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Abstract

The DEP force results from the work of charging two box capacitors (N and N1) in an inhomogeneous
field with constant gradient. The capacitance of the boxes is changed by the presence of a single object
on which the DEP force acts. To model the DEP force, the box capacitors are discharged before the
field-free transfer of the object between the box centers. After recharging, the DEP force is calculated
from the total electrical work. The Maxwell-Wagner mixing equation is used to calculate the box
capacitance in the presence of the object. Here, homogeneous spherical objects (0-shell sphere: 0SS) are
considered. However, the approach can be extended to homogeneous ellipsoids (0SE), cylinders (0SC),
single-shell (1SS, 1SE, etc.) and multi-shell objects. The work performed to charge boxes N and N1 is
approximated in each box by constant fields corresponding to the field strengths at the centers of the
two boxes. Both box capacitors, N and N1, have electrode areas a-b at distance 'a' (in 2D, b=1m). The
box volume is Vbox=a”2-b with b=a (cubic box) or b=1m (cuboid box). The object volume is V0=
4/3-w'r*3=p-Vbox, where p is the volume fraction. The box width 'a' is also the reference length for
calculating the field gradient from the constant fields assumed in the two neighboring boxes. The work,
dissipation and force parameters are derived in terms of their physical units and, for comparison, as the
Clausius-Mossotti factor (CMF).




Disclaimer: The manuscript ""Active, reactive and apparent power in dielectrophoresis: Force
corrections from the capacitive charging work on suspensions described by Maxwell-Wagner’s mixing
equation" is in main parts based on this program, which is intended to explain the general ideas. In
order to reproduce the results of the associated manuscript, parameters such as the field gradient, etc.
must be adapted to the special problem under consideration. Some of the results need to be further
processed (see explanation in the manuscript).

This program code was developed with Maple 2018.1, Waterloo Maple Inc. It contributes to:

1. A capacitor charging-cycle model for the derivation of DEP force

2. A new Clausius-Mossotti factor derived from Maxwell-Wagner's mixing equation
3. Defining the complex, active and reactive contributions to DEP

4. DEP as a conditioned polarization process

5. Show a possible relation of DEP to the law of maximum entropy production

Permittivities and conductivities of media

restart,

I-oce re ) ) I-0i re o
€e:=¢ re— —  di=dre— — # complex rel. permittivity
€-m )-m

oe :=0e_re +1-w-e)-ee_ re.: 6i:= 0i_re +1-0-e0-e_re : #complex spec. conductivity

Clausius-M ossotti factor

[ 4 General ellipsoid
a4— e
# Permittivity version : CMF = @ tn(d—e)’
ol — oe

# Condutivity version : CMF = ;# note the equivalence of the two versions

oe +n~(c7i— Ge)
# For depolarizing coefficientn, see :
# Gimsa 2001, Bioelectrochem. 54 : 23 — 31; Maswiwat et al. 2007, J. Phys. D : Appl Phys. 40 : 914 — 923

€ — e

# Cylinder (or_2D — sphere) : CMF = 2- it e’

9 Zi +Zm

2 Zi+Zm+Ze’
# Zi, Zm, Ze are the impedances of internal, membrane and external media elements
# For element geometries see: Gimsa & Wachner 1999, Biophysical J. 77: 1316-1326

# 1SS with cytoplasmic membrane (finite elements): CMF:=3 —

oi — oe a—ee 1

CMF = 3- G t200 #or CMF:=3- it 2’ # for_sphere n:= 3

3(cire+lmel d re—ce re—1me e re)
CMF = = = = =

ol ret+tlwe)dd re+2ocere+2lme e re

Capacities

a-b
CO _re = e0-ec_re- # without object
a-b
Cobj re:= e)-R(eS _act) - —— : # with object

a



¥ Field gradient

ENI:=o-EN:o = (1 +ga-a) :# approximation of linear field gradient

EN:= ? : # introduction of E0 for_comparison with dipole approximation
L 2
' Charging cycle; physical unit [Ws]
i EN2-Veh ENP-Veh
Wcharge NO = BV -CO_re : Wcharge N10 = Y 0 re: # without object
EN?-Vch ENI2-Vch

Wcharge Nobj := -Cobj re :Wcharge Nlobj := -Cobj re : # with object

2-b 2-b
Wdischarge == - ( Wcharge_Nobj + Wcharge N10) : # first step of cycle : discharging
# second step : field-free object translation
Wcharge := Wcharge NO + Wcharge Nl1obj : # third step : recharging
We = simplify ( Wdischarge + Wcharge, symbolic); # charging work difference
E0? Vchga a (CO re — Cobj re) (gaa +2)

40
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¥ Energy dispersion difference in cycle; physical unit [W]

Pdisperse_NO := ce_re-EN?-Vch . Pdisperse N10 := ce_re-ENI?-Vch : #without object
Pdisperse_Nobj = R (6S_act)-EN*-Vch : Pdisperse Nlobj :=R(0S_act) -ENI2-Vch : # with object

Pdisperse() := Pdisperse_Nobj + Pdisperse N10 : # state before transition
Pdispersel := Pdisperse_NO + Pdisperse_NI1obj: # state after transition
Pd = simplify( Pdispersel — Pdisperse0, symbolic); # dispersion difference
E0% Vcha ga (O'e_re — ER(O'S_act) ) (ga a+2)
2

Pd =

V' Simplifications for # ga-a <2:

Veh-ga-a-e) -E0*- (R (eS_act) -ee_re)
2 b
Pd = Vch.a.E02.(§)‘i(GS_act) - Ge_re) :

# multiplication with 1 secondyields electrical work ( dispersed energy) in_ [ Ws ]
Wd = Pd-1;

We:=

Veh ga a €0 E0? (-ee re + R (eS act) )
2

WC =

Wd = Vch a E0? ( -oe_re + S‘%(GS_act) )



¥ Mixing equations

3+2p-CMF . . '
€S _com = 3= p-CMF -ee; # cf manuscript for complex, active & reactive parameters
3+2:p-CMF '
S act = 3= p-CMF -ee_re;, # cf. manuscript for ee vs. ee_re
3+2-p-CMF I-ce_re
€S react = 3= p-CMF = D0 ;
3+2-p-CMF )
oS com = 3= p-CMF -oe; # cf. manuscript for ce vs. ce_re
3+2-p-CMF
oS act == 3 p-CMF -oe_re,
3+2p-CMF
oS _react == 3= p-CMF (Iw - -e_re);
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Oi 0} — O -l
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= = = = +3 | oe_re
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- 3 (i re+1wel) éd re —ce re—1wel e re) p 43
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¥ Volumefraction p

I: V0
Veh == — :
| p
¥ Forces and force-equivalent dispersion

i We

Fc:= —— :Fc = collect(simplify(evalc (Fc), symbolic), ) ;# new solution for DEP force

a
Fe
Fc_new CMF = ; # new CMF

ga '
el-ee_re-V0- BN -E0?

Fc p0:=limit(Fc,p =0) :  # equivalent to classical DEP force

Fc_p0
Fe CMF = :# cancelling highlighted prefactor shows equivalence with Re( CMF')

ga
e)-ee_re-V0- EN -E0?
Fc CMF = evalc(Fc_CMF);# identical to N(classical CMF)

wd
Fd = — # 'force equivalent' of dipersion
a
Fd p0 = limit(Fd,p=0) :
Fd p0
Fd CMF = w005 ¢ # cancelling highlighted prefactor shows equivalence with 2 ( classical CMF')
oe_re-V0-E0?

Fd CMF = evalc(Fd_CMF) :# identical to $(classical CMF)
Fe=-(3 el ee_rega ( ((dre—ere)2ec2p— (2 e re+d re) (d re— e re) 02) o + (-oi_re + oe_re) 2p

+2 O'e_re2 — Oi_re Oe_re — Gi_rez) E0% V0) / ( (2 (d re—ee re)2e2p?> —4 (2 e re+d re) (d re
—e_re) 2p+2 (2 e re+ ei_re)2 602) o +2 (-0i re + cre_re)2 pr+ ( 8 cre_re2 — 4 oi_re oe_re

Ol re

—40‘i_re2)p+8(0'e_re+ py j)

2

Fc_new CMF :=-(6 ( ((dre—e re)2ec2p— (2e re+d re) (d re— e re) 2) o + (-0i_re + oe_re) 2p +2 Ge_re2

— Oi_re Oe_re — Giirez) ) / ( (2 (6 re —e re)2 e2p?> —4 (2 e re+d re) (é re —ee re) €2 p
+2 (2 e re+ a’_re)2 602) o +2 (-oi re+ O'e_re)zp2 + (8 Ge_re2 —4 0i rece re—4 O'i_rez) p

Oi_re 2
+8(Gere+ E j)

-6 o e re2 02 +3 o ee ree ree)2 +3 o € re2 02 — 6 O'e_re2 +3 oi re ce re+3 0‘1’_re2
4 e re2 )2 +4 o e red re )2 + o d re2 )2 +4 (Feire2 +4 oi_re ce re+ Gijez

Fe_CMF =




¥ Imaginary parts of ROT torque and dispersion
(thisis not a derivation; see manuscript)

Tc = Im(eS_act); Tc == simplify(evalc(Tc), symbolic) :# new torque expression from_capacitive charging
Tc

Tc _new CMF = ] ; # imaginary part corresponding to Fc_new CMF

€0-Veh -ga-E0?
2

Tc Nm:= -Tc : #torque in_[ Nm] for_comparisonwith forcein [ N]
Tc
Tc CMF = limit| ————,p =0 | : # J(CMF) from_charging derivation isidentical to 3(classical CMF)
pree_re
ga

Tc_ Nm_ref == e)-ee_re-VO0: >

Te_CMF;

Td := Im ( O'S_act) s Td = simplify(evalc (Td), symbolic) :
Td Ws = Vch-E0?-Im(6S) : # dispersion in suspension box in [Ws]
Td
Td CMF = limit( , D= OJ . # 3(CMF) from_capacitor charging and_dispersion are identical
p-Ce_re

( 6 (i re+1omeléd re—ce re—lwe e re) p
(o

+3 | e re
ciret+lowed e re+2cere+2lwel e re B

Tc =3
3(cire+loed re—cere—lwe e re) p 43
oi re+loweddre+2oeret+2loed e re

Tc_new CMF = (9 (-ee_re ci_re + @ _re ce_re) €) o) / ( ( o (e re—d re)? €02 + (-oi_re + Ge_re)z) P?

a_re
+ (4 (ee_ re—é re) o (eere + > j 2 +4 (Feire2 —20i rece re—2 Girezj pt+4 o [eere
€ re \2 oi re \?
+ )2 +4 | oe re+ —=
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Te N ref = - 9 €2 e re V0 ga w (ee_re ci_re — e _re ce_re)
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¥ Classical CMF asreference

ga
F class == evalc(R(CMF) ); # F class:= €0 ee_re-VO-R( CMF) TEOZ; #N(CMF)
F a0 class = limit(F _class, ®=0) : F a0 class = simplify(evalc( F 0 class) ); # w0-DEP plateau
F ainf class = limit(F_class, o= infinity) : F_ainf class == simplify(evalc( F_ainf class) );# ainf-DEP plateau
3 (oi re — ce re) (i re +2 oe re)
(oi re+2 Ge_re)2 + (2 0e e re+ e a'_re)2

F class ==

3(-oe retwel e re) (2me) e re+ el e re)
(oi re+2 Ge_re)2 + (2wl e ret+oned ei_re)2

+

-3 ce re+3 oi re

F w0 class ==
- oi re +2 oe re

-3e ret+3dre

F _ainf class ==
2e retd re

¥ Parameters of 0SS model; general

omega := 2-Pi-10/¢/"
e) = 8.854185e—12 :
E=1:E0=1:

1
ga = 0.1 P # 10 % field increase per box; #ga = I1; # normalized field gradient,

¥ Parameters of 0SS model; box and object volumes

a:=4e—5:b:=a:Vch:=a?b; #note:Vchiscancelled outin_final force and torque equations,

4
ri=1le—=5:V0:= ?Pi-rs’; # object volume
Vo
=y # volume fraction (Maxwell-limit: 0.1)

Veh:= 6410714
V0 = 4.188790205 10~15
p = 0.06544984695

¥ Parameters of 0SS model; media properties

_# external medium
oe_re:=0.1:e_re:= 80 :

# homogeneous spheres;
#oi re:=0.01: é re:=800: #set #1 passive
| 0i re:=1:d re:=8: # set #2 active




¥ Plots

; Reference: classical CMF (note sign definitions for DEP and ROT)
with ( plots) :

F class_plot := plot(Re( CMF'), logf=15 ..10, color = red) :

T class _plot == plot( -Im(CMF), logf=5 ..10, color = red) :

F a0 class _plot := plot(F_a0 _class, logf=5 ..10,color =ved) : # plateau level
F _ainf class_plot == plot(F_ainf class, logf=>5 ..10, color =red) :# plateau level
ComClass = complexplot(Re ( CMF) -I-Im ( CMF'), logf=2 ..11,color = red) :

display({F class_plot, F a0 class_plot, F_ainf class plot, T class plot}, title ="reference CMF") :
display( ComClass, scaling = constrained, labels = [ Real CMF, Imag_CMF, title = "reference CMF") :

reference CMF
2.
1.
™% 7 8\ 9 10 | | |
1 logf -1 0 1 2

Real CMF




\ 4 Comparison of final CMF results
red: classical CMF, green: CMF from C-work, blue: CMF from dissipation

# CMF derived_from charging work for_ p = 0

Fec CMF plot == plot(Fc_CMF, logf="1.5..8.7, color = green) : # Re(CMF)
Tc_CMF plot := plot( -Tc_CMF, logf="1.5..8.7,color =green) : # Im(CMF)
ComC = complexplot(Fc_CMF — I-Tc_CMF, logf=2 ..7.8, color = green) :

# CMF derived_fromdissipation for p = 0

Fd CMF plot:= plot(Fd _CMF, logf="1.5..8.7,color = blue) : # Re(CMF)
Td _CMF plot == plot( -Td_CMF, logf="1.5..8.7,color =blue) :# Im( CMF)
ComD := complexplot(Fd_CMF — I-Td CMF, logf=8.5..11,color = blue) :

# Display

display(F_a0_class_plot, F_ainf class_plot, F_class_plot, T class_plot,Fc_CMF plot, Tc._ CMF _plot, title
="charging vs. reference CMF") :

display(F_a0_class_plot, F_ainf class_plot, F_class_plot,T class_plot, Fd_CMF plot, Td_CMF plot, title
= "dissipation vs. reference CMF") :

display( ComClass, ComC, ComD, scaling = constrained, labels = [ Real CMF, Imag CMF1) :

charging vs. reference dissipation vs. reference
CMF CMF
2 2
1 1
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¥ New DEP-force and ROT-torque expressions derived from C-work (green) compared with results
after the boundary transition of p=>0,
i.e. theclassical CMF (red)

_Fc_new_plot = plot(Fc_new CMF, logf=15 ..10,color = green) : # new Re(CMF) from C-work
Tc_new plot == plot( -Tc_new CMF, logf=5 ..10, color =green) : # new Im(CMF) from C-work

Fc_plot := plot( Fc, logf=15 ..10, color =green) : # force corresponding to new CMF
Fc _p0 plot == plot(Fc_p0, logf=>5 ..10,color =red) : # force corresponding to CMF
Tc_Nm_plot := plot( -Tc_Nm, logf=>5 ..10, color =green) : # torque corresponding to new CMF

Tc_Nm_ref plot := plot(-T. ¢ Nm_ref, logf=5 ..10, color =red) :# torque corresponding to CMF

Com_new_CMF = complexplot(Fc_new CMF — I-Tc_new CMF, logf=2 ..10, color = green) :

display(F _class_plot, F_0_class_plot, F_ainf class_plot, T class_plot,Fc_new plot, Tc_new plot, title
="new CMF vs. classical CMF") :

display( ComClass, Com_new_CMF, scaling = constrained, labels = [ Real CMF, Imag CMF) :
display(Fc_plot, Tc Nm_plot,Fc_p0 plot,Tc Nm_ref plot,title ="force & torque: new vs. classic") :

complex plots
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V' Theeffective relative permittivity and conductivity in the suspension box (greer) are the sum of
their active (blue) and reactive () components

Note that the green sum curves reflect the characteristic frequency-dependent decreasein
permittivity and the corresponding increase in conductivity of suspensions.

_eS'_com_plot = plot(Re(eS _com), logf=5..10,color = green) :

€S act plot = plot(Re (€S _act), logf=5 ..10,color = blue) :
€S react_plot = plot(Re (€S _react), logf=5 ..10, color = gold) :

oS _com_plot = plot(Re(6S _com), logf=5 ..10, color = green) :
oS _act_plot == plot(Re (oS _act), logf=5 .10, color = blue) :
oS _react_plot == plot(Re (S react), logf=>5 .10, color = gold) :

display(eS_com_plot, 6S_act_plot, €S_react_plot, title

="complex (green), active (blue) and reactive (gold) components of permittivity") :
display(6S_com_plot, 6S_act plot, 6S_react_plot, title

="complex (green), active (blue) and reactive (gold) components of conductivity") :

complex (green), active complex (green), active

(blue) and reactive (gold) (blue) and reactive (gold)
components of permittivity  components of conductivity
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