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Abstract: Effects of carbon implantation (C-imp) on the contact characteristics of Ti/Ge contact were
investigated. The C-imp into Ti/Ge system was developed to reduce severe Fermi-level pinning
(FLP) and to improve the thermal stability of Ti/Ge contact. The current density (J)-voltage (V)
characteristics showed that the rectifying behavior of Ti/Ge contact into an Ohmic-like behavior
with C-imp. The lowering of Schottky barrier height (SBH) indicated that the C-imp could mitigate
FLP. In addition, it allows a lower specific contact resistivity (ρc) at the rapid thermal annealing
(RTA) temperatures in a range of 450–600 ◦C. A secondary ion mass spectrometry (SIMS) showed
that C-imp facilitates the dopant segregation at the interface. In addition, transmission electron
microscopy (TEM) and electron energy loss spectroscopy (EELS) mapping showed that after RTA at
600 ◦C, C-imp enhances the diffusion of Ge atoms into Ti layer at the interface of Ti/Ge. Thus, carbon
implantation into Ge substrate can effectively reduce FLP and improve contact characteristics.

Keywords: MS contact; fermi-level pinning; titanium; germanide; carbon; implantation

1. Introduction

As a channel material for the next-generation field-effect transistors (FETs), Germa-
nium (Ge) is considered a promising alternative to silicon (Si) owing to its higher carrier
mobility and the process compatibility with the advanced Si microfabrication. However,
the low-solid solubility and the high-diffusion coefficient of n-type dopants in Ge hinder
the realization of low specific contact resistivity (ρc) [1]. Moreover, Fermi-level pinning
(FLP) caused by the metal-induced gap states (MIGS) at the metal/Ge interface is another
problem to be solved [2–5]. FLP strongly occurs near the Ge valence band (Ev) and forces
the electron Schottky barrier height (e-SBH) above 0.5 eV irrespective of the metal work-
function [6]. Several approaches, including dopant segregation [7], dipole formation [8],
and surface treatment [9] were proposed to mitigate FLP phenomena. Recently, the use of
an ultra-thin insulator between the metal and Ge showed an effective reduction of FLP but
the degradation of ρc due to a high tunneling resistance [10–13]. The formation of metal
germanide can be another approach because the MIGS from metal dangling bond states in
germanide can lead to an FLP reduction [14,15].

Ion implantation is another approach to achieving low ρc and suppressing dopant-
diffusion behaviors. For example, Germanium implantation before silicidation induces
surface amorphization to aid an epitaxial regrowth on the semiconductor surface [16].
Carbon implantation (C-imp) has been introduced in Ni-silicide and Ni-germinide contacts
to reduce contact resistivity [17,18]. However, Ti/Ge contact with carbon implantation has
been rarely reported.

Here, we investigated the effects of C-imp on the FLP reduction of a Ti/Ge contact
and the related contact characteristics. Electrical characteristics were measured using the
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multiring-circular transmission line model (MR-CTLM) structure and Schottky barrier
diode (SBD). Physical and structural properties of Ti/Ge contact with C-imp were ana-
lyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM),
electron energy loss spectroscopy (EELS), and secondary ion mass spectrometry (SIMS).

2. Materials and Methods

N-type Ge wafers moderately doped with phosphorus (~1018 cm−3) were cleaned
in a 1:100 diluted HF (dHF) solution and deionized (DI) water to remove native oxide.
Subsequently, C+ ions were implanted into the Ge substrate at a dose of 1 × 1015 cm−2 and
an implantation energy of 10 keV. A reference sample without C-imp was also prepared.
A SBD of Ti/Ge structure and a MR-CTLM structure were fabricated on the Ge substrate
to characterize electrical properties. First, a 100 nm thick SiO2 was deposited to isolate
the contact holes using a plasma-enhanced chemical vapor deposition (PECVD). Then, the
metal contact was formed using the conventional photolithography process. Sequentially,
the oxide was etched using a dry etcher, and a Ti (5 nm)/TiN (5 nm) was deposited using a
DC sputtering system. After a metal lift-off process, rapid thermal annealing (RTA) was
performed in N2 ambient for 60 s at 450–600 ◦C. Finally, a 100 nm thick Al was deposited
as contact pad metal. The electrical measurements of current (I)–bias voltage (V) were
performed using Keithley 4200-SCS. TEM images of the Ti/Ge structure without and with
C-imp were obtained using a JEOL JEM 2200FS with an image Cs-corrector.

3. Results

Figure 1 shows the J-V characteristics of the Ti/Ge contacts with and without C-imp
at RTA temperatures in a range of 450–600 ◦C for 60 s in N2 ambient. The Ti/Ge contact
without C-imp shows a typical rectifying behavior attributed to a strong FLP near the Ev,
which leads to a significantly high e-SBH and reduces the reverse current density. On the
other hand, the Ti/Ge contact with C-imp shows an Ohmic-like behavior with relatively
high current density under the reverse regime, indicating the alleviation of FLP.
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Figure 1. J-V characteristics of the Ti/Ge contact (a) without and (b) with C-imp at RTA temperatures
in a range of 450–600 ◦C for 60 s in N2 ambient.

Figure 2a shows the extracted e-SBHs of the Ti/Ge contacts without (blue box) and with
(red box) C-imp after RTA at 550 ◦C and 600 ◦C, respectively, for 60 s in N2 ambient. The
e-SBHs were extracted from the current-temperature (I-T) curves in a range of 300–378 K.
The I-V relationship of a Schottky barrier diode is represented by [19]

I = AA∗T2e−q∅B/kT
(

eqV/nkT − 1
)
= IS1e−q∅B/kT

(
eqV/nkT − 1

)
= IS

(
eqV/nkT − 1

)
(1)
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where Is is the saturation current, A is the diode area, A* = 4πqk2m*/h3 = 120 (m*/m)
A/cm2·K2 Richardson’s constant, ΦB is the barrier height, and n is the ideality factor. For
V � kT/q Equation (1) can be written as follows:

ln
(

I/T2) = ln(AA∗)− q(∅B − V/n)/kT (2)

∅B =
V
n
− k

q
d
[
ln
(

I/T2)]
d(1/T)

=
V
n
− 2.3k

q
d
[
log
(

I/T2)]
d(1/T)

(3)
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Figure 2. (a) e-SBHs of the Ti/Ge contacts without (blue box) and with (red box) C-imp after RTA
at 550 ◦C and 600 ◦C for 60 s in N2 ambient, respectively. Schematics of energy band diagrams for
Ti/Ge contact (b) without and (c) with C-imp after RTA at 600 ◦C.

Therefore, the barrier height is calculated from the slope (=d[ln(I/T2)]/d(1/T)). The
bandgap and electron affinity in eV of Ge at 300 K are 0.66 and 4.0 eV, respectively. The
workfunction of Ti metals is about 4.3 eV. When Fermi level is pinned near Ev of Ge, ΦB of
~0.6 eV is calculated. If there is negligible FLP, ΦB of ~0.3 eV is obtained.

Without C-imp, the SBH of ~0.48 eV was obtained for both 550 ◦C and 600 ◦C RTA,
indicating the occurrence of FLP. In contrast, the SBH with C-imp was significantly reduced
from 0.31 eV at 550 ◦C to 0.27 eV at 600 ◦C.

Figure 2b,c show schematics of the energy band diagrams for Ti/Ge contacts. Without
C-imp, Fermi-level on the Ti side is pinned with the charge neutrality level (ECNL) due to
FLP [6].

Figure 3 shows a top-view SEM image of the fabricated MR-CTLM structure to extract
ρc and the sheet resistance beneath the metal (RS). The current flows through multiple
metal-semiconductor structures from the center region to the outer-circle region. From the
I-V curve of MR-CTLM, the total resistance (Rtot) is expressed as the sum of the effective
resistance (Reff) and the parasitic resistance (Rpr) as follows [20]:

Rtot = Re f f + Rpr (4)

Re f f =
Rs

2π ∑9
i=0

[
ln
(

ri + Sm

ri

)
+ Lt

(
1
ri
+

1
ri + Sm

)]
(5)

Rpr =
Rm

2π

[
∑9

i=1 ln
(

ri − Lt

ri − Ss + Lt

)]
(6)
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where r0~r9 are the inner radius of the serial CTLM. Sm and Ss are the spacing among metal
rings and dielectric rings, respectively. Lt is the transfer length. Ss = 10 µm, r0 = 50 µm, and
Sm, from 0.5 to 10 µm were defined using an i-line stepper. ρc was calculated from the Lt
(=
√

ρc/Rs) which was extracted by fitting a set of Rt-Sm data using Equations (4)–(6).
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Figure 3. Top-view SEM image of the fabricated MR-CTLM structure.

Figure 4 shows the extracted ρc values versus RTA temperature. ρc was obtained using
a MR-CTLM test structure [20]. A relatively high ρc value seems mainly because of the
low activation of a substrate doping concentration of ~1 × 1018 cm−3 [21,22]. After RTA
annealing at 600 ◦C, the ρc values of the Ti/Ge with and without C imp were 1.3 × 10−5

and 8.4 × 10−4 Ω·cm2, respectively. Owing to the FLP effect, the Ti/Ge contact without
C-imp shows ρc values higher than 1.0 × 10−4 Ω·cm2.

To further analyze the effect of C-imp on the Ti/Ge composition, TEM and SIMS were
conducted. The decrease of ρc is mainly attributed to the dopant segregation in the Ti/Ge
interface [23]. In particular, for the Ti/Ge contact with C-imp after RTA at 600 ◦C, a further
reduction of ρc is observed. These results can be expected by TiGex formation. The low
resistive C54-TiGex is formed at a temperature above 600 ◦C [24], which mitigates FLP and
improves the contact resistivity [14,15].

Figure 5a,b show SIMS profiles for Ti/Ge contacts without and with C-imp, re-
spectively. At the Ti/Ge interface with C-imp, the peak P concentration increases from
1.6 × 1018 cm−3 to 3.6 × 1018 cm−3, attributed to the dopant segregation facilitated by
carbon [18]. This dopant segregation can increase the tunneling current by reducing the
depletion thickness at the interface and lowering the contact resistivity.

To directly observe the microstructure of Ti/Ge contact, the cross-sectional TEM
images and the corresponding EELS were analyzed. The samples were prepared after RTA
at 600 ◦C for 60 s in N2 ambient, as shown in Figure 6. In EELS maps, a bright region
represents the area that the element of interest is abundant. With C-imp, Ge element is
considerably observed in the Ti layer (red box in Figure 6b). The diffused Ge reacts with
Ti and forms the Ti-germanide during the RTA process, which is beneficial to reduce the
contact resistivity [14,15]. These results show that the C-imp is a promising approach to
lower the contact resistivity in Ti/Ge contact by inducing the dopant segregation and Ge
diffusion into the Ti layer.



Micromachines 2022, 13, 108 5 of 7

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 7 
 

 

where r0~r9 are the inner radius of the serial CTLM. Sm and Ss are the spacing among metal 

rings and dielectric rings, respectively. Lt is the transfer length. Ss = 10 μm, r0 = 50 μm, and 

Sm, from 0.5 to 10 μm were defined using an i-line stepper. ρc was calculated from the Lt 

(= √𝜌𝑐/𝑅𝑠) which was extracted by fitting a set of Rt-Sm data using equation (4)–(6). 

 

Figure 3. Top-view SEM image of the fabricated MR-CTLM structure. 

Figure 4 shows the extracted ρc values versus RTA temperature. ρc was obtained us-

ing a MR-CTLM test structure [20]. A relatively high ρc value seems mainly because of the 

low activation of a substrate doping concentration of ~1 × 1018 cm−3 [21,22]. After RTA 

annealing at 600 °C, the ρc values of the Ti/Ge with and without C imp were 1.3 × 10−5 and 

8.4 × 10−4 Ω∙cm2, respectively. Owing to the FLP effect, the Ti/Ge contact without C-imp 

shows ρc values higher than 1.0 × 10−4 Ω∙cm2. 

 

Figure 4. ρc of the Ti/Ge contacts without (blue curve) and with (red curve) C-imp as a function of 

RTA temperatures ranging from 450 to 600 °C. 
Figure 4. ρc of the Ti/Ge contacts without (blue curve) and with (red curve) C-imp as a function of
RTA temperatures ranging from 450 to 600 ◦C.
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4. Conclusions

We investigated the electrical and material characteristics of a Ti/Ge contact with
C-imp. The current-voltage behavior shows that the carbon implantation changes the
Ti/Ge rectifying behavior into an Ohmic-like behavior above RTA at 450 ◦C. The extracted
Schottky barrier height was also decreased due to the mitigation of Fermi-level pinning.
The specific contact resistivity of the Ti/Ge contact with C-imp was significantly reduced by
approximately two orders of magnitude. Transmission electron microscopy and secondary
ion mass spectrometry showed that carbon element at the Ti/Ge interface facilitates the
dopant segregation and induces the diffusion of Ge into Ti layer. Therefore, the carbon
implantation is promising to improve the Ti/Ge contact properties for high-performance
Ge-FET applications.
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