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Abstract: In recent years, optically trapped luminescent particles have emerged as a reliable probe
for contactless thermal sensing because of the dependence of their luminescence on environmental
conditions. Although the temperature effect in the optical trapping stability has not always been the
object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by
disturbances caused by temperature increments of even a few degrees in the Brownian motion that
may lead to the release of the particle from the trap. In this report, we summarize recent experimental
results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim
of providing the contemporary state of the art about temperature effects in the stability of potential
trapping processes.

Keywords: temperature; optical trapping; optical forces; Brownian motions

1. Introduction

Optical tweezers (OTs) have been revealed as a versatile tool that enable the manipula-
tion of micro- and nano-objects at the single particle level [1–5]. This non-contact technique
covers a wide range of fields, from material studies to single-cell manipulation [6–8]. In
a typical optical trapping experiment, a near-infrared laser beam is focused close to the
diffraction limit using a high numerical aperture lens. The laser beam exerts a net force
(combination of radiation pressure and gradient forces) on objects with a refractive index
larger than that of the surrounding medium. In such situations, there is an effective poten-
tial minimum near the laser focus that serves as a three-dimensional trap for the particle.
The stability of an optically trapped object is size-limited, and in the case of nanoparticles,
its reduced size leads to optical potential forces comparable to thermal energy [9,10]. On
paper, this fact limits their use above room temperature as a thermal probe, although there
are several examples in the literature which avoid this limitation [11–14].

For instance, with the development of nanophotonics, micro/nanoparticles have
emerged as a reliable probe for contactless thermal sensing [15–18]. Among all of them,
luminescent micro/nanothermometers have been highlighted due to the dependence
of their luminescence on environmental conditions. Although in most of the sensing
experiments the probes are incorporated without a true control on their localization, the
advances in optical manipulation techniques enable a single-particle incorporation into the
system under study and use it as a temperature-sensing entity along the volume under
investigation [3,19,20]. The aim of this review is to provide the contemporary state of the
art of the temperature effects in trapping processes, showing some relevant examples on
thermal sensing experiments by using single and dielectric micro/nanoparticles.

2. Forces on Optical Traps

As commented above, the existence of radiation pressure and gradient force enable
the trapping and manipulation of single objects at both the micro- and nanoscale. The
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mathematical treatment of optical forces enables us to evaluate the experimental conditions
for an optical trapping setup for a target particle to be stable, i.e., when the radiation-
derived forces are balanced for a given object size. The particle size parameter, ζ, establishes
the limits in which either the “classical” ray optics or polarizability-based regimes are
obeyed; therefore, theoretical force calculations facilitate the design of specific trapping
experiments in which the light properties are selected appropriately for the stable trapping
of a given target object. The value of ζ is proportional to the D/λ ratio, with D being the
particle effective diameter and λ being the light wavelength. When handling micro-objects
(Mie regime), ζ >>1 and the geometrical optics approach provides an acceptable route for
the evaluation of optical forces, as schematically shown in Figure 1a. For spherical particles
of refractive index np in the ray optics regime, the complete expressions for the scattering
and gradient forces that suffer the particle in a homogeneous and non-dispersive medium
with refractive index nm < np within a circularly polarized light are given by [21]:
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where Pi is the power of the ith ray and Ti and Ri are the polarization-dependent Fresnel
coefficients for transmission and reflection, respectively. θ̂i and r̂i are the incidence and
transmission angles and c is the speed of light in a vacuum. The dimensionless trapping effi-
ciencies Qgrad,i and Qscat,i account for the momentum transferring efficiency and determine
the trapping efficiency of a certain ray as:

Qtrap =
√

Q2
scat + Q2

grad (3)
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Figure 1. (a) Mie regime: schematic diagram of a trapped microparticle at the equilibrium position 
and off-center position. Orange arrows represent the restoring forces acting on the microparticle, 
and light rays are presented as black arrows (thicker rays stand for brighter rays). (b) Rayleigh re-
gime: schematic diagram of a trapped nanoparticle. Purple arrows represent the forces acting on the 
particle. 

When handling nano-objects (Rayleigh regime), ζ << 1, the distinction between the 
components of reflection, refraction and diffraction can be ignored. The perturbation of 
the incident wavefront is minimal; therefore, the particle can be viewed as an induced 
dipole that behaves according to simple electromagnetic laws (see schematic diagram in 
Figure 1b), and the scattering force is due to the absorption and reradiation of light by the 
dipole. The gradient force is that experienced by a dipole in an inhomogeneous electric 

Figure 1. (a) Mie regime: schematic diagram of a trapped microparticle at the equilibrium position
and off-center position. Orange arrows represent the restoring forces acting on the microparticle,
and light rays are presented as black arrows (thicker rays stand for brighter rays). (b) Rayleigh
regime: schematic diagram of a trapped nanoparticle. Purple arrows represent the forces acting on
the particle.

When handling nano-objects (Rayleigh regime), ζ << 1, the distinction between the
components of reflection, refraction and diffraction can be ignored. The perturbation of
the incident wavefront is minimal; therefore, the particle can be viewed as an induced
dipole that behaves according to simple electromagnetic laws (see schematic diagram
in Figure 1b), and the scattering force is due to the absorption and reradiation of light
by the dipole. The gradient force is that experienced by a dipole in an inhomogeneous
electric field (i.e., the focused laser beam). This force points in the direction of the gradient
electromagnetic field, attracting the object towards the optical trap center. The scattering
force points in the direction of propagation of the incident light and is proportional to
the light intensity. For a sphere of radius a trapped under a light with intensity I0, these
forces are:

Fscatt =
128π5a6

3λ4

(
I0n
c

)(
m2 − 1
m2 + 2

)2
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Fgrad =

(
2πa3

c

)(
m2 − 1
m2 + 2

)
∇I0 (5)

where m refers to relative refractive index of trapped particles to the medium, m = np/nm.
When the particle size is comparable to the trapping light wavelength, ζ∼1, a full

electromagnetic solution of the problem is required. The radiation forces are then evaluated
from the conservation of linear and angular momentum in the light–matter interaction
though the time-averaged Maxwell tensor, given for monochromatic radiation by:

T =
1
2

εmRe
[

Et ⊗ E∗t +
c2

n2 Bt ⊗ B∗t −
1
2

(
|Et|2 +

c2

n2 |Bt|2
)

I
]

(6)

where Et and Bt are the total (incident plus scattered) electric and magnetic fields, respec-
tively, and εm is the dielectric constant. I is the unit dyadic and ⊗ is the dyadic product.
Most objects that are useful or interesting in optical trapping, in practice, tend to fall into
this intermediate size range (0.1–10 λ), but as a practical matter, it can be difficult to work
with objects smaller than video microscope resolutions (~0.1 µm), although particles as
small as ~16 nm in diameter have successfully been trapped [22].

3. Force Calibration and Local Conditions Effects
3.1. Force Calibration Methods

Regardless of the particle size, the experimental calibration (i.e., transduction signal-to-
real unit conversion) of the optical forces is usually performed with different methodologies
that are traditionally divided into passive and dynamic methods. In passive methods,
the particle trajectory is recorded in a fixed trap, whereas dynamic methods rely on the
induction of a drag force on the trapped particle by a flowing medium κ

2πkB
. For in-

stance, for the measured trajectory of a trap object, its analysis can be performed under
different frameworks.

If one assumes that a position distribution obeys a Maxwell–Boltzmann functionality
under the harmonic trapping potential and that the equipartition-theorem is valid, the
potential analysis [23,24] and the equipartition methods are applicable, and they are
described as follows. In the first case, by fitting the statistical distribution of microparticle
positions p(X) to a Maxwell–Boltzmann probability distribution:

p(X) = p0 exp(−U/kBT) (7)

where kB is the Boltzmann constant and T is the absolute temperature. From this equa-
tion, the trap potential U can be evaluated without assuming harmonic behavior. In the
equipartition-theorem analysis, one assumes the potential is harmonic and with a trap
stiffness κ; hence:

〈U〉 = 1
2

κ〈(X− X0)
2〉 (8)

where X0 is the equilibrium position and the brackets stand for the ensemble averages.
According to the Boltzmann statistics, the probability of finding the particle in a certain
position when subjected to a harmonic potential well follows a Gaussian distribution:

p(X) =

(
κ

2πkB

)1/2
exp

[
−κ〈(X− X0)〉2

2kBT

]
(9)

The thermal fluctuations of a trapped object can then also be used to obtain the trap
stiffness through the equipartition theorem.

1
2

kBT =
1
2

κ〈(X− X0)〉2 (10)
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Thus, by measuring the mean squared displacement (MSD) of a trapped object, the
stiffness can be determined. To do this, all positions visited by the trapped particle for
a certain period of time must be measured with enough temporal and spatial resolution.
Alternatively, the decay time of the particle autocorrelation function [25,26] or the mean
square displacement analysis also provide trap stiffness and friction coefficients values.
More recent approaches are represented by maximum likelihood estimation analysis [27].

Certainly, the most frequent passive analysis is the power spectra method [28] that rest
on the Einstein–Ornstein–Uhlenbeck description of Brownian motion [29], which describes
the dynamics of a particle of mass m and temperature T in a harmonic potential by the
motion equation:

mX′′ (t) + κX + γX′(t) = (2kTγ)
1
2 ξ(t) (11)

where γ is the drag coefficient and ξ(t) is a stochastic or Langevin force of zero mean. In
most cases, the inertial term can be neglected, and the time-to-frequency Fourier-transform
of Equation (11) provides the power spectrum density (PSD) of the particle position in
the trap.

< ∆x2( f ) > =

(
2γkT

κ2

)
· f 2

c
f 2
c + f 2 (12)

where fc = κ/(2πγ) is the corner frequency, above which the motion is purely diffusive.
The Lorentzian fit of the PSD provides an exact value for the corner frequency, and the
PSD-based force can easily be given by:

< ∆F2( f ) >PSD = κ2< ∆x2( f ) > (13)

At this point, it should be mentioned that the solution of the complete set of Langevin
equations for a spherical particle in harmonic potentials enables distinguishing between
different timescales that determine the particle behavior (see in Figure 2): τp = m∗/γ,
τf = ρ f a2/η, τk = γ/κ. ρ f and η are the density and viscosity of the fluid, respectively, and
m∗ = m + m f is a modified mass influenced by hydrodynamics, where m f is the mass of
the displaced fluid [30,31]. The first two values are related to fluid vortex propagation and
inertial timescales, whereas τk measures the ratio between the Stokes friction coefficient
and the optical trap stiffness. For timescales much shorter than τk, the Brownian motion is
considered to be free, i.e., it is the perpetual and random movement of particles suspended
in a fluid. Normally, τp is smaller than τf , although τf could be larger or smaller than τk
depending on the magnitude of the trap stiffness. At a very short timescale (t� τp), the
Brownian motion of the particle is in the so-called ballistic regime, and is thus dominated
by the particle mass; therefore, MSD = (kBT/m∗)t2 . The particle movement is subjected
to the hydrodynamic memory effect of the liquid at an intermediate timescale (τp < t < τf ).
Finally, at a longer time scale (t > τf ) the Brownian motion is generally thought to be
governed by the particle diffusion coefficient D f , with MSD = 2D f t according to the
Einstein relation. At a longer timescale (t > τk), the optical trap is dominant, and the
MSD shows a plateau with MSD = 2kBT/κ [32], which would overlap with the diffusion
region (t > τf ) in some cases. Thanks to recent improvements in position detector and
time-resolved technologies, the direct observation of the ballistic-to-diffusive Brownian
motion transition for optically trapped particles in a liquid has been achieved [30,33,34].
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3.2. Effects of Local Conditions on Trapping Forces

However, most of these methods rely on the comfortable assumption that the medium
viscosity and/or trap local temperature are known. In viscoelastic media, at least, the
former situation is definitely not fulfilled, and the mechanical response of the (dense) media
has to be incorporated into the Langevin equation. Consequently, the calibration from the
evaluation of thermal fluctuations requires additional inputs. To overcome this difficulty,
Fischer and Berg-Sørensen [35] developed a calibration procedure based on the fluctuation
theorem, called the microrheology method, that combines the measurement of the thermal
motion of the trapped particle with its positional response against an oscillating stage
motion at different frequencies. The combination of this theorem with the analysis of both
thermal and mechanical response effects on the PSD enables extraction of the calibration
constant, the trap stiffness, and the viscoelastic properties of the surrounding media.
Other alternatives are also available, as the robust measurement of light momentum [36]
that bypasses the nonlinear effects in the harmonic potential model in which the other
calibration alternatives are sustained.

Although the trap stiffness, and thus the calibration of force measurement, do not
depend on the temperature but on many optomechanical details of the setup and the
size and shape of the trapped bead, the calibration constant extracted from most of these
methods assume a known friction factor, i.e., the particle size and viscosity are both
fixed. This is not the case in a heating trap, and differences in the calibration constant for
different acquisition methods have been observed [37]. On the one hand, the effect of the
temperature on the solvent has a direct influence on the microscale motion and the optical
trapping efficiencies; an established generalized protocol for determining temperature
increments in optical traps has not been reported to date. To that aim, luminescence
thermometry using molecular [38] and nanoprobes [6,39], non-absorbing particles [40],
Stokes shifts of fluorescence [41] or refractive index measurements [42] have been reported.
Some experimental routes aiming at both controlling the trap temperature or minimizing
the heating in the focal coordinate have been described. Among the first set of methods,
one can find the decoupling of trapping and heating lasers [43,44] or direct external
controls [45]. Shifting the wavelength of the trapping radiation or modulating the laser
power in femtosecond tweezers [43] or in counterpropagating setups [46] are also used.
Interestingly, laser-induced heating is the core of some research lines in which, for instance
the convection currents are employed to manipulate microparticles in the low-power
regime [47] or to enhance the trapping efficiency [48]. On the other hand, this effect is
outgrown when the trapped particles have an appreciable absorption cross-section at the
trapping wavelength and trap-heat decoupling is not possible because of a broad absorption
spectrum of the trapped object. Force calculations employing the aforementioned equations
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are strictly valid for non-absorbing particles; therefore, forces might be modified upon local
photothermal conversion upon photon absorption or by direct heating of the surrounding
media by an external source or by the laser-induced heating of the solvent itself just
commented. In such cases, convective fluxes become ever more non-negligible, and the
acute solvent viscosity gradient are imposing information for a proper description of
particle trapping. Overall, the problem might be understood in the theoretical framework
of a “hot Brownian motion”. In ref. [49], Rings et al. presented a method to account
for the temperature effect on the Brownian motion of an arbitrary yet spherical particle
by the introduction of an effective viscosity and particle size. Such an approach was
further developed for anisotropic particles [50] in which the laser polarization may induce
alignments or rotations.

4. Temperature Effect on Optical Trapping
4.1. Temperature Effect on the Optical Trapping of Microparticles

According to the description of Brownian motion in an optical trap in Figure 2, at a
longer timescale (t� τk), trapped particles are supposed to be confined within an area of
radius Rp ∼

√
2kBT/κ. When Rp is greater than the trap radius Rt, the trapping stability

is weak, whereas if Rp ≤ Rt, the trapping is efficient and particle manipulation can be
achieved. After transformation, 1

2 κR2
t ≥ kBT is obtained, i.e., the trapping potential or

work needed to release particles from the trap ( 1
2 κR2

t ) should be larger than the thermal
energy kBT, which can be used as a criterion for the stability of optical trapping.

Microparticles can be confined within a small area thanks to the relatively high values
of trapping stiffness. Some typical κ values for selected microparticles can be found in
Table 1. For example, for a microparticle with a diameter of 2 µm, the experimentally
measured trap stiffness is around 10 pN/µm. Considering a temperature rise from 293 K
to 353 K, Rp changes only from 28 to 31 nm (see in Table 2), which is much smaller
than the radius of conventional optical traps (i.e., the optical trap generated by a focused
980 nm laser beam using an objective 100× with 0.85 NA, Rt = 0.61λ/NA = 700 nm).
In these cases, the influence of thermal energy can be ignored; thus, the stable trapping
and manipulation of microparticle can be achieved even at high temperatures. As an
exemplification of the temperature effect on the Brownian motion of microparticles in a trap,
Brownian dynamics simulations at different temperatures were performed using Brownian
Disks Lab (BDL) software [32,51]. Brownian Disks Lab (BDL) is an open-source software
developed in Easy Java/Javascript Simulations(EjsS) [51] for the evaluation of trajectories
of two-dimensional Brownian disks under external forces by means of Brownian dynamics
simulations without hydrodynamic interactions [2] employing the Langevin formalism

Equation (11) in the overdamped formulation: X(t) = 1
γ (−κX + (2kBTγ)

1
2 ξ(t)). Setting

the diameter to 2 µm and the trap stiffness to 10 pN/µm, with different bath temperatures
(293 and 353 K) as input parameters, the probability density distributions from Brownian
simulations are shown in Figure 3a. As can clearly be observed, the temperature has little
effect on the distribution function of the trapped microparticle and on the calculated trap
stiffness (see in Table 2). In other words, even when the instantaneous velocity increases
when the temperature rises [52], the microparticle still moves in an area that is only slightly
expanded, and the trapping stability of microparticles is little affected by temperature.
From statistical grounds, the variance of the distribution enables evaluation of the trap
stiffness κ by using: σ2 = kBT

κ . The standard deviation of the distribution is proportional to
the square root of the temperature; therefore, temperature has little effect on the distribution
of trapped particles. In practice, light absorption by the surrounding medium or by the
trapped particle itself can lead to increments of the local temperatures in the trapping
volume of up to 40 ◦C [53,54]. This is the reason why the manipulation and assembly
of microparticles in fluids are widely used in optical force calibration and 3D scanning
thermal imaging by an optically trapped temperature probe [55,56].
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Table 1. Trap stiffness of different sizes of dielectric particles.

Material Medium Size (nm) Trap Stiffness 1

(pN/µm)
Reference

SiO2 water 2000 9.5 [22]
NaYF4:Er3+,Yb3+ water 2000 10 [19]
NaYF4:Er3+,Yb3+ water 2000 2.86 [56]
NaYF4:Er3+,Yb3+ water 257 0.8 [39]
NaYF4:Er3+,Yb3 water 26 0.1 [7]

QDs (CdSe/ZnS) water 26 0.16 [57]
SrF2:Ho3+,Yb3+ water 8 0.007 [22]
SrF2:Er3+,Yb3+ deuteroxide 8 0.033 [58]

1 Laser power set at 100 mW.
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Figure 3. The Brownian motion dynamic simulation results of microparticles and nanoparticles
at given trap stiffnesses and temperatures, which were generated by Brownian Disks Lab (BDL)
softwares. Temperature dependence of probability density distributions in the X coordinate extracted
from the motion of a single microparticle (a) or nanoparticle (b) under harmonic potentials. For the
microparticle, the diameter and trap stiffness were set to 2 µm and 10 pN/µm, respectively, whereas
for the nanoparticle, they were 10 nm and 0.01 pN/µm, respectively. The lines are non-linear fits
to Gaussian functions. (c) Comparison of simulated two-dimensional (2D) position distributions of
a single microparticle and nanoparticle optically trapped by the same focused laser beam. The red
circle indicates the spot size of the optical beam with a radius of 700 nm.
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Table 2. Statistical analysis of probability density distributions of a single 2 µm and 10 nm particle
along the X coordinate at different temperatures.

Temperature/K
Rp/nm σ/nm

Calculated Trap
Stiffness 1

κ/(pN/µm)

Probability of Being
Outside (−700, 700)

2 µm 10 nm 2 µm 10 nm 2 µm 10 nm 2 µm 10 nm

293 28 899 20.7 643 9.3 0.0098 ~0 27.6%
313 29 929 21.5 655 9.3 0.010 ~0 29.3%
333 30 959 23.2 686 8.5 0.0098 ~0 30.8%
353 31 987 23.6 693 8.4 0.010 ~0 31.2%

1 Obtained by fitting the statistical position distribution along the X coordinate (in Figure 3a,b) to a Maxwell–
Boltzmann probability distribution.

4.2. Temperature Effect on Optical Trapping of Nanoparticle

Traditional OT applied to the manipulation of nanosized objects, such as Rayleigh
nanoparticles and biomolecules, found some limitations, such as the fundamental limit
imposed by laser beam diffraction. The huge reduction in the trapping strength becomes
insufficient for the optical stabilization of nanoparticles that lead to an erratic Brownian
motion. Hence, nanoparticles cannot be confined within the trap volume with traditional
techniques, and it becomes a challenge to manipulate and trap nanoparticles stably even at
room temperature. For an 8 nm nanoparticle, the experimentally determined trap stiffness
is around 0.01 pN/µm (see Table 1). At room temperature Rp ∼ 900 nm, which surpasses
the radius of conventional optical traps (700 nm), indicating that at a longer timescale
(t� τk), the nanoparticle will escape from the trap. To explore the position distribution of a
nanoparticle in the trap volume, the same Brownian dynamics simulations were performed
by setting the trapped nanoparticle diameter to 10 nm and the trap stiffness to 0.01 pN/µm.
The probability density distributions of the trapped nano-object in the X coordinate at two
temperatures are presented in Figure 3b, and the comparison of the two-dimensional (2D)
trajectories of a single microparticle and nanoparticle in a trap can be found in Figure 3c.
Obviously, nanoparticles are allowed to diffuse in regions far beyond the trap volume (a
circle with a radius of 700 nm). A simple statistical analysis of the probability density distri-
butions of the X coordinate enables evaluation of the probability for a 10 nm nanoparticle to
escape from the simulated trap (see Table 2). At room temperature, this escaping probability
was calculated to be 27%, which is the main factor leading to the release of nanoparticles
from an optical trap. This probability intuitively increases with temperature, and conse-
quently, the thermal stability of optical trapping further decreases at higher temperature.
In addition, according to the Stokes–Einstein prediction [52], as the particle size decreases,
the Brownian velocity increases dramatically. Compared with trapping microparticles, the
instantaneous velocity of Brownian motion becomes a non-negligible factor during the
release of trapped nanoparticles, especially when the nanoparticles are close to the optical
trap boundary. This effect has been demonstrated in some of our previous experiments in
which the drag method was used to calibrate the optical force exerted on trapped 257 nm
nanoparticles at controlled temperatures ranging from 20 to 70 ◦C (see in Figure 4a). The
experimental trap stiffness as a function of the temperature presented a downward trend
(see in Figure 4b) because the drag force deviated the trapped nanoparticles from the trap
center to positions close to trap boundaries. Sometimes, even if the drag force is not enough
to release the particles, the nanoparticles will still escape from the trap with the assistance
of the Brownian motion velocity. Experiments have indeed demonstrated that the trapping
stability of nanoparticles is sensitive to temperature, as shown in Figure 4c,d: an 8 nm
nanoparticle escapes from the trap at temperatures around 30 ◦C, which proves again that
the temperature dependence of the Brownian motion velocity plays an important role in
the release of trapped nanoparticles. Therefore, for nanoparticles, the temperature has a
determinant effect on the trapping stability, and it becomes urgent to improve the trapping
forces and expand the application of optical trapping to the nanoscale. Considering the
disturbance induced by instantaneous velocity effects, the trapping potential should be



Micromachines 2021, 12, 954 9 of 13

much larger than thermal energy, as presented in ref. [59], the ratio of the trap energy to
the thermal energy should be 10 or greater for the nanoparticles to remain in the trap.
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Figure 4. (a) Optical force calibration of NaYF4:Er3+,Yb3+ nanoparticles with a diameter of 257 nm and
thickness of 143 nm at different temperatures evaluated with the drag method; (b) the experimentally
determined trap stiffness as a function of temperature, Reprinted with permission from ref. [39].
Copyright 2020 American Chemical Society. (c) Simulated average value of the 8 nm nanoparticle’s
mean displacement (in the X-Y plane) versus time for temperatures ranging from 0 ◦C to 100 ◦C
under a 980 nm laser beam focused by an objective of (100×, 0.85 NA); (d) experimentally determined
visible emission intensity of a trapped single 8 nm nanoparticle as a function of temperature. Here,
the luminescence of nanoparticle allows the determination of whether the nanoparticle is in the trap.
Modified from ref. [22]. Copyright 2021 Wiley-VCH GmbH, Weinheim.

In this sense, there are several effective approaches to enhance the optical forces in-
volved in the manipulation of Rayleigh particles [4,11,13,14,22,60–67]. According to the
expression of the gradient force in the Rayleigh regime, these methods can be divided
into two categories. One is based on the reduction in the optical trap volume, by using
nano-devices such as plasmonic tweezers [60–63], slot waveguides [14,65] and photonic
crystal resonators [13,64]. Within these methods, incident laser beams have been confined
within a small region well below the diffraction limit, exerting a sufficiently strong force to
manipulate the nano-objects. However, these procedures require complex nanofabrication
processes and setup customization; thus, they are not easy to implement for certain applica-
tions such as in biosensing, employing commercial equipment. Moreover, relatively bulky
and expensive optical elements such as high numerical aperture (NA) objective lenses
are required to optimize the optical force and limit the miniaturization and integration of
these devices. The reduction in the optical trap volume can also be achieved by using a
dielectric microsphere (or microcylinder) as a focusing lens [4,66–69]. A photonic nanojet
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(PNJ) is produced on the shadow side of the dielectric microsphere when it is illuminated
by a plane wave. A PNJ usually has a sub-diffraction-limit beam waist; therefore, the
optical gradient force near a PNJ is much stronger than in a beam focus originating from a
high-NA objective lens.

Another alternative is based on increasing the polarizability of nanoparticles, such as
a dipole interacting with an electromagnetic field [2]. Optical gradient force is proportional
to the magnitude of polarizability of nanoparticles in fluid. Most of the nanoparticles
used for optical trapping, such as upconverting nanoparticle, are dielectric particles with
low polarizability; therefore, the modification of surface charges or zeta-potential has a
direct influence on the polarizability of the nanoparticles. Therefore, it is an effective
method to improve optical force by modifying the nanoparticle surface [58,70] and/or
the surrounding medium [71–73]. Additionally, extensive doping with lanthanide ions in
up-converting nanoparticles is also a good route to enhance the permittivity and polariz-
ability of nanocrystals, leading to enhanced optical trapping forces by several orders of
magnitude [74].

5. Conclusions

Non-contact thermal sensing is now a tangible fact thanks to the joint development
of luminescent micro/nanoparticles and optical manipulation techniques such as optical
tweezers. A key feature that modulates the reliability of these results is not only the quality
of the micro/nano-probes, but also their intrinsic stability in the optical trap. In that sense,
small temperature changes in the optical trap may affect the micro/nanoparticle stability
and compromise the expected results. In this review, we have analyzed the potential
temperature effects in trapping processes, showing some relevant examples, and bypassing
alternatives. However, this point has only been considered recently, and there is still
room for improvements in both the engineering nanoprobes and in the trapping setups.
Contemporary advances in this field are providing not only direct applications requiring a
movable heat source (as in optical hyperthermia), but also new insights into the statistical
mechanics and the definition of temperature at the single particle level.
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