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Abstract: Resonant accelerometers are promising because of their wide dynamic range and long-
term stability. With quasi-digital frequency output, the outputs of resonant accelerometers are less
vulnerable to the noise from circuits and ambience. Differential structure is usually adopted in a
resonant accelerometer to achieve higher sensitivity to acceleration and to reduce common noise at
the same time. Ideally, a resonant accelerometer is only sensitive to external acceleration. However,
temperature has a great impact on resonant accelerometers, causing unexcepted frequency drift.
In order to cancel out the frequency drift caused by temperature change, an improved temperature
compensation method for differential vibrating accelerometers without additional temperature
sensors is presented in this paper. Experiment results demonstrate that the temperature sensitivity of
the prototype sensor is reduced from 43.16 ppm/◦C to 0.83 ppm/◦C within the temperature range of
−10 ◦C to 70 ◦C using the proposed method.

Keywords: resonant accelerometer; temperature compensation; difference

1. Introduction

Microelectromechanical systems (MEMS) accelerometers have been widely used in
many applications, such as mobile devices, gaming, automobile and healthcare [1,2] for its
advantages of small volume, light weight, low power consumption and low cost [3]. How-
ever, MEMS accelerometers still need further development for high precision applications,
such as inertial navigation, tilt measurement and geophysical measurements [4–9]. Among
various kinds of MEMS accelerometers, silicon resonant accelerometers are promising for
high sensitivity, large linear range, low bias instability and so on [10–13]. A silicon resonant
accelerometer converts external acceleration input into modulated frequency output as
the acceleration will change the stiffness of resonator. With frequency modulation output,
the signal is easy to measure and not vulnerable to the circuit noise [14,15].

To reduce common noise and improve the sensitivity to external acceleration, differ-
ential structure is often adopted. Ideally, the frequency of the resonator is only sensitive
to the external acceleration. However, the material of differential vibrating accelerom-
eters, normally single crystalline silicon, is temperature dependent, causing the device
to be sensitive to temperature as well [16,17]. Moreover, the temperature sensitivity of
the two resonators in an accelerometer may be different due to process and fabrication
tolerances. To improve the performance against temperature, two typical approaches are
explored. One way is to keep the temperature in the accelerometer stable with an inner
oven [18–21]. Salvia presented a real time temperature compensation for MEMS oscilla-
tors using an integrated oven, achieving a frequency stability of ±1 ppm from −20 ◦C to
+80 ◦C. Yang adopted a micro oven-control system to keep temperature in inertial sensors,
providing the temperature-induced root of sum of squares bias error 1.920 mg from −40 ◦C
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to 85 ◦C for three-axis accelerometers in their Invensense MPU-6050. Another way is to
remove the side effects caused by temperature change with thermal compensation [22–24].
In [22], an integrated temperature sensor is set to sense the temperature and the compensa-
tion algorithm is implemented in FPGA. The zero bias is reduced from 345 mg to 1.9 mg
over the temperature range from −10 ◦C to 80 ◦C. The work presented in [23] uses an
additional resonator to sense the temperature and the result is used to make temperature
compensation. Temperature is captured and a temperature compensation algorithm is
implemented to make electrostatic stiffness control to cancel out the side effects caused
by temperature change in [24], achieving about 100 times the improvement compared to
without compensation. In the first way, an oven is needed additionally, and a heating
controller as well. The heating controller and the oven form a closed loop for tempera-
ture, where the heating controller can sense the temperature and control the oven power,
making the temperature a constant, thus removing the side effects caused by temperature
change. An inner oven means not only a more complex system, but also higher power
consumption. The second way is a usual alternative method to cancel the thermal affection.
Aiming to compensate the impact of temperature fluctuation, a thermometer used to make
a real-time measurement of temperature and a compensation algorithm used to cancel
the side effect of temperature are required in the second method. The main drawback of
using a temperature sensor is that temperature measurement error and thermal lags are
inevitable. Besides the two typical methods mentioned above, there are some other novel
approaches proposed to improve performance. Behbahani et al. proposed a wafer-level
technique that can tune the frequency of axisymmetric resonators precisely and reduce the
frequency mismatches of a subset of the wafer’s resonators greatly [25]. An in situ bias
drift compensation by using multiple rate measurements derived from a single resonator
has been proved to be effective for reducing bias drifts caused by temperature in work [26].
These novel approaches are either in need of additional process steps or difficult to be
applied on MEMS resonant accelerometers.

To overcome the drawbacks mentioned above, we proposed an improved approach
called proportional difference to accomplish the thermal compensation in a differential
vibrating accelerometer with recognition of approximate linear drift in frequency caused
by temperature change.

2. Architecture and Temperature Sensitivity Analysis of the Sensor

The schematic of the accelerometer is shown in Figure 1. Two double-ended tune fork
resonators are connected to the proof mass through a pair of micro-lever force amplifiers
on each side. The two resonators are driven and sensed by parallel-plate capacitor at
two sides of the resonators. External acceleration will generate a force through the proof
mass. This force is applied on and amplified by the micro-lever, and then acts on the
resonator of each side, causing stiffness change of resonators and making their resonant
frequency change with the external acceleration. As the force direction is opposite for the
two resonators, a differential effect is achieved.

The device is fabricated using silicon-on-insulator (SOI) foundry process and vacuum
packaged by wafer-level package. Some parameters of the accelerometer are summarized
in the Table 1.
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Figure 1. Schematic of the accelerometer.

Table 1. Parameters of the accelerometer.

Parameter Value

Device thickness 40 µm
Length of CC resonant beam 400 µm
Width of CC resonant beam 6 µm
Gap of resonant beam 2 µm
Quality of proof mass 1.50 mg
Quality factor 15,600
Resonant frequency 1 (at 30 ◦C) 197.2495 kHz
Resonant frequency 2 (at 30 ◦C) 195.6092 kHz
Scale factor of resonator 1 512 Hz/g
Scale factor of resonator 2 508 Hz/g

The resonant frequency of the resonator is affected by temperature for many factors,
where the temperature sensitivity of elasticity is considered mainly responsible for tem-
perature drift in frequency in our accelerometer. In general, the elasticity of a material is
represented by the Young’s modulus (E). The change in Young’s modulus with tempera-
ture is designated as temperature coefficient of elasticity (TCE) and the expression of the
temperature-dependent Young’s modulus can be given by:

E = E(298.15K)
(

1− 6.382× 10−5∆T − 5.199× 10−9∆T2
)

(1)

The change of temperature will also lead to thermal expansion of the silicon, which
can be expressed by thermal expansion coefficient (TEC).

TEC(T) = −4× 10−12T2 + 8× 10−9T + 4.7× 10−7 (2)

The size of the resonant beam will change with temperature, which can be calculated by:

L(T) = L0 + L0(T − T0)•TEC(T) (3)

w(T) = w0 + w0(T − T0)•TEC(T) (4)

h(T) = h0 + h0(T − T0)•TEC(T) (5)
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where L is the length of the beam, w is the width of the beam and h is the height or thickness
of the beam. Then, the resonant frequency can be estimated as following with considering
of the effect caused by temperature.
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where E is Young’s modulus of the material, I. is moment of inertia, A is the cross-sectional
area of the beam, ρ is the material density. Both change in Young’s modulus and in geometry
with temperature can cause drift in resonant frequency. The sensitivity to temperature is
nearly−8 Hz/◦C due to the change of Young’s modulus with temperature and−0.1 Hz/◦C
for thermal expansion in geometry size. The temperature sensitivity caused by change of
Young’s modulus kE is also relative to the geometry as:

kE = kE(L0, w0, h0) +
β2
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(7)

According to Equation (7), the relative change in length of the resonator would make
the most change to temperature sensitivity, and the relative change in thickness would
make the least.

To get the characteristic of resonant frequency drift caused by temperature variations,
a finite element multiphysics (FEM) simulation was taken with COMSOL (COMSOL Lnc.,
Stockholm, Sweden). Figure 2 shows the result of the simulation. Over the temperature
from −40 ◦C to 80 ◦C, a linear approximation is fairly good over the range with a residual
norm no more than 0.44841 Hz, corresponding to 0.018 ppm/◦C, which is quite small.
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Figure 2. (a) frequency drift caused by Young’s modulus and thermal expansion with temperature
and linear approximation, (b) residual error between simulation and linear approximation.

3. Temperature Compensation
3.1. Temperature Model of Sensor and Method for Temperature Compensation

To improve the sensitivity to external acceleration of a MEMS resonant accelerome-
ter, differential frequency output is often adopted, which has the opposite sensitivity to
external acceleration, but the same direction sensitivity to temperature. The dependency of
frequency on temperature has an approximately linear relationship for single crystalline
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silicon in a large range as discussed before. So, the output frequency of the two differential
outputs may be expressed as follows with considering of the impact of temperature in
frequency drift of a MEMS resonant accelerometer based on differential output.

{ f1= f10+SF1a+k1T
f2= f20+SF2a+k2T (8)

SF1 > 0, SF2 < 0; k1 < 0, k2 < 0 (9)

where f1 and f2 are the resonant frequency of the resonators respectively, SF1, SF2 are the
scale factors for the resonators to the external acceleration and k1, k2 are the temperature
factors. The absolute value of scale factor SF1 and SF2 or temperature factor k1 and k2
are ideally equal to each other, but there may be some difference due to process devia-
tion and other reasons. To implement temperature compensation, this work proposed a
self-temperature compensation method called proportional difference without additional
temperature sensor. The main idea of the promoted approach can be formulated as

d f = f1 − α f2 = fb + (SF1 − αSF2)a + (k1 − αk2)T (10)

α =
k1

k2
(11)

fb = f10 − α f20 (12)

The impact on frequency drift caused by temperature can be cancelled by the propor-
tional difference of the two resonators within an accelerometer. α is called as temperature
difference-ratio in this paper, and it is always a positive value as k1, k2 have the same sign
in an accelerometer, ensuring SF1 − αSF2 be nonzero for the fact that SF1 and SF2 have
opposite signs to each other because of the opposite sensitivity to the external acceleration.
Without considering temperature compensation, the two resonant frequencies are made
different directly to achieve external acceleration. This conventional method is called direct
difference in this paper in contrast with the proposed approach.

3.2. Calibration of Temperature Difference Ratio

With the linear model, a self-calibration of temperature difference-ratio is proposed.
In a typical way, a set of output frequencies from both resonators at N different temperature
are recorded and linear fittings between frequencies and temperature are made to get the
parameter k1, k2 of the temperature model. In this process, a temperature chamber which
can keep and monitor the temperature precisely as expected is necessary. Manual operation
is required in most steps for the duration. This work proposed a simpler approach by
calculating the temperature difference ratio directly using the least squares method instead
of computing temperature factors of both resonators. For the zero-bias of the proposed
approach of thermal compensation:

f1(T)|a=0 = α f2(T)|a=0 + fb (13)

Because both α and fb are independent of the value of temperature, a group of
frequencies from the two resonators in different temperatures would be sufficient, which
means much more convenience and simplicity in operation.

f2(T1)|a=0
f2(T2)|a=0

...
f2(Tn)|a=0

1
1
...
1

×
(

α
fb

)
=


f1(T1)|a=0
f1(T2)|a=0

...
f1(Tn)|a=0

 (14)

then (
α
fb

)
= (AT A)

−1
AT B (15)
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where

A =


f2(T1)|a=0
f2(T2)|a=0

...
f2(Tn)|a=0

1
1
...
1

, B =


f1(T1)|a=0
f1(T2)|a=0

...
f1(Tn)|a=0

 (16)

With the proposed calibration method, equipment which can change temperature
meets the need. No additional temperature sensor is required to measure the temperature,
which means no error caused by temperature measurement error and thermal lags. In this
paper, a procedure of recording frequencies from the two channels during a process of
cooling down while keeping the external acceleration as zero is implemented to calculate α
and fb. Using the proposed approach, the process can be simplified as Figure 3b shows,
where little manual operation is needed.
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With the proposed calibration method, equipment which can change temperature 
meets the need. No additional temperature sensor is required to measure the temperature, 
which means no error caused by temperature measurement error and thermal lags. In this 
paper, a procedure of recording frequencies from the two channels during a process of 
cooling down while keeping the external acceleration as zero is implemented to calculate 𝛼 and 𝑓. Using the proposed approach, the process can be simplified as Figure 3b shows, 
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Figure 3. (a) Calibration of temperature factor. (b) Calibration of temperature difference ratio.

4. Experiments and Results
4.1. Experimental Setup

Each resonator is capacitively excited by an oscillator circuit. The photograph of
driving circuit and accelerometer is shown in Figure 4a and the schematic of the circuit is
shown in Figure 4b. A 10 V DC voltage is applied to provide bias, with a 5 mV AC voltage
applied across the electrodes of the parallel-plate capacitor to generate actuating force,
driving the resonator. TIA (Trans-Impedance Amplifier) converts the movement current to
voltage as the input of the oscillation loop. An AGC is used in every oscillation loop to
provide a stable amplitude of oscillation, aiming to reduce the phase noise and limit the
loop gain [27].
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Figure 4. (a) Photograph of driving circuit PCB (Printed Circuit Board) and packaged accelerometer. (b) Schematic of
driving circuit.

The device consisting of accelerometer and driving circuit was placed in the temper-
ature chamber with a thermometer monitoring the temperature. A DC (Direct Current)
power source was used to supply power for the device and two frequency counters
(Keysight 53230A, Keysight Technologies, Santa Rosa, CA, USA) were used to measure
the oscillating frequencies from the two differential resonators. The test platform and
temperature chamber are shown in Figure 5a,b, respectively.
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4.2. Results and Discussion

To prove the proposed approach of calibration, an experiment of getting temperature
factor k1, k2 and calculating temperature difference ratio by k1/k2 was performed as well.
The accelerometer was put in the temperature chamber, −10 ◦C to 70 ◦C with a 10 ◦C
step is set, and the frequency of the two resonators is recorded after two hours, when the
temperature becomes steady, to eliminate the thermal lag.

Then a linear fitting between frequency with temperature is made for each resonator,
as shown in Figure 6a,b. Results show that f1 has a sensitivity of −8.777 Hz/K and f2 is
−7.615 Hz/K.
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Then, an experiment of dynamic temperature ramp down has been performed and
the temperature difference ratio is calculated by proposed approach of calibration. After
the temperature reached to 70 ◦C, the target temperature was set to −10 ◦C. The output
frequency of both resonators was sampled at an interval of 50 ms and recorded as the
temperature dropped down. The temperature difference ratio was calculated using the
recorded frequencies from both resonators. The results of temperature difference ratio
calculated by the two methods are summarized in Table 2. The proposed approach is
proved to be effective according to the result by calculating with k1/k2.

Table 2. Calculated temperature difference ratio through the two method.

Temperature Factor 1 Temperature Factor 2 Temperature Difference
Ratio

k1/k2 −8.777 −7.615 0.867
proposed ~ ~ 0.878

To verify the approach of temperature compensation, another temperature ramp down
experiment was taken. In the experiment, the temperature difference-ratio calculated by
the proposed approach was used for compensation. The temperature is set to 70 ◦C for
a duration of 2 h. Then target temperature of the chamber was set as −10 ◦C, making
temperature cool down to −10 ◦C in about 6 h. The frequencies, measured by Keysight
53230A, of the two output signals were recorded at a time interval of 50 ms for the duration,
and the proportional difference proposed and direct difference were implemented with
the output frequencies, respectively. In Figure 6, resonator 1 and resonator 2 showed
43.16 ppm/◦C and 38.48 ppm/◦C drift without any temperature compensation, respec-
tively. A comparison between direct difference and proportional difference proposed is also
shown in Figure 7. The direct difference can reduce the drift to 5.26 ppm/◦C as it can offset
a part of side effects in frequency drift caused by temperature change, while the proposed
proportional difference can cancel out the impact of temperature the most and reduce the
drift to 0.83 ppm/◦C. Proportional difference performs much better than direct difference
because proportional difference copes with the differential outputs while considering the
effect of temperature and the fact that there may be differences of sensitivity to temperature
between the two resonators.
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Allan deviation anaysis is shown in Figure 8. with proportional difference imple-
mented. The long-term noise, which is mainly caused by the change of temperature,
is reduced the most. Compared with the frequency of a single resonator without any
temperature compensation, the two kinds of differential methods perform evidently better
at the start of about 10 s. The differential ouputs reduce the frequency drift caused by
temperature changes. Within time more than 100 s, the proportional difference evidently
reduces the noise in contrast to direct difference as proportional difference can cancel out
frequency drift to the greatest extent. As temperature changes over a large range for a long
time, the proportional difference performed the best by achieving the least drift.
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5. Conclusions and Future Work

This article proposed an improved temperature compensation approach called pro-
portional difference for accelerometers based on differential frequency modulation. A pa-
rameter named temperature difference ratio is used to cancelled the drift in the frequency
of the differential resonators caused by temperature. A method using the least squares
method is promoted to calculate the temperature difference ratio instead of measuring the
temperature factor of each resonator, which is simpler and is proved to be effective. The ap-
proach of temperature compensation called proportional difference performs better than
direct difference, which is usually used in accelerometers based on differential frequency
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modulation without considering the thermal impact, especially if there is a large difference
in sensitivity to temperature of both resonators. The nonlinearity between temperature and
bias drift over a large temperature range limits the performance of our approach. This may
be improved in future work by making an optimization design on MEMS accelerometer
and adding an oven controller which can tune the temperature in a small range.
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