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Abstract: The design of an upper limb rehabilitation robot for post-stroke patients is considered a
benchmark problem regarding improving functionality and ensuring better human–robot interaction
(HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality)
or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises,
depending on the type, level, and degree of impairments. This work focused on designing and
developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’
that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved
by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots
lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper
arm forces is also absent in the existing devices. This research work aimed to develop an innovative
sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control
technique was implemented for both joint-based and end-point exercises. The experimental results
validated both types of functionality of the developed robot.

Keywords: rehabilitation; upper limb; dual functionality; exoskeleton; end effector; upper arm forces;
sensorized cuff

1. Introduction

With the increase of hemiplegic stroke patients day by day [1], upper limb rehabil-
itation to regain lost mobility seems to be required more than ever nowadays. It was
well established from past research that the success of a rehabilitation program heavily
depends on its repetitiveness and intensity. The repetitive nature, tediousness, precision,
explicit feedback, and intensity of therapy are some key factors that make robot-aided
rehabilitation popular for upper limb impairments. For instance, robotic devices can
provide therapy for an extended period, irrespective of skills and fatigue, compared to
manual therapy [2]. They can also work in multiple degrees of freedom with virtual reality
interfaces and provide therapy ranging from passive to active rehabilitation. This leverage
over traditional therapy could increase the efficiency and effectiveness of therapists by
alleviating the labor-intensive aspects of physical rehabilitation of post-stroke patients [3].
To provide rehabilitation therapy to individuals with upper limb impairment, several
research prototypes have been developed to date [4–18]. Among these prototypes, very
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few were transferred into a commercial product, as they have limitations (in both hardware
and control design), which are discussed in following paragraphs.

Based on the correspondence of the robot’s joints onto the wearer, existing rehabil-
itative robotic devices can be grouped into two main categories, i.e., exoskeleton-type
devices [19–22] and end-effector-type devices [7,23,24]. Exoskeleton-type devices can map
the motion and torque to the corresponding human joint, making them have better guid-
ance and control over individual joints. It is possible to mimic the whole arm motion with
such devices if they require seven DoFs for general upper limb motions. On the other hand,
end-effector-type devices cannot map onto the corresponding human joints; hence, they
cannot produce whole arm motion. However, unlike their counterparts, end-effector-type
devices are suitable for end-point exercises [25] and it is easier to accommodate spastic
patients with a rotated shoulder, flexed elbow, pronated forearm, flexed wrist, and so
on [26–28]. Note that upper limb spasticity is observed in approximately one-third of the
stroke survivors [29,30]. Seemingly, as an individual role, the exoskeleton-type and end-
effector-type robots have apparent limitations in serving a wide variety of patients with
different degrees of upper limb impairments and providing various types of therapeutic
exercises. It is worth mentioning that existing robotic devices are either exoskeleton type,
such as [22,30–32], or end-effector type [4,7,10,18]. Including the functionalities of both
exoskeleton-type and end-effector-type devices in a single robot would serve a wide variety
of patients, depending on the type, level, and degree of impairments. Moreover, this dual
functionality would facilitate the rehabilitation of patients with spasticity. Inspired by
the idea of dual functionality, a seven-DoF upper limb exoskeleton robot called ‘u-Rob’
was engineered in this research to function as both an exoskeleton-type and end-effector-
type robot.

Better human–robot interaction (HRI) is always desired in the design of upper limb
exoskeletons. For instance, the forces and torques generated in exoskeleton joints must
be successfully transferred to human joints. Proper alignment between human joints
and exoskeleton joints would make sure that this transfer occurs. The primary source
of misalignment can stem from the exoskeleton’s shoulder joint if its center of rotation
(CR) remains fixed during a maneuver. Most of the existing exoskeletons were developed
with a fixed-CR shoulder joint as a three-DoF ball-and-socket joint [8,17,33–38]. However,
some exoskeletons were developed with this kinematic structure in mind [14,39–41]. These
adjustments come with the tradeoff of a reduced ROM and a complex design. To address
the mobility of the shoulder joint’s CR for increased ROM, two parallel mechanisms
that were designed in the authors’ previous research were adapted in u-Rob’s kinematic
structure. These mechanisms were used to create an ergonomic shoulder skeleton in u-Rob.

In addition to the alignment, monitoring the interactive forces between the wearer and
exoskeleton robot is a must to ensure safety, comfort, and better HRI. However, existing
devices ignore interaction forces during passive rehabilitation. Such an oversight can
become costly if the wearer has a stiff arm. Furthermore, current rehab devices have
ignored measuring interaction forces at the wearer’s upper arm [6,41,42]. To measure
the interaction forces at the upper arm, a sensorized upper arm cuff was designed and
developed for u-Rob’s upper arm module.

Despite the development of numerous prototypes, research on robotic devices for
upper limb rehabilitation is still a growing field and demands novel approaches to solve key
limitations in hardware design (e.g., human–robot interface and dual functionality). In this
research, an upper limb exoskeleton robot was designed to address some key limitations
found in existing exoskeletons. The main contributions of this research are as follows:

(1) A novel seven-DoF upper limb exoskeleton robot called ‘u-Rob’ was developed that
functions as both an exoskeleton-type robot and an end-effector-type robot to perform
joint-based and end-point exercises, respectively.

(2) A sensorized upper arm cuff was designed and incorporated into u-Rob to measure
and monitor the interaction forces at the upper arm.
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The remainder of the work is structured as follows. Section 2 presents a detailed de-
scription of the developed u-Rob exoskeleton. The kinematic modeling, dynamic modeling
and control of the exoskeleton system are presented in Section 3. Section 4 presents the
experimental results and discussion. Finally, the paper ends with the conclusion presented
in Section 6.

2. Development of u-Rob
2.1. General Design Requirement

A rehabilitative robot’s design requirements largely depend on the range of motion
and limb segment to be included [43–45]. The complex joint articulation of the human upper
limb makes the design of exoskeleton robots difficult. The human upper limb is mainly
composed of seven degrees of freedom (DOFs) to provide seven general motions at the
shoulder (i.e., abduction–adduction, vertical flexion–extension), upper arm (i.e., internal–
external rotation), elbow (i.e., flexion–extension), forearm (i.e., pronation–supination), and
wrist (i.e., radial–ulnar deviation, flexion–extension). In addition, at the shoulder joint,
there are two passive movements in the frontal (i.e., elevation–depression) and sagittal
planes (protraction–retraction). u-Rob has seven DoFs and three modules, namely, a three-
DoF shoulder module to support motion at the shoulder and upper arm, a two-DoF elbow
module to support the motion at the elbow and forearm, and a two-DoF wrist module to
support wrist motions.

The suitable ranges of motions for the proposed exoskeleton robot were chosen based
on the existing literature [46–50]. Table 1 shows the selected ranges of motion of u-Rob. A
large workspace allowed for designing a rehabilitation protocol with a variety of exercises.

Table 1. Comparison of the ranges of motion of the proposed exoskeleton robot with existing robots.

Limb Segment Joint No. Kind of Motion ROM

Shoulder

Joint-1
Abduction 90◦

Adduction 0◦

Joint-2
Vertical flexion 180◦

Vertical extension 0◦

Joint-3
Internal rotation 90◦

External rotation 90◦

Elbow and Forearm

Joint-4
Flexion 135◦

Extension 0◦

Joint-5
Pronation 90◦

Supination 90◦

Wrist

Joint-6
Flexion 60◦

Extension 50◦

Joint-7
Radial deviation 20◦

Ulnar deviation 30◦

2.2. Development Procedure

To develop the proposed u-Rob exoskeleton robot, the following steps were car-
ried out.

The very first step in the development of u-Rob’s hardware was to study the anatomy
and biomechanics of the human upper limb to find the safe ranges of motion [47,50,51].

Anthropometric parameters (e.g., arm length, arm segment’s weight, and segment
inertia) of the upper limbs were studied to obtain u-Rob’s link parameters. To choose
the suitable link parameters for u-Rob, the length, weight, inertia, and center of gravity
location of the upper arm, forearm, and wrist were studied for typical white, Asian, African-



Micromachines 2021, 12, 870 4 of 30

American, Hispanic, and Latino adult men and women [50–52]. These parameters were
also used in the simulation to choose actuators [52]. Note that u-Rob is wearable for adult
men and women with heights ranging from 4 foot 7 inches to 6 foot 2 inches.

With the selected ranges of motion and lengths of the various segments, the mechanical
components were designed, and a complete CAD model of the proposed exoskeleton robot
(shown in Figure 1a) was developed in PTC Creo (version 5.0, Needham, MA, USA). This
model provided the center of gravity and inertia properties of the proposed exoskeleton
robot’s segments.
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The CAM of the mechanical components was designed in Fusion 360 (version 2.0.6258,
Autodesk Inc., San Rafael, CA, USA).

CNC milling, centering, and drilling operations were used to fabricate u-Rob’s com-
ponents.

u-Rob was made ready to function (please see Figure 1b) with all the components
fabricated and assembled with the required screws and fasteners.

Throughout the following sub-sections, details of u-Rob’s design and development are
presented. Furthermore, design specifications and selected components of the developed
u-Rob are presented in Table 2.

Table 2. Design specifications and selected components of the developed u-Rob.

Degrees of Freedom

Active Passive

7 2

Ranges of motion/joints’ limits (degrees)

Joint-1 Joint-2 Joint-3 Joint-4 Joint-5 Joint-6 Joint-7

0 to 90 0 to 180 −90 to 90 0 to 135 −90 to 90 −60 to 50 −20 to 30

Fabrication

Material Aluminum 6061, stainless steel 304, plastic (polylactic acid and polycarbonate)

Fabrication process CNC machining, lathe turning, 3D printing
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Table 2. Cont.

Actuators

Location Joint-1, 2, 4 Joint-3 Joint-5, 6, 7

Motors Maxon EC90, 90 W Maxon EC45, 70 W Maxon EC45, 45 W

Operating voltage (V) 24 24 24

Nominal speed (rpm) 2590 4860 2940

Nominal current (A) 6.06 3.21 1.01

Torque constant (mNm/A) 70.5 36.9 51

Nominal torque (mNm) 444 128 55.8

Weight (g) 600 147 75

Motor drivers ZB12A8 analog servo drive

Motor driver current rating (A) 12 (peak) 6 (continuous)

Motor driver input Analog (voltage)

Motor driver feedback Current sense, Hall sensor pulses

Reducers

Location Joint-1, 2, 4 Joint-3 Joint-5, 6, 7

Gear reducer Harmonic drive
CSF-17-100-2UH

Harmonic drive
CSF-11-100-2XH-F

Leader drive
LHSG-14-C-I

Reduction ratio 100 100 100

Average output torque (Nm) 39 8.9 13.5

Momentary peak torque (Nm) 108 25 66

Repeated peak torque (Nm) 54 11 34

Estimated max output speed (deg/s) 210 290 155

Control System

Controller NI PXIe-8135

Data acquisition cards Two PXIe-6738, 6254 reconfigurable IO cards

Control architecture Ni RT Linux real-time CPU execution + FPGA

CPU Intel Atom 1.6 GHz quad-core

Memory 4 GB

FPGA Kintex-7 70T FPGA

Input/output 5 V TTL digital logic I/O, ±10 V analog in/out

Communication Ethernet, EtherCAT, CANopen, RS485, RS232

Force sensors

Location End effector Upper arm cuff

Sensor GPB160-50N, GALOCE TAS606, HT Sensor Technology

Sensor type 3-axis load cell Single-axis load cell

Measuring capacity Fx, Fy, Fz = 50 N 50 N

2.3. Shoulder Module

According to human upper limb anatomy, there are three general motions (i.e., shoul-
der abduction–adduction in the frontal plane, shoulder vertical or horizontal flexion–
extension in the sagittal plane, and internal–external rotation in the transverse plane) in the
shoulder. These three movements are also known as glenohumeral (GH) articulations. The
intersecting point of the axes of these three motions is often known as the center of the GH
joint (also known as the shoulder joint’s instantaneous center of rotation (ICR)). In addition
to these three general motions, there are two other motions (i.e., elevation-depression and
protraction–retraction) in the frontal plane and sagittal plane of the human body that pro-
duce shoulder abduction–adduction and flexion–extension, respectively; the conventional
ball-and-socket joint cannot provide movement to the shoulder joint’s center of rotation.
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To realize additional movements in the frontal and sagittal planes, the shoulder motion
support part of u-Rob was designed using a hybrid approach by incorporating both parallel
and serial mechanisms, as shown in Figure 2. Two parallel mechanisms, namely, the frontal
and sagittal mechanisms, as shown in Figures 3 and 4, were used in the design of the
ergonomic shoulder module. These mechanisms were described in detail in the author’s
previous research [53–56]. When combined, these mechanisms allow for the mobility of
the shoulder joint’s instantaneous center of rotation by providing movement in the frontal
and sagittal planes, respectively. Altogether, there were three actuated (active) DoFs and
two passively actuated DoFs used in the ergonomic shoulder module. All the actuated
DoFs are revolute joints and are responsible for doing the abduction–adduction (joint-1),
vertical flexion–extension (joint-2), and internal–external rotation (joint-3), whereas two
passive DoFs are responsible for moving the shoulder joint’s ICR (passive joint-1) during
abduction–adduction and doing the protraction–retraction (passive joint-2) during vertical
flexion–extension. Note that the intersection of joint-1, joint-2, and joint-3 locates the
shoulder joint’s instantaneous center of rotation.
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Figure 5 shows the exploded view of the frontal mechanism with all the parts used in
the fabrication. All the parts, except standard elements (e.g., bearings, bushing, stainless
steel shaft), were machined out of aluminum 6061. To provide linear motion, three standard
(LM8LUU Linear bushing) sliders (part 3) and three 8 mm stainless steel shafts (part 2) were
used, as shown in Figure 5. Note that three sets of sliders were used to prevent rotation
of the slider around the axis of the shaft. The shafts were made to fit into the slider bore,
whereas the sliders were inserted into the bores of the slider retainers (part 8). To prevent
horizontal translation of the slider itself, two preregular plates (part 4) were fastened using
M4 screws (part 5) at both ends of the slider retainer (part 8). Note that the slider retainer
also connects the joint-2 assembly. To hold the shaft, two block parts (part 11) with the
appropriate groove and slot were fabricated. These blocks were mounted on the plate
(part 9) attached to joint-1. The link-1A (part 1) contains two standard ball bearings (6200Z
10 mm × 30 mm × 9 mm double-sealed ball bearings). These bearings were pressed fit and
provide bearing support at two M10 screws. The left end of the link-1A (part 1) connected
the shoulder joint CR on part 8 and was hinged at the right end.

Figure 6 shows an exploded view of the sagittal mechanism with the parts used to
fabricate it. All the parts, except standard elements (e.g., bearings, bushing, stainless steel
shafts), were machined out of aluminum 6061. To provide linear motion along the shaft
axis, three standard (LM8LUU linear bushing) sliders (part 3) and three 8 mm stainless
steel shafts (part 6) were used, as shown in Figure 6. The purpose of using three sliders
was to prevent rotation of the slider retainer about the shaft axis. Link-2A (part 1) houses
the shaft retainer (part 8). The sliders (part 3) were inserted into the slider retainer (part 7)
that provides the linear motion along the shaft axis. In order to make a connection between
link-2B (part 2), the slider retainer (part 7), and the upper arm module, a 3D printed part
(part 9) was used. The adjustability of link 2B was achieved using an aluminum machine
part (part 11) that was placed at the desired slot.

2.4. A New Sensorized Upper Arm Cuff

Designing an upper arm cuff with force sensors always remains a crucial problem.
Unlike the wrist sensor, placing sensors in the upper arm is difficult in terms of providing
the adequate space that standard three-axis and six-axis force sensors may require. Instead
of putting the sensors in the serial link, this research came up with a new approach that
places the sensors on the upper arm circular cuff. Both button-type force sensors and
flexible pressure sensors can be placed on the cuff wall; however, flexible pressure sensors’
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accuracy and resolution are debatable. Therefore, in this research, three button-type force
sensors were used.

Figure 7 shows the sensorized cuff assembly for the upper arm. In order to allow for
rotation in the upper arm, as shown in Figure 7, the outer cuff remains stationary while the
inner cuff rotates. The reduction of actuator-3’s speed was achieved in two stages. First,
the motor speed was reduced using a harmonic reducer (CSF-11-100-2XH-F, Harmonic
Drive LLC, US Headquarter, Dunham Ridge, MA, USA). After that, the speed was further
reduced using a standard anti-backlash spur gear. Finally, the motion was transmitted to
the custom-made semi-circular ring (spur). This gear was fastened to the inner cuff. Thus,
the inner cuff produces the rotation to realize upper arm internal–external movement.
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Figure 7. Upper arm sensorized cuff assembly.

To measure the upper arm force, three button-type force sensors (part 2) were mounted
on the inner cuff (part 1), as shown in Figure 8. The sensors were fastened using three
M3 screws (part 3) that were spaced at 120◦. The user cuff (part 5) was placed inside the
rectangular groove of the inner cuff (part 1). Two ball plungers mounted on the inner cuff
(part 1) maintain the initial tension of the user cuff on the force sensors. To produce the
upper arm rotation, the inner cuff houses a custom-made semi-circular spur gear (part
4). This gear meshes with an anti-backlash spur gear (Model LFS-D6-80, Nordex, Inc,
Brookfield, CT, USA) that transfers output motion from the joint-3 actuator. The bearing
action between the inner cuff and outer cuff (coming from joint-2) is provided by a bearing
sleeve. The bearing action in the sleeve was achieved using steel balls, which were placed
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inside the circular guide. Thus, bearing action is provided during the relative movement of
the inner and outer cuff.
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Figure 8. Exploded view of the upper arm sensorized cuff assembly.

The inner cuff was machined in both a lathe and a computer numerical control (CNC)
mill; an aluminum 6061 hollow round bar was used in the fabrication. The user cuff was
3D printed; hence, it can be easily made for different user sizes. The semi-circular spur
gear was machined out of stainless steel.

2.5. Elbow Module

The elbow module is responsible for realizing flexion–extension at the elbow and
pronation–supination at the forearm. The elbow flexion–extension is achieved through
the actuator-4 assembly, which consists of a motor, a harmonic reducer, and an output
adapter. The output of the actuator-4 assembly was fastened to the forearm link, as shown
in Figure 9. The forearm link houses the forearm cuff assembly, the exploded view of
which is shown in Figure 10. This cuff is similar to the upper arm cuff, therefore a detailed
description is avoided here.

Micromachines 2021, 12, 870 11 of 32 
 

 

2.5. Elbow Module 
The elbow module is responsible for realizing flexion–extension at the elbow and 

pronation–supination at the forearm. The elbow flexion–extension is achieved through 
the actuator-4 assembly, which consists of a motor, a harmonic reducer, and an output 
adapter. The output of the actuator-4 assembly was fastened to the forearm link, as shown 
in Figure 9. The forearm link houses the forearm cuff assembly, the exploded view of 
which is shown in Figure 10. This cuff is similar to the upper arm cuff, therefore a detailed 
description is avoided here. 

 
Figure 9. Elbow and forearm motion support part. 

 
Figure 10. Forearm cuff assembly and its exploded view. 

Figure 9. Elbow and forearm motion support part.



Micromachines 2021, 12, 870 11 of 30

Micromachines 2021, 12, 870 11 of 32 
 

 

2.5. Elbow Module 
The elbow module is responsible for realizing flexion–extension at the elbow and 

pronation–supination at the forearm. The elbow flexion–extension is achieved through 
the actuator-4 assembly, which consists of a motor, a harmonic reducer, and an output 
adapter. The output of the actuator-4 assembly was fastened to the forearm link, as shown 
in Figure 9. The forearm link houses the forearm cuff assembly, the exploded view of 
which is shown in Figure 10. This cuff is similar to the upper arm cuff, therefore a detailed 
description is avoided here. 

 
Figure 9. Elbow and forearm motion support part. 

 
Figure 10. Forearm cuff assembly and its exploded view. 

Figure 10. Forearm cuff assembly and its exploded view.

In the fabrication of the forearm motion support part, aluminum (aluminum 6061)
was used for the forearm link, outer cuff, and inner cuff. Both lathe and CNC milling
were used in the fabrication. The machining operations included facing, 2D adaptive
clearing, contouring, groove cutting, turning, drilling, and chamfering. The custom-made
semi-circular ring (spur) gear was fabricated out of stainless steel (stainless steel 304). The
sleeves in the forearm cuff assembly were 3D printed using 1.75 mm PLA filament. The
balls used in the forearm cuff assembly are standard 4 mm stainless steel balls.

2.6. Wrist Module

The wrist module of the proposed exoskeleton functionality of u-Rob consists of two
revolute joints to provide wrist radial–ulnar deviation and flexion–extension. Moreover, a
force sensor was placed at the wrist handle to sense three Cartesian forces exerted by the
user. As shown in Figure 11, the actuator assembly for joint-6 was mounted on the joint-6
base link; the base link was rigidly connected to the output of the forearm cuff. The output
of actuator-6 was then fastened to wrist link-1. Note that the base link was designed so
that it acts as a physical stopper for wrist link-1. The other end of wrist link-1 was rigidly
fastened to wrist link-2, which houses the actuator assembly for joint-7. The output of
actuator-7 was connected to wrist link-3 with a force sensor in between. The integration of
the force sensor into the wrist module is shown in Figure 12.
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During the fabrication of the wrist motion support part, aluminum was used for the
fabrication of the joint-6 base link, wrist link-1, wrist link-2, wrist link-3, and plate-1. The
computer-aided manufacturing (CAM) of these parts was designed in AutoCAD Fusion
360 and machined in CNC. The operations used during the milling included facing, 2D
adaptive clearing, contouring, drilling, and chamfering. The wrist handle and plate-2 were
3D printed.

2.7. Actuators and Reducers

All the actuators of u-Rob are brushless DC motors. A Maxon EC90 flat 90 W (PN
323772) motor was used in joint-1, 2, and 4. Maxon EC45 flat 70 W (PN 397172) motor was
used for joint-3. To actuate joint-5, 6, and 7, a Maxon EC45 flat 70 W (PN 339281) was used.

To reduce the motor speeds, harmonic reducers (strain wave gears) were used. Because
of being advantageous over traditional gears, this kind of reducer has been increasingly
used over the past several years. The reason for selecting a harmonic reducer in the u-Rob
exoskeleton robot was to provide zero-backlash motion. In u-Rob, harmonic reducers from
two companies were used. Joint-1, 2, 3, and 4 used harmonic reducers from Harmonic
Drive LLC, US Headquarter, Dunham Ridge, MA, USA, whereas joint-5, 6, and 7 used
reducers from Leaderdrive, Suzhou, China.

2.8. Mass and Inertia Properties of the Proposed Exoskeleton Robot

The mass and mass moment of the inertia about the center of gravity (CG) for the
segments of the proposed exoskeleton robot were determined in the CAD environment in
PTC Creo and are presented in Table 3. Mass properties were also validated by checking
the mass of the real parts of the proposed exoskeleton robot. The segment was determined
according to the movement. For instance, the first segment is every element situated after
the joint-1 actuator output and before the joint-2 actuator output.

2.9. Safety

Safety is paramount as upper limb exoskeleton robots have close interactions with
wearers. Human–robot interaction must be designed to ensure safe operations. An HRI
should include safety measures in the mechanical, electronic, and control designs for the
robot’s safe use. Mechanically, safety is ensured by placing physical stoppers in the robot’s
structure to prevent it from going beyond the chosen ROM; safety can also be confirmed by
designing links and robot parts in such a way that adjacent links act as physical stoppers in
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extremes. In u-Rob, adjacent links were designed to work as inherent physical stoppers for
the chosen range of motion. Electronically, by setting current and voltage limits in motors,
robot joints can be stopped from going beyond the permissible ROM. In control design,
saturation can be set for torque, force, velocity, and position to ensure the wearer’s safety if
the robot malfunctions. u-Rob’s control algorithm includes thresholds for ROM, velocity,
force, and torque; one can easily change and set them from u-Rob’s graphical user interface.

Table 3. Mass inertia properties of the proposed exoskeleton system.

Segment Segment
Length (mm)

Segment
Weight (kg)

Center of Gravity CG (mm) Moment of Inertia I at CG (kg·mm2) (103)

CGX CGY CGZ Ixx Iyy Izz

Segment-1 (joint-1 to joint-2) 231.4 4.93 −6.65 −221.5 −63.6 118.5 31.5 94.4

Segment-2 (joint-2 to joint-3) 183.5 ± 50 1.12 −8.95 −10.95 17.3 47.2 25.7 24.3

Segment-3 (joint-3 to joint-4) 82.04 3.35 −10.9 13.87 −27.7 40.06 14.09 32.94

Segment-4 (joint-4 to joint-5) 163.5 ± 40 1.24 −57.6 −142.3 40.6 4.27 4.64 3.74

Segment-5 (joint-5 to joint-6) 132.775 1.34 −18.2 83.2 −48.6 9.45 5.12 7.68

Segment-6 (joint-6 to joint-7) 92.76 1.08 −0.55 −92.26 33.8 4.54 2.93 2.24

Segment-7 (joint-7 to wrist handle) 47 0.22 23.8 0.00 −80.9 0.00683 0.036 0.037

3. Kinematics, Jacobian, and Dynamics
3.1. Kinematics

The kinematic parameters (position, velocity, and acceleration) of robotic manipula-
tors can be determined using analytical or geometric approaches. The analytical approach
involves the vector formation of kinematic parameters and their vector operation, leading
to obtaining the kinematic model. However, in the case of a serial manipulator, robotic
researchers have extensively been interested in using modified Denavit–Hartenberg param-
eters [57] due to their simplicity and ease of use in applications (e.g., developing forward
kinematics, inverse kinematics, Jacobians, and dynamic model). Since u-Rob is composed
of both serial linkage and parallel mechanisms, a combined approach was applied to find
the kinematics. The analytical approach was used to find the kinematics of parallel mech-
anisms and is discussed in Sections 3.1.1 and 3.1.2 (i.e., frontal and sagittal mechanisms,
respectively). The modified Denavit–Hartenberg convention was applied to obtain the
kinematics of the serial linkage portion [57]. Note that the kinematic model of u-Rob was
developed on the basis of the anatomy and biomechanics of the human upper limb.

3.1.1. Kinematics of the Frontal Mechanism

To obtain the forward kinematics of the frontal mechanism (please see Figure 3), the

following vectors, namely,
→
L 1,

→
L 11 and

→
L 12, were formed, as shown in Figure 3. Using

these vectors, the following closed-loop equation (Equation (1)) was formed:

→
L 1 =

→
L 11 +

→
L 12[

L1 cos θ1
L1 sin θ1

]
=

[
L11 cos θ11
L11 sin θ11

]
+

[
L12 cos θ12
L12 sin θ12

]
(1)

The Equation (1) is a function of θ1 where L11, θ11, and L12 are known values that
depend on the geometry of the function. With these values, the unknowns L1 and θ12 can
be found.

After rearranging the above equation (Equation (1)), we obtained:[
L1 cos θ1
L1 sin θ1

]
−
[

L11 cos θ11
L11 sin θ11

]
=

[
L12 cos θ12
L12 sin θ12

]
(2)
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After squaring both components of the above equation (Equation (2)) and then adding,
we obtained the following:

⇒ L2
1 cos2 θ1 + L2

1 sin2 θ1 + L2
11 cos2 θ11 + L2

11 sin2 θ11 − 2L1L11 cos θ1 cos θ11 − 2L1L11 sin θ1 sin θ11 = L2
12 cos2 θ12 + L2

12 sin2 θ12

⇒ L2
1 + L2

11 − 2L1L11(cos θ1 cos θ11 + sin θ1 sin θ11) = L2
12

⇒ L2
1 − 2L1L11 cos(θ1 − θ11) +

(
L2

11 − L2
12

)
= 0

⇒ L1 =
2L11 cos(θ1 − θ11)

2
±

√
4L2

11 cos2(θ1 − θ11)− 4
(

L2
11 − L2

12
)

2

⇒ L1 = L11 cos(θ1 − θ11)±
√

L2
11 cos2(θ1 − θ11)−

(
L2

11 − L2
12
)

⇒ L1 = L11 cos(θ1 − θ11)±
√

L2
11 cos2(θ1 − θ11)− L2

11 + L2
12

L1 = L11 cos(θ1 − θ11) +
√

L2
11 cos2(θ1 − θ11)− L2

11 + L2
12 (3)

Equation (3) provides the location of the slider, which is the instantaneous center of
the shoulder joint.

To obtain the solution for θ12, the sine component of Equation (2) was divided by the
cosine component as follows.

tan θ12 =
L1 sin θ1 − L11 sin θ11

L1 cos θ1 − L11 cos θ11

θ12 = arctan
(

L1 sin θ1 − L11 sin θ11

L1 cos θ1 − L11 cos θ11

)
(4)

Equations (3) and (4) are then used to solve for the forward kinematics of the
frontal mechanism.

3.1.2. Kinematics of the Sagittal Mechanism

To obtain the forward kinematics of the sagittal mechanism, the following vectors,

namely,
→
L 2,

→
L 21 and

→
L 22 were formed, as shown in Figures 4 and 13. These vectors formed

the following closed-loop equation (Equation (5)):

→
L 22 =

→
L 2 −

→
L 21[

L22 cos θ12
L22 sin θ12

]
=

[
L2 cos θ2
L2 sin θ2

]
−
[

L21 cos θ21
L21 sin θ21

]
(5)
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Equation (5) is a function of θ2 where L21, θ21, and L22 are known values that depend
on the geometry of the function. With these values, the unknowns L2 and θ22 can be found.

After squaring both components of the above equation (Equation (5)) and then adding,
we obtained the following:

⇒ L2
22 cos2 θ22 + L2

22 sin2 θ22 = L2
2 cos2 θ2 + L2

2 sin2 θ2 + L2
21 cos2 θ21 + L2

21 sin2 θ21 − 2L2L21 cos θ2 cos θ21 − 2L2L21 sin θ2 sin θ21

L2 = L21 cos(θ2 − θ21) +
√

L2
21 cos2(θ2 − θ21)− L2

21 + L2
22 (6)

Equation (6) provides the location of the upper arm attachment.
To obtain the solution for θ22, the sine component of Equation (5) was divided by its

cosine component as follows:

tan θ22 =
L2 sin θ2 − L21 sin θ21

L2 cos θ2 − L21 cos θ21

θ22 = arctan
(

L2 sin θ2 − L21 sin θ21

L2 cos θ2 − L21 cos θ21

)
(7)

Equations (6) and (7) are then used to solve for the forward kinematics of the sagit-
tal mechanism.

3.1.3. Kinematics of the Whole Robot

According to the modified Denavit–Hartenberg (DH) convention [57], the coordinate
frames were assigned based on the human arm’s joint axes of rotation. Figure 14 shows the
coordinate frame assignment of u-Rob for all of its joints, where black arrowheads indicate
the joint axes of rotation of u-Rob corresponding to that of the human upper limb. The
modified DH parameters corresponding to the placement of the link frames (as shown in
Figure 14) are computed and presented in Table 4.
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Table 4. Modified Denavit–Hartenberg parameters for the proposed exoskeleton robot.

Joint
(i)

αi−1
(Link Twist)

di
(Link Offset)

ai−1
(Link Length)

qi
(Joint Variable)

1 0 0 L0 q1
2 π/2 0 0 q2 + π/2
3 π/2 L2 + L34 0 q3
4 −π/2 0 0 q4
5 π/2 L4 0 q5
6 −π/2 0 0 q6 − π/2
7 −π/2 0 0 q7
8 0 0 L7 0

Using the modified DH parameters, a homogenous transformation matrix between
two successive frame {i} and frame {i− 1} [57,58] was obtained using the following
equation (Equation (8)):

i−1
i T =

 i−1
i R3×3 i−1

i P3×1

01×3 1

 (8)

where i−1
i R is the rotation matrix that describes the frame {i} relative to frame {i− 1} and

can be expressed as:

i−1
i R =

 cos qi − sin qi 0
sin qi cos αi−1 cos qi cos αi−1 − sin αi−1
sin qi sin αi−1 cos qi sin αi−1 cos αi−1

 (9)

Furthermore, i−1
i P is the vector that locates the origin of the frame {i} relative to frame

{i− 1} and can be expressed as:

i−1
i P =

 ai−1
−sαi−1di
cαi−1di

 (10)

Because of the two parallel mechanisms, the homogenous transformations for frame
{1} and frame {2} were obtained using a hybrid approach [59,60]. The transformation for
the rest frames can be obtained using the modified DH convention.

Frame {1}:
Using Equations (8)–(10), the following transformation was obtained:

(
0
1T
)

DH
=


cos q1 − sin q1 0 0
sin q1 cos q1 0 0

0 0 1 L0
0 0 0 1


However, as mentioned earlier, the slider in the frontal mechanism was initially placed

at 45◦. This initial placement gives the frame {1} a rotation of 45◦, which caused offsets
in the x and y positions. Therefore, with the modified DH convention and kinematics of
frontal mechanism, the homogenous transformation between frame {1} and frame {0} was
obtained as follows:

0
1T =


cos
(
q1 +

π
4
)
− sin

(
q1 +

π
4
)

0 L1 cos
(
q1 +

π
4
)

sin
(
q1 +

π
4
)

cos
(
q1 +

π
4
)

0 −L1 sin
(
q1 +

π
4
)

0 0 1 L0
0 0 0 1


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Frame {2}:
Using Equations (8)–(10), the following transformation was obtained:

(
1
2T
)

DH
=


cos
(
q2 +

π
2
)
− sin

(
q2 +

π
2
)

0 0
0 0 −1 0

sin
(
q2 +

π
2
)

cos
(
q2 +

π
2
)

0 0
0 0 0 1


Though frame {1} was rotated initially at 45◦, frame {2} remained aligned with the up-

per arm. Therefore, this initial rotation of frame {1} should be adjusted in the homogenous
transformation of frame {2} by pre-multiplying the following matrix:

(
1
2T
)

adjust
=


cos
(
2q1 +

π
4
)

sin
(
2q1 +

π
4
)

0 0
− sin

(
2q1 +

π
4
)

cos
(
2q1 +

π
4
)

0 0
0 0 1 0
0 0 0 1


1
2T =

(
1
2T
)

DH
∗
(

1
2T
)

adjust

1
2T =


cos
(
2q1 +

π
4
)

cos
(
q2 +

π
2
)
− cos

(
2q1 +

π
4
)

sin
(
2q1 +

π
4
)
− sin

(
2q1 +

π
4
)

0
− sin

(
2q1 +

π
4
)

cos
(
q2 +

π
2
)

sin
(
2q1 +

π
4
)

sin
(
q2 +

π
2
)

− cos
(
2q1 +

π
4
)

0
sin
(
q2 +

π
2
)

cos
(
q2 +

π
2
)

0 0
0 0 0 1


The homogenous transformation matrices for the rest frames were found using

Equations (8)–(10) as they involved only serial links.
The homogenous transformation matrix that represents frame {8} with respect to frame

{0} was obtained by multiplying individual transformation matrices:

0
8T =

[
0
1T .12T2

3T .34T .45T .56T .67T7
8T
]
=


r11 r12 r13 Px
r21 r22 r23 Py
r31 r32 r33 Pz
0 0 0 1

 (11)

The equation obtained from this transformation matrix is known as the forward kine-
matic equation. With the joint variable of each joint (q1, q2, q3, q4, q5, q6 and q7), Equation (11)
gives the position and orientation of the end-effector frame (wearer’s hand) with respect to
the reference (base) frame.

3.1.4. Jacobian

The linear velocity vector of u-Rob’s end-effector frame (i.e., frame {8}) comprises
velocities along three Cartesian axes. In contrast, the rotational velocity vector contains
angular velocities around three Cartesian axes. From this velocity vector, the Jacobian
of u-Rob’s (i.e., J(q) is a 6 × 7 matrix) end-effector velocities was computed in MATLAB
(version R2018a, MathWorks, Natick, MA, USA) with respect to the end-effector frame. In
addition, the Jacobian was also calculated with respect to the base frame. Note that u-Rob
is a redundant manipulator; hence, its Jacobian is not a square matrix. Using Equation (12),
the pseudo-inverse of the Jacobian can be calculated [61]:

Jpseudo−inverse = JT(q)
(

J(q)JT(q)
)−1

(12)

3.2. Dynamics

The dynamic equations of u-Rob were derived from the iterative Newton–Euler
formulation as follows [58]:

τ = M(q)
..
q + V

(
q,

.
q
) .
q + G(q) + F

(
q,

.
q
)

(13)
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where M(q) is the 7× 7 mass matrix of the manipulator, V
(
q,

.
q
)

is a 7× 1 dimension vector
composed of centrifugal and Coriolis terms, and G(q) is a 7× 1 vector of gravity terms.
In addition, F

(
q,

.
q
)

is a 7 × 1 vector of nonlinear Coulomb friction and can be expressed
using the following relation with a coefficient of friction c. However, the M, V, G, and F
matrices are large and hence not included in this work.

F
(
q,

.
q
)
= c.sgn

( .
q
)

(14)

4. Control

To test the desired functionality of the developed exoskeleton robot, a simple PID
controller based on state feedback, as shown in Equation (15), was implemented in this
research. The trajectory of the exercise was controlled by manipulating the joint torque
computed by a PID controller:

τ = KPe + KV
.
e + KI

∫
edt (15)

where
e = qd − q,

.
e =

.
qd −

.
q,

KP, KV and KI are diagonal matrices for the proportional, derivative, and integral
gains, respectively.

qd,
.
qd ∈ R2×1 are the vectors of the desired joint positions and velocities.

q,
.
q ∈ R2×1 are the vectors of the actual/measured joint positions and velocities.

The stability of such a control system depends on the proper choice of proportional
(KP), integral (KI), and derivative gains (KV). The proper choice of these gains makes the
controller stable. In this research, the PID gains were set for u-Rob using trial and error.
The chosen gains used in the experiment were KP = diag(2200, 1800, 300, 300, 100, 150,
180), KI = diag (50, 40, 30, 25, 18, 15, 15), and KV = diag(20, 18, 16, 15, 10, 8, 7).

Joint-based control was implemented for the exoskeleton setup, as shown in Figure 15a,
while Cartesian-based control was implemented for the end-effector setup, as shown in
Figure 15b. As shown in Figure 15a, for the joint-based control, desired trajectory/states
(i.e., joint position and velocity) of the given exercise are sent to the controller. Based on the
error calculated from the desired states (i.e., position and velocity) and feedback (i.e., robot
joints’ actual position and velocity) obtained from the motor hall sensors, the controller
estimates the necessary torques. The torque values are then converted into motor currents
using appropriate torque constants. These current values are referred to as the desired
currents, which can then be regulated by a PI controller. This controller operates on the
error between the desired current and actual/measured current obtained from the current
monitors in the motor drivers. The measured current is refined using a second-order
filter. The natural frequency and damping ratio used in the filter were 25 rad/s and 0.85,
respectively. The estimated currents from the PI current controller are then converted into a
reference voltage. Finally, voltage commands are sent to the actuator to maneuver u-Rob’s
joints. On the other hand, for the Cartesian-based control, end-effector’s desired position
and velocity are converted into desired joint states (position and velocity) using the inverse
of the Jacobian and feedback (i.e., robot joints’ actual position and velocity) obtained from
the motor hall sensors. Then, the desired joint position and velocities are sent to a controller,
which estimates the torque and eventually sends voltage commands to the robot actuators.

The instrumentation for the control setup of u-Rob is shown in Figure 16. A host PC
and a PXI real-time target are the main elements of the electrical and electronic configuration
of the developed u-Rob rehabilitation system. The real-time target consists of a National
Instruments PXIe-8135 real-time controller (Industrial PC) with two PXI reconfigurable IO
(i.e., PXIe 6738 and PXIe 6254) cards with an embedded FPGA housed in a PXIe-1078 chassis,
a mainboard, seven motor driver cards, and actuators. All joint motors are equipped with
Hall sensors. The Hall sensors’ data were used to measure the positions of the robot joints.
The Hall sensor data was sampled every 100 µs.
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Figure 16. Schematic of the instrumentation for the control of u-Rob.

A graphical user interface (GUI) on the host PC was developed in LabVIEW (version
runtime 2019, National Instruments, Austin, TX, USA). The user can set the developed
exoskeleton robot’s home position and initial position and activate and deactivate the joint
motor in the GUI. It also lets the operator select the trajectory and type of functionality (i.e.,
joint-based or Cartesian-based exercise). The input via the user interface in the host PC is
sent to the PXIe real-time target, and after the completion of each trajectory run, the data
recorded in the PXI real-time target is sent back to the host PC via a file transfer protocol
for storage.
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5. Experiments and Results

The functionality of the developed u-Rob exoskeleton system was validated via
experiments. Both joint-based exercises and end-point exercises were conducted to validate
the exoskeleton-type and end-effector-type functionalities; the experimental setups for both
types are shown in Figure 17. The exercises used in the experiments were passive exercises
adapted from the recommended library of exercises from the standard rehabilitation
therapy protocol [62,63]. The exercises were transformed to a pre-defined trajectory using
a cubic polynomial approach for the robot to follow (Craig 2017). The experiment was
conducted with five healthy subjects (age: 28 ± 3 years, weight: 165 ± 30 lbs, height:
5 foot 5 inches ± 5 inches). The study was approved by the Institutional Review Board
(IRB#:19.064; study title: Experiment of the human natural range of motion with developed
robotic device for upper limb rehabilitation). The experiments were conducted for both
individual joint and multi-joint movements. To demonstrate the experimental results, plots
of the joint position vs. time, error between the reference and actual position, velocity vs.
time, and torque vs. time are presented. Moreover, force sensors’ data from one three-axis
force sensor instrumented at the wrist joint and three one-axis force sensors instrumented
with upper arm cuff are plotted. The red dotted line represents the reference (desired)
value for the position and velocity tracking, whereas the solid blue line represents the
actual value.
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5.1. Experimental Results for Joint-Based Exercises (Exoskeleton-Type Setup)

Experiments were conducted for all kinds of exercises with varying speeds. To avoid
redundancy, only three individual joint exercises are described in Sections 5.1.1–5.1.3 and
two multi-joint exercises are described in Sections 5.1.4 and 5.1.5. Furthermore, interaction
force plots are given only for individual-joint exercises.

5.1.1. Shoulder Abduction–Adduction Exercise

This repetitive exercise was initiated with all joints at the zero position, and then the
shoulder was abducted to 75◦ and returned to 0◦. After a second, the same movement was
repeated with a slower velocity. The result of the experiment is shown in Figure 18. From
the figure’s topmost plot, it is clearly seen that the actual position and reference position
almost overlapped, meaning the proposed exoskeleton robot followed the given (reference)
position. The maximum error for the position tracking was found to be 1.09◦, which shows
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the excellent tracking performance of the controller. The maximum velocities during the
first and second repetitions were 30 deg/s and 20 deg/s, respectively.

Micromachines 2021, 12, 870 23 of 32 
 

 

 
Figure 18. Individual joint exercise for shoulder abduction–adduction. 

The forces exerted by the subject at the wrist and upper arm are shown in Figure 19. 
The figure shows that the subject interacted mostly at the x- and y-axes of the end-effector. 
At the upper arm, most interactions happened in the positive y3-direction of the end-ef-
fector. These results demonstrate the interaction/resistance between the subject and the 
proposed exoskeleton robot. This resistance can be quantified and read on an appropriate 
scale to measure the user’s discomfort, arm stiffness, and so on. 

 
Figure 19. Subject’s forces during shoulder abduction and adduction. 

  

Figure 18. Individual joint exercise for shoulder abduction–adduction.

The forces exerted by the subject at the wrist and upper arm are shown in Figure 19.
The figure shows that the subject interacted mostly at the x- and y-axes of the end-effector.
At the upper arm, most interactions happened in the positive y3-direction of the end-
effector. These results demonstrate the interaction/resistance between the subject and the
proposed exoskeleton robot. This resistance can be quantified and read on an appropriate
scale to measure the user’s discomfort, arm stiffness, and so on.
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Figure 19. Subject’s forces during shoulder abduction and adduction.

5.1.2. Shoulder Vertical Flexion–Extension Exercise

This repetitive exercise was initiated with all joints at the zero position, and then
the shoulder was vertically flexed to 170◦ and returned to 0◦. The exercise was repeated



Micromachines 2021, 12, 870 22 of 30

with a slower velocity. The experimental results are shown in Figure 20. The maximum
error for the position tracking was found to be around 0.91◦, which shows the excellent
tracking performance of the controller. The maximum velocities during the first and second
repetitions were 60 deg/s and 45 deg/s, respectively. The force plots are shown in Figure 21.
It is seen that the subject mostly exerted forces along the x3-axis at the upper arm. The
force sensor interacted with the subject the most during the shoulder joint vertical flexion.

Micromachines 2021, 12, 870 24 of 32 
 

 

5.1.2. Shoulder Vertical Flexion–Extension Exercise 
This repetitive exercise was initiated with all joints at the zero position, and then the 

shoulder was vertically flexed to 170° and returned to 0°. The exercise was repeated with 
a slower velocity. The experimental results are shown in Figure 20. The maximum error 
for the position tracking was found to be around 0.91°, which shows the excellent tracking 
performance of the controller. The maximum velocities during the first and second repe-
titions were 60 deg/s and 45 deg/s, respectively. The force plots are shown in Figure 21. It 
is seen that the subject mostly exerted forces along the x3-axis at the upper arm. The force 
sensor interacted with the subject the most during the shoulder joint vertical flexion. 

 
Figure 20. Individual joint exercise for shoulder vertical flexion–extension. 

 
Figure 21. Subject’s forces during shoulder vertical flexion–extension.  

Figure 20. Individual joint exercise for shoulder vertical flexion–extension.

Micromachines 2021, 12, 870 24 of 32 
 

 

5.1.2. Shoulder Vertical Flexion–Extension Exercise 
This repetitive exercise was initiated with all joints at the zero position, and then the 

shoulder was vertically flexed to 170° and returned to 0°. The exercise was repeated with 
a slower velocity. The experimental results are shown in Figure 20. The maximum error 
for the position tracking was found to be around 0.91°, which shows the excellent tracking 
performance of the controller. The maximum velocities during the first and second repe-
titions were 60 deg/s and 45 deg/s, respectively. The force plots are shown in Figure 21. It 
is seen that the subject mostly exerted forces along the x3-axis at the upper arm. The force 
sensor interacted with the subject the most during the shoulder joint vertical flexion. 

 
Figure 20. Individual joint exercise for shoulder vertical flexion–extension. 

 
Figure 21. Subject’s forces during shoulder vertical flexion–extension.  Figure 21. Subject’s forces during shoulder vertical flexion–extension.

5.1.3. Wrist Flexion–Extension Exercise

This repetitive exercise was initiated with the elbow joint angle at a 90◦ angle and
maintained that position during the experiment. All other joints remained at the zero
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position. From the initial position, the wrist was extended to 55◦ and then flexed to 50◦.
The exercise ended with the wrist returned to the initial position. The trajectory tracking
results are shown in Figure 22. Once again, the error of the position tracking was observed
to be less than 1◦.
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5.1.4. Simultaneous Joint Movement of the Shoulder, Elbow, and Wrist

This exercise involved the simultaneous movement of all joints, except joint-7 (wrist
flexion–extension). It replicated a diagonal reaching movement that started moving from
an initial position (all joints were at 0◦ while the elbow was at a 90◦ position) to the
reaching position (abduction 15◦, vertical flexion 90◦, external rotation 45◦, elbow flexion
10◦, forearm pronation 45◦, and wrist ulnar deviation 15◦), and then returned to the initial
position. As observed from Figure 23, the results show that the developed exoskeleton
robot followed the reference trajectory. From the figure, it is seen that the position error for
all the joints remained below 2◦. The maximum error (1.85◦) was found for the elbow joint.

5.1.5. Diagonal Reaching Exercise

This diagonal reaching exercise comprised shoulder, elbow, and wrist joints move-
ments. The exercise was initiated with the elbow at 90◦. Then, the shoulder joint was
abducted from 0◦ to 45◦ and adducted back to 0◦ at the end of the exercise. The shoulder
was also vertically flexed from 0◦ to 90◦ and extended back to 0◦ at the end of the training.
During the movement of the shoulder, the elbow was extended to 90◦ and returned to 0◦.
In the meantime, the wrist was extended to 50◦ and returned to zero. The experimental
results are shown in Figure 24. The maximum error between the reference and actual
position was observed to be around 1.81◦ for joint 4.
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5.2. Experimental Results for End-Point Exercises (End-Effector-Type Setup)

To conduct end-point exercises with the developed u-Rob, Cartesian control was
used. In Cartesian control, the proposed exoskeleton robot was given the positions and
orientation of the end-effector. Using a cubic polynomial, these positions and orientations
were then transformed into end-effector Cartesian velocities. The inverse kinematic solution
was obtained for u-Rob with these velocities using an inverse Jacobian. The control
architecture of the Cartesian control is depicted in Figure 15. In the following subsections,
the experimental results of three reaching exercises are presented to show the end-effector-
type functionality of the developed u-Rob.
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5.2.1. Reaching Exercise in the Transverse Plane

In this exercise, while carrying the subject’s limb, the exoskeleton robot moved from a
point to another point in the transverse plane, as shown in Figure 25. The top plot shows
the position tracking of the end-effector in 3D space, whereas the bottom plots show the
Cartesian trajectory tracking of the exoskeleton in terms of the x, y, and z positions and the
corresponding tracking errors. This kind of motion resembled tasks like wiping a table.
The end-effector position was tracked nicely; the maximum error found was 1 cm, which
occurred in the y-axis.
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5.2.2. Forward Reaching in the Sagittal Plane

This kind of exercise is similar to pulling or pushing an object (e.g., opening a door).
The end-effector reached the target (blue marker) and then returned to the initial position.
The experimental results for this exercise are shown in Figure 26. The maximum error
(2.12 cm) was found in the x8-direction.
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5.2.3. A 3D Reaching Exercise

In this exercise, as shown in Figure 27, the end-effector reached a point (i.e., point-1) in
3D space from the start position. After that, it went to point-2. The result shows excellent
tracking with an error below 1.5 cm.

Looking at the results from all the experiments, it was concluded that the developed
u-Rob robot could function as both an exoskeleton-type and end-effector-type robot. Fur-
thermore, experimental results show that the PID controller could efficiently run u-Rob
with negligible tracking error to perform a variety of rehabilitation exercises involving
single-joint movement, multi-joint movements, and Cartesian-based movement. Thus,
u-Rob should be adequate for performing passive rehabilitation of an impaired upper limb.
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6. Conclusions

This research developed a seven-DoF upper limb rehabilitation robot that features
dual functionality, a novel sensorized upper arm cuff, and an ergonomic shoulder with a
movable center of rotation. A hybrid approach was used to obtain the kinematic equations
of the developed u-Rob. Safety was confirmed by designing the neighboring links to act as
mechanical stoppers and setting thresholds for the ROMs, velocities, and interaction forces
and torques. PID control algorithms were implemented to control the developed robot.
From the experimental results, it was observed that the tracking error remained significantly
low for both joint-based exercises and end-point exercises to validate the exoskeleton-type
and end-effector-type functionalities of the developed u-Rob. Potential future works
include developing a controller and experimenting with active rehabilitation exercises.

Author Contributions: Conceptualization, M.R.I. and M.H.R.; methodology, M.R.I. and M.H.R.;
software, M.R.I., M.A.-U.-Z. and M.H.R.; validation, M.R.I., I.W., B.B. and M.H.R.; formal analysis,
M.R.I. and M.H.R.; investigation, M.R.I., M.A.-U.-Z. and M.H.R.; resources, M.R.I. and M.H.R.;
writing—original draft preparation, M.R.I.; writing—review and editing, M.R.I., B.B., Y.B. and
M.H.R.; visualization, M.R.I.; supervision, M.H.R.; project administration, M.H.R. All authors have
read and agreed to the published version of the manuscript.
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