Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies
Abstract
:1. Introduction
2. Experimental Setup and Conditions
2.1. Experimental Setup
2.2. Experimental Procedure and Conditions
3. Results
3.1. Complete Gas Removal Condition (Test One)
3.2. First Stage Irradiation (Test Two)
3.3. Second Stage Irradiation (Test Three)
4. Discussion
4.1. Complete Gas Removal Condition (Test One)
4.1.1. Gas Removal Using Two Stages of Irradiation
4.1.2. Air Column Break-Up Process
4.2. First Stage Irradiation (Test Two)
4.2.1. Air Column Removal
4.2.2. Effect of Physical Properties
4.3. Second Stage Irradiation (Test Two)
4.3.1. Oscillation and Movement of Break-Up Bubbles (Condition (a))
4.3.2. Moving and Unmoving of Bottom Bubbles: Condition (b) and (c)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Natural Frequency for a Gas Column
References
- Olim, M. Liquid-Phase Processing of Hydrophilic Features on a Silicon Wafer. J. Electrochem. Soc. 1997, 144, 4331–4335. [Google Scholar] [CrossRef]
- Spuller, M.T.; Hess, W.D. Incomplete wetting of nanoscale thin-film structures. J. Electrochem. Soc. 2003, 150, G476–G480. [Google Scholar] [CrossRef]
- Vereecke, G.; Xu, X.; Tsai, K.W.; Yang, H.; Armini, S.; Delande, T.; Doumen, G.; Kentie, F.; Shi, X.; Simms, I.; et al. Partial wetting of aqueous solutions on high aspect ratio nanopillars with hydrophilic surface finish. ECS J. Solid State Sci. Technol. 2014, 3, N3095–N3100. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar]
- Ha, J.; Kim, H.Y. Capillarity in soft porous solids. Annu. Rev. Fluid Mech. 2020, 52, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Daly, B.J. Numerical study of the effect of surface tension on interface instability. Phys. Fluids 1969, 12, 1340–1354. [Google Scholar] [CrossRef]
- Lin, Y.; Gordon, O.; Khan, M.R.; Vasquez, N.; Genzer, J.; Dickey, M.D. Vacuum filling of complex microchannels with liquid metal. Lab Chip 2017, 17, 3043–3050. [Google Scholar] [CrossRef] [PubMed]
- Horváth, B.; Kawakita, J.; Chikyow, T. Through silicon via filling methods with metal/polymer composite for three-dimensional LSI. Jpn. J. Appl. Phys. 2014, 53, 06JH01-1–06JH01-5. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Yang, Z.; Ye, G. Ink-bottle effect and pore size distribution of cementitious materials identified by pressurization–depressurization cycling mercury intrusion porosimetry. Materials 2019, 12, 1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.K.; Fuji, H.T.; Sato, Y.S.; Lee, C.W.; Yoo, S. High-speed TSV filling with molten solder. Microelectron. Eng. 2012, 89, 62–64. [Google Scholar] [CrossRef]
- Sanada, T.; Furuya, Y.; Muraki, S.; Watanabe, M. Observation of liquid infiltration process into closed-end holes by droplet train impingement. J. Fluid Sci. Technol. 2018, 13, JFST0012. [Google Scholar] [CrossRef]
- Furuya, Y.; Mizushima, Y.; Watanabe, M.; Sanada, T. Enhancement of Gas Discharge from a Closed End Hole by Using Acoustic Wave Irradiation. Jpn. J. Multiph. Flow 2020, 34, 111–117. [Google Scholar] [CrossRef]
- Oguz, H.N.; Prosperetti, A. The natural frequency of oscillation of gas bubbles in tubes. J. Acoust. Soc. Am. 1998, 103, 3301–3308. [Google Scholar] [CrossRef]
- Shirota, M.; Sanada, T.; Sato, A.; Watanabe, M. Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase. Phys. Fluids 2008, 20, 043301. [Google Scholar] [CrossRef]
- Furuya, Y.; Watanabe, M.; Sanada, T. A model for a gas column oscillation inside a hole by irradiating an acoustic wave. In Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference, San Francisco, CA, USA, 28 July–1 August 2019; p. V005T05A037. [Google Scholar]
d [mm] | h [mm] | Material | Contact Angle [°] | |
---|---|---|---|---|
Sample 1 | 1 | 10 | Acrylic | 75.6 |
Sample 2 | 0.5 | 5 | Acrylic | 75.6 |
Sample 3 | 1 | 10 | Glass | 43.0 |
Sample | Liquid | Irradiated Frequency [Hz] | |
---|---|---|---|
Test 1 | Sample 1 | Water | f1 = 600, f2 = 1000~1500 |
Test 2 | Sample 1, 2, 3 | Water, Ethanol | f = 400~2000 |
Test 3 | Sample 1 | Water | f = 1100 |
Model | Visualized | |
---|---|---|
Condition (a) | ||
Condition (b) | ||
Condition (c) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, Y.; Mizushima, Y.; Sanada, T. Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies. Micromachines 2022, 13, 109. https://doi.org/10.3390/mi13010109
Matsumoto Y, Mizushima Y, Sanada T. Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies. Micromachines. 2022; 13(1):109. https://doi.org/10.3390/mi13010109
Chicago/Turabian StyleMatsumoto, Yuta, Yuki Mizushima, and Toshiyuki Sanada. 2022. "Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies" Micromachines 13, no. 1: 109. https://doi.org/10.3390/mi13010109
APA StyleMatsumoto, Y., Mizushima, Y., & Sanada, T. (2022). Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies. Micromachines, 13(1), 109. https://doi.org/10.3390/mi13010109