold for tissue engineering applications. In tissue engineering, the
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combination of these two materials is extremely promising. To achieve superior mechanical
characteristics, the laser power, scan speed, and HA loading were adjusted. With 10 wt%
of HA and 90 wt% of PCL, a yield stress of 11.54 ± 0.80 MPa and a Young’s modulus of
102.06 ± 11.26 MPa were attained at 2% strain offset. Korpela et al. [91] presented the FDM
fabrication of porous PCL/bioglass composite scaffolds. To prepare FDM filaments, 10 wt%
bioglass was added to PCL. The incorporation of bioglass particles into porous PCL matrix
scaffolds was effective. When bioglass was added, the compressive modulus increased
from 104 MPa to 147 MPa [64].

2. Some Important AM Flowcharts and Algorithms

Some interesting implemented AM flowcharts and algorithms are presented in this
section [92–96]. In research [92], the design methodology for the smart metallic additive
manufacturing system (s-AMS) was studied. A feasible alternative is in-situ optical diag-
nostics that can be combined with process management. The two main types of AM used
to fabricate components are powder beds such as laser sintering (LS) and pneumatically
delivered powder like direct metal deposition (DMD). DMD allows one to deposit different
materials at various precisions with a specified height directly based on CAD data, while
the feedback loop can control the thermal cycle. Newly developed optical sensors use
optical spectra to control the quality and geometry of the part through imaging, and the
cooling rate through temperature monitoring, microstructure, and composition. Finally,
the mentioned sensors can certify the object that is constructed. Recently researchers
have developed a tool for predicting solid-state phase transitions, paving the way for the
possibilities for using new process materials and manufacturing routes. This method is
highly adaptable, and it is essentially a technology that allows for the creation of a wide
range of designs. Seating and manufacturing are also feasible. A signal-to-noise ratio study,
baseline reduction, line detection, line de-convolution, and fitting are all part of the plasma
spectral line’s pre-processing. In both the visible and UV regions, high-resolution optical
emission spectroscopy is used to quantify plasma parameters like spectral line intensity,
line ratio, plasma temperature, and electron density, as shown in Figure 8 [92]. The output
signal from the smart optical monitoring system (SOMS) has been integrated and used for
AM process control to prevent defects and manufacture the components with high quality
via the AM [92]. The technique is schematically explained in Figure 9 [92].
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The review paper [93] aimed to keep the research community up to date on the latest
technical developments in 3D printed unmanned aerial vehicles (UAV) materials and
structures. It addresses the rise of 3D printing for UAVs and shows how it differs from
traditional manufacturing routes. In this research, the future of materials and structure
for UAVs is explored in detail. In particular, AM technologies’ benefits and potential for
improving UAV aerodynamics and structural efficiencies have been highlighted in the
study. Issues, obstacles, and potential directions for the understanding of fully printed
lightweight UAVs with desired features have been highlighted [93]. Machines and certain
AM processes are associated with certain forms, types, and states of materials [94–97].
The versatile design of AM techniques allows for fast manufacturing without requiring
significant changes to the manufacturing setup. Furthermore, the AM techniques are more
cost-effective than the traditional manufacturing routes in low-volume production [93].
More significantly, while considering polymer composites, it is determined that only
ceramics are acceptable for use in a polymer matrix. Additionally, they were discovered
to be compatible with printing procedures such as sheet lamination (SL) and material
extrusion (ME), as shown in Figure 10 [97]. In this respect, there are two major groups of
AM approaches for biomaterials, including acellular and cellular. The acellular category
refers to printing materials that do not include any living cells. Cellular printing entails
the printing of living cells in com-bination with other materials. The American Society
for Testing and Materials (ASTM) has established a categorization system for the various
AM processes [1]. In this regard, Figure 11 illustrates various AM routes for biomaterials
schematically [64].
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In research [94], the surface flashover characteristics of a non-uniform conductivity
insulator fabricated by 3D printing were evaluated. The non-uniform insulator’s conduc-
tivity distribution was optimized using a hybrid approach of radial basis function (RBF)
and genetic algorithm (GA) neural network models to attain better E-field distribution. The
engineered non-uniform insulator was then manufactured using a multi-material FDM 3D
printer, while the electrical and thermal properties of the printing materials were investi-
gated. Lastly, under DC voltage, the surface flashover voltages of uniform and conductivity
non-uniform insulators were compared in vacuum and sulfur hexafluoride (SF6). After
that, the mechanism for improved flashover characteristics was addressed [94]. The FFF,
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like most layer-wise AM processes, suffers from low-performance rates and scalability
issues. The concurrent FFF process overcomes these disadvantages by dividing each layer’s
processing among multiple extruders working in tandem. The research [95] presented a
general toolpath allocation and scheduling methodology to attain this aim. Because of the
simplicity with which the composition and microstructure of FFF may be controlled, it
was claimed that FFF offers the most potential for producing components for target sectors
such as aerospace, biomedical, and automotive. Recent advancements in FFF technology
have resulted in the addition of new materials to the existing material library, including
metals, high-temperature polymers such as PEEK, and ceramics such as boron nitride. The
FFF methodology enables the customization of a range of desired qualities via the use of
hybrid materials or alternating concentrations of various components to create functionally
graded materials (FGM) [98].

FDM is one of the most common fiber-reinforced composite (FRC) printing techniques.
In this method, due to inherent weaknesses in the printed pieces, their efficiency is limited
compared to that of other manufacturing methods. As a result, the drive to improve
treatment options to address these disadvantages has intensified in recent years. Other
research [96–110] looked at the effect of the defects on the mechanical efficiency of FRC and
subsequently discussed treatment options for removing or minimizing them to improve
the functional properties of the fabricated parts. Since FRCs are made up of a polymeric
matrix and a short or continuous fiber reinforcement, the analysis will go through the
effects of AM parameters such as infill pattern, layer thickness, raster angle, and fiber
orientation on both thermoplastic polymers and FRCs printed using FDM technology. The
most common defects on printed pieces, such as void formation, surface roughness, and
weak fiber-to-matrix bonding, are investigated. The research provides a comprehensive
discussion of the efficacy of chemical, heat, laser, and ultrasound therapies in reducing the
mentioned disadvantages. The combinations of matrix and fiber materials produced by
different manufacturers of filaments are shown in Figure 12 [96]. The filament manufacturer
is shown in the middle column, while the fiber and matrix variations are shown in the
other two columns. The process of the FDM method is depicted as a simplified flowchart
in Figure 13 [96]. FDM is a sluggish printing method that can only be used for materials
that have a low melting point. New deposition processes have been developed to allow for
more precise control of filler orientation and anisotropy in printed materials. For example,
Raney et al. [111] produced a revolving print head that imparts a helical fiber arrangement
with spatial control over the helical angle through rotation rate modulation. By applying
an external magnetic field and magnetized platelet fillers, Kokkinis et al. [112] established
spatial control over filler orientation in printed composites. Collino et al. [113,114] applied
acoustic focusing within a deposition channel to concentrate, align, and arrange a wide
range of fillers within printed filaments. Gladman et al. [115] printed actuating devices
with finely controlled deformation modes using carefully designed print routes and an
anisotropic swelling material (as a consequence of filler alignment) [116].
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Figure 12. Manufacturers of FDM filament and printer (middle column) and their associated fiber-
reinforced composite products. Key fibers reinforcements include carbon fiber (CF), glass fiber (GF)
and Kevlar (KF), while popular matrixes are nylon, polylactic acid (PLA), PEEK, and acrylonitrile
butadiene styrene (ABS) [96].
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3. Mechanical Properties

Mechanical characteristics variation is a major concern in a variety of engineering
applications. To address this from an AM process viewpoint, a novel production pro-
cess for microsurface patterns utilizing fused filament 3D printing was developed and
explored the effect of the anisotropic hyperelasticity model on material characteristics [69].
Combining several functional fillers in a polymer matrix enables multifunctional expres-
sion [117]. Fiber-reinforced polymer composite AM has much potential for turning 3D
printing into a viable manufacturing method. The capability to build complicated func-
tional components with full control over material properties and 3D printing’s unique
characteristics, such as high customization combined with added strength from fiber re-
inforcement, helped 3D printing of FRCs to gain huge attention from a wide range of
industries. Automotive, aerospace, biomedical, and electronics are only a few of the indus-
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tries that have been drawn to 3D printing of FRCs [2]. The chances of defects forming in
AM composites are high, resulting in lower strength. Investigating the defect formation
mechanism could thus lower the risk of a defect and, as a result, increase performance
properties [12]. It could be concluded that using the FFF process to fabricate PLA-based
scaffolds reinforced with iron-based powders enhances mechanical properties and di-
mensional accuracy. Culbreath et al. [118] evaluated the usage of FFF in the fabrication of
medical devices by assessing it according to commodity-based implant grade polymers
PCL and poly-L-lactic acid (PLLA), as well as a proprietary polymer called Lactoflex. Their
findings revealed that mechanical characteristics may be significantly adjusted by vary-
ing the quantity of infill and material composition [118]. In general, fiber reinforcement
improves mechanical properties such as tensile strength, hardness, fracture toughness,
flexural strength, and Young’s modulus. However, the mechanical properties that may be
achieved are highly dependent on the density, size, and form of the fiber reinforcement
utilized. For instance, it has been found that the inclusion of microsphere resulted in a
decrease in tensile strength. The hollow microsphere’s low density is the primary cause
for reduced tensile strength [119]. Lu et al. [120] studied the effect of carbon fiber length
variation on fracture toughness and flexural strength. The fracture toughness of 2 mm
fibers was found to be greater, but the flexural strength of 1 mm fibers was found to be
higher. The inclusion of reinforcements was claimed to improve the print quality [119].

Additionally, the mechanical properties of tissue engineering scaffolds are essential,
particularly in load-bearing applications. To enhance the mechanical properties of polymer-
based scaffolds for biomedical applications, inorganic, organic, and carbon fillers and
fibers have been utilized as reinforcements. Among all AM methods, laser-based SLA and
digital light processing (DLP) are the best ideals for scaffold manufacturing because of their
high resolution and capability to construct complex structures and simplify modifying the
scaffold characteristics through liquid resin formulation adjustments [117]. In this regard,
for bone tissue engineering application, the PLA/Iron scaffold had much promise. More-
over, a detailed understanding of the relationship between process, thermal activity, and
properties could help develop 3D printed polymer-based composite scaffolds. Continuous
monitoring for mechanical integrity failure will also be carried out in a simulated body
environment [80]. FDM-fabricated low porosity PLA scaffolds with improved mechanical
properties were recently studied for bone tissue engineering [121]. Chacón et al. [122]
revealed that PLA parts manufactured using the FDM process display anisotropic me-
chanical behavior that could be altered by varying the build orientation, layer thickness,
and feed rate. Chhaya et al. [123] used FDM to manufacture poly(d,l-lactic acid) (PDLLA)
scaffolds with a geometry modelled in silico using data from a patient undergoing breast
reconstruction surgery [121]. The research on printing parameters in terms of mechanical
properties is developing in order to develop 3D printing models with increased strength.
Each layer’s bonding is important for the creation of high-strength polymers using FDM.
Variation in the raster angle affects the composite’s mechanical characteristics by altering
the load transfer between layers [12,124]. As more mobile trans-raster bonding regions
formed, the layer thickness increased, resulting in a remarkable reduction in mechanical
properties and more porosity due to shrinkage during heating. Furthermore, increasing
the percentage of infill enhanced mechanical properties and reduced dimensional changes
when heated. Additionally, the pattern of dimensional changes caused by infill percentage
variance was extremely non-linear. The infill pattern aided the load transfer inside the
mesostructure. According to Ref. [76], a honeycomb-shaped pattern has better thermal
and mechanical properties than a regular 45/+45 criss-cross pattern. The variations in
print orientation might result in anisotropic properties in the printed component [125].
Research [126] demonstrated that composites with 0◦ fiber orientation displayed superior
mechanical properties to composites with 45◦ and 60◦ fiber orientations. Carbon fiber com-
posites with 0◦ fiber orientation had a maximum tensile strength of 165 MPa. According to
Mohamed et al. [127], the process parameters involved in product/prototype development
using FDM are responsible for the product’s quality and mechanical performance [12].
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Carbon-based materials have been studied for decades and have attracted considerable
interest in biological applications due to their superior conductivity, unique structure, and
mechanical capabilities [117].

Other carbon-based nanomaterials, such as graphene nanoplatelets and CNTs, have
been employed to reinforce PEEK in recent years [128]. The printed composite material
demonstrated enhanced mechanical and tribological properties, making it suitable for a
variety of applications in the aerospace and automotive industries [128,129]. Based on
the reports, the composites had homogeneously distributed and aligned CNTs in the PEI
matrix, which enhanced the tensile strength; however, during melt compounding, the
length of the CNTs was decreased because of the exposure to severe shear stresses [129,130].
Along with pristine PEEK, Chen [131] led research groups that reported printing-reinforced
PEEK composites. Chen and coauthors used wet and dry mixing to incorporate graphene
nanocomposites into PEEK powder. They reported that the fabricated parts have improved
mechanical properties and electrical conductivity [118,131].

Mechanical characteristics of 3D-printed PLA/CNT nanocomposites were explored
in this regard, and it was revealed that increasing layer thickness resulted in a consid-
erable loss in mechanical properties, whilst increasing the infill percentage resulted in
an increase in mechanical properties since the infill pattern was critical for load trans-
fer within the mesostructured [76]. Furthermore, carbon nanomaterial reinforcements
like CNTs and short carbon fibers can be used to enhance the mechanical properties
of polymers. Other studies [132,133] demonstrated that the SLS could be used to pro-
cess CNTs-coated polyamide-12 (PA12) and polyamide-11 (PA11) powders, resulting in
embedded CNTs that toughened and reinforced the polymeric matrices simultaneously.
Additionally, Yuan et al. [134] created 3D auxetic metamaterials using CNT/PA12 with
significant promise for impact protection and cushioning applications. Also, a unique
technique has been presented for fabricating high-performance carbon fiber/PA12/epoxy
composites by laser sintering and post-infiltration [72]. Moreover, several articles re-
ported decreased mechanical performance at high fiber loadings due to increased porosity,
indicating the critical need to address this defect in order to optimize the benefits of
fiber inclusion [135,136]. Other research indicated that the addition of continuous fiber
reinforcement into the resin composition improved mechanical properties such as ten-
sile strength [119]. Ning et al. [137] reported that incorporating short carbon fibers into
FDM-fabricated ABS components reduces the toughness, yield strength, and ductility
of the composites and increases the tensile strength, Young’s modulus, flexural stress,
flexural toughness, and flexural modulus. Porosity was a major influence in specimens
containing 10 wt% carbon fiber [138]. Matsuzaki et al. [74] manufactured continuous
carbon-fiber-reinforced polymers by impregnating fibers with plastic filaments within the
heated nozzle. Tensile strength was increased significantly when compared to traditional
AM composites [138]. Bayush et al. [139] investigated the fiber length distribution of a
natural fiber-reinforced polypropylene and concluded that preserving a crucial fiber length
and reducing fiber breaking improves the overall compound’s mechanical and dynamic
characteristics. Similarly, Gamon et al. [140] demonstrated that longer fibers increase the
extruded composite’s flexural strength. Additionally, Inoue et al. [141] revealed that fiber
length directly influences the mechanical properties of the mixed composite, as does the
screw design’s influence on fiber breakage and dispersion. Furthermore, Hausnerova
et al. [142] presented that the shear viscosity and die swell of filled polymers decrease
during high shear rate screw extrusion because of fiber length reduction and matrix degra-
dation of the polymer matrix. As a result, it is critical to investigate the influence of fiber
aspect ratio distribution on the prediction of elastic characteristics in composites man-
ufactured using large area additive manufacturing (LAAM) [141,143]. The influence of
carbon fiber length and weight ratio has been investigated on the mechanical properties of
printed ABS resin components using the FDM method [137,144]. With only 5 and 7.5 wt%,
an increase in tensile strength and Young’s modulus was attained. The results indicated
that longer carbon fibers offer the greatest strength and stiffness. Tian et al. [145] printed
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carbon-fiber-reinforced polylactide polymer composite components. The fiber content was
adjusted during the component printing process by altering the process parameters. For
the fiber concentration of 27 wt%, the modulus reached 30 GPa and the flexural strength
reached 335 MPa. Similarly, Li et al. [146] studied the mechanical properties of 3D-printed
continuous carbon-fiber-reinforced polylactic acid composites [147].

AM of large CF-reinforced polymer parts, like aircraft structures or boat hulls, is
feasible when existing research on FFF for fiber-reinforced and thermosetting materials
is integrated [95]. A volume fraction of 10% has been shown to be the most successful in
many experiments utilizing short fiber-reinforced composites. The composite’s mechanical
properties are affected by the form of matrix used [96]. A typical post-processing technique
for increasing the mechanical performance of FDM fabricated parts is heat treatment,
also known as annealing. The gaps between layers are filled when the part is heated,
resulting in a smoother surface. The molecular surface tension is decreased when viscosity
reduces at the glass transition temperature, resulting in the flowing of the substance on the
surface. The substance reflows inside the layers, covering porous regions, and cracks, and
providing a staircase effect for a cleaner surface finish and improved mechanical properties.
As a consequence, FDM is one of the most efficient routes to fabricate complicated, light-
weight components. The production possibilities would be even more promising when its
limitations are resolved [96]. The achievement of necessary mechanical properties may be
achieved by selecting the appropriate AM method and binder. The future potential of AM
in the manufacturing of composites has been emphasized, which opens up new research
horizons [119].

4. Conclusions

A brief analysis of AM of polymeric composites has been conducted in this mini-review
paper based on recent findings. The relevant findings of this mini analysis study are as
follows. Depending on the starting material’s state, 3D printing techniques are categorized
in liquid, filament or paste, powder, and solid sheet. Layers are produced using UV light-
induced polymerization, ink-jet printing, laser melting, extrusion, and other techniques.
Polymers were the first materials to be researched in 3D printing, but 3D printing of metals,
ceramics, and composite materials to manufacture functional components has recently
gained much attention. Using high-power laser and electron-beam-based AM methods,
fabricating fully dense metallic parts with mechanical characteristics close to bulk metals
has become available [1]. Unlike conventional manufacturing processes, additive AM is
not just a tool for shaping; it can also be used to create parts made of multiple materials [64].
As previously discussed, the materials spectrum for AM is still somewhat limited because
of the specific requirements of each AM technique. As a result of this constraint, traditional
AM polymers are often limited in their suitability for high-performance applications [68].
A significant factor in the long process is the inherent concern about the reliability and
reproducibility of AM components [64]. Thus, it is essential to develop high-performance
functional materials in order to increase the capability of AM. These capabilities can be
realized by designing composite materials that are compatible with the AM method. A
composite material is a substance created by mixing two distinct materials with different
characteristics [68]. It has been noticed that components created using polymer composites
exhibit increased strength and stiffness, as well as significant weight reduction, which has
resulted in a significant amount of research being concentrated on material selection and
enhancing the characteristics of printed components [148]. The use of these fibers/fillers
enhances the mechanical characteristics of AM composites [149]. Reinforcing polymers
with fiber/filler has a synergistic influence on the performance and properties of the
polymer [150,151]. Due to the complications associated with the use of long and continuous
fibers, short and discontinuous fibers are preferred in AM. Cost-effective fiber-reinforced
composites may be manufactured using AM [12]. The majority of extrusion-based methods
are applicable to the fabrication of short-fiber reinforced polymeric composites. Continuous
fibers, on the other hand, may only be combined with thermoplastic or thermoset precursors



Micromachines 2021, 12, 704 18 of 24

prior to mechanical extrusion in FFF. The distribution of short fibers and the arrangement
of long fibers are designed by the formulation of materials and process patterning, which
have a substantial impact on design techniques for optimizing the structural performance
of printed components [152]. By printing composites with optimal fiber lengths, easy
processing and good mechanical properties can be achieved, expanding the applicability of
FDM. The unidirectionally printed components exhibit a considerable degree of anisotropy.
For high modulus fibers, printing the continuous fibers at various angles in each layer
is challenging due to the isotropic nature of the printed specimen. Additional research
on printing isotropic components is required [153]. Carbon fiber and glass fiber are often
used reinforcements in AM applications. Numerous investigations have been conducted in
both academic and industrial fields on printable fiber-reinforced composites [68] since fiber
distribution, fiber orientation, and fiber length influence the mechanical properties of the
resulting polymer-based composites [68]. While reinforcing helps enhance the performance
of polymer composites, most printed composites still have limited mechanical strength
and are unable to satisfy functional requirements. To improve the performance of printed
components, further post-processes, including infiltration or consolidation, have been
applied [28]. However, some other studies [154–165] evaluated additive manufacturing of
polymer matrix composites for drug delivery, wound healing, and tissue engineering.

Concisely, the guide outlines the most important factors and their implications for SLS
processing. The importance of combining intrinsic and extrinsic properties of polymers
to make a suitable polymeric powder for the SLS process is highlighted. Only a specific
combination of listed properties has a chance of succeeding, resulting in the availability
of fewer commercial materials to date. In the future, SLS technology will necessitate a
significant expansion of the polymer powder portfolio, especially for olefin polymers
(PP, PE) [38]. However, because of the complicated consolidation behavior and molecular
diffusion process involved in sintering, the materials employed in the SLS process are
restricted. PCL and PA are now the most extensively utilized laser sintering materials [28].
Additional advancements for 3D printers include increasing printing resolution without
increasing printing time or reducing the complexity of the geometry of objects [28]. De-
spite several constraints, 3D printing technology is advancing at a rapid pace. Numerous
published publications and various printed parts in biomedical, aeronautics, electronics,
and automotive industries testify to this advancement. 3D printers are not yet capable
of handling the volume needs of the industry. This approach must continue to improve
to compete with more established production processes [147]. Cutting-edge advances
in four-dimensional (4D) printing, nano/microfabrication, and smart drug delivery are
revolutionizing the field of biomedical AM. These, in conjunction with the development
of new materials engineering tools, and the rising automation and digital control of de-
sign and manufacturing processes, with regard to the manufactured products’ resultant
characteristics, are predicted to have a great impact on the biomedical industry soon [121].
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