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Abstract: In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated
passive device technology which comprises an asymmetrical spiral inductor and an interleaved array
capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of
layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for
coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the
asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0.
The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached
to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at
the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center
frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be
achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the
proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and
12.8 MHz for the transmission zero frequency, respectively.

Keywords: bandpass filter; asymmetrical spiral inductor; interleaved array capacitor; coarse-tuning;
fine-tuning

1. Introduction

Bandpass filters (BPFs), as a crucial part of radiofrequency (RF)/microwave systems,
are widely applied in wireless communication with multiple functions. However, BPFs
face ongoing challenges in terms of achieving better efficacy, including higher performance,
more compact size, and more flexible tuning [1–4]. Among these demands, the significance
of the first two aspects has been fully discussed in numerous papers, whereas excellent
tunability, which can facilitate BPFs in frequency selection under diverse operation envi-
ronments, is playing an increasingly vital role. Therefore, the design of BPFs with a high
performance, small size, and excellent tunability is the target of our research work.

There have been various schemes reported aiming to develop such a BPF with excellent
tunability. Tuning of the center frequency and bandwidth has been widely researched in
recent studies [5–7]. In [5,6], substrate-integrated waveguide (SIW) cavities with E-shaped
slots and a cantilever-based RF micro-electromechanical system (MEMS) switched capacitor
were applied, through which center frequency tuning was successfully realized. In [7], a
compact quad-band utilizing multi-stub-loaded resonators (SLRs) was proposed. With
four controllable modes and multiple coupling paths between different stubs, passband
frequency tuning and bandwidth tuning can be accomplished. Nevertheless, there have
been relatively few efforts devoted to the tunability of both the center frequency and
transmission zero frequency. Moreover, the majority of studies to date tended to focus on
wide-tuning [8–14], whereas few studies have contributed to fine-tuning. In [8,9], p-i-n
diodes as tuning elements were used in a switched tunable diplexer and a cross-shaped
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resonator with open stubs, separately. In [10,11], a BPF based on even–odd mode theory
and microstrip technology was developed, in which varactor diodes were applied for a
wide tuning range. Additionally, some other methods have also been utilized in the field
of wide-tuning, such as ferroelectric capacitors with tunable CSRR scatterers [12], a dual-
band, dual-mode SIW balanced BPF tuned by vias and slot perturbations [13], and tunable
coaxial cavity resonator-based filters by altering the volume of Galinstan [14]. Nevertheless,
these tuning schemes possess some inevitable shortcomings, including relatively high
insertion loss (IL) [8,9,11–13], poor out-of-band rejection and upper stopband [10], high
cost and cumbersome process [14], and a large interval between two tuning values, in
particular [8–14]. To further make the tuning value more accurate, a novel microfluidic
tunable differential BPF with a precisely tunable center frequency has been proposed [15].
By inserting microfluidic channels which are padded with a high-dielectric constant fluid,
frequency tuning states can be appropriately controlled. However, their relatively large
circuit area and complex fine-tuning modes may confine their applications in modern
integrated circuits. Recently, some researchers have been dedicated to BPF implementation
utilizing the integrated passive device (IPD) process. IPDs are a promising fabrication
technology that strongly promote the minimization of device size and effectively optimize
the device performance. In [16,17], a GaAs-based BPF with air bridge structures using IPD
technology was proposed with a miniaturized chip size and high-performance characteris-
tics. Moreover, tunability of both the center frequency and transmission zero frequency
can be realized by altering the number of turns of the capacitor and the line space of the
inductor, respectively. Nevertheless, both of them are still confronted with the dilemma of
fine-tuning realization.

In this work, we developed a tunable BPF using GaAs-based IPD technology with
two tuning modes—coarse-tuning and fine-tuning. The proposed BPF is the combination
of an asymmetrical spiral inductor and an interleaved array capacitor. To realize the two
tuning modes, we chose to alter the capacitance to control the coarse-tuning and fine-tuning
of the center frequency and transmission zero frequency. Multiple methods for altering
the capacitance were compared and tested, and, ultimately, two of the most effective
tuning modes were found and built. Additionally, an equivalent circuit was constructed
for the BPF model, and the processing technology was briefly discussed and applied to
obtain a higher yield. Furthermore, the fabricated BPF chip was assembled on a sub-board
PCB through Au wire bonding technology for practical measurement and performance
evaluation. Finally, compared with other BPFs, our BPF demonstrates its superiority in
tunability including coarse-tunability and fine-tunability.

2. Design and Analysis
2.1. BPF Design and Processing

As demonstrated in Figure 1a, the proposed BPF is composed of an asymmetrical
spiral inductor and an interleaved array capacitor, which maintains a compact area of
800 × 988 µm. The inductor was fabricated using 5-turn intertwined meander lines with
a line width of 15 µm, line space of 15 µm, inner diameter of 275 µm, and outer diameter
of 425 µm. Five air bridges were applied to the inductor to obtain a higher Q-factor and
ensure connection. An enlarged 3D structure of the air bridge is provided in Figure 1a-ii,
where the top metal layer is marked in purple, while the bottom metal layer is marked in
yellow, with the SiN3 protection layer and the seed metal layer in the middle. In addition,
to further observe the actual structure of the proposed BPF, an image of an enlarged air
bridge section taken by a scanning electron microscope (SEM) is shown in Figure 1a-iii, and
a cross-sectional image by focused ion beam (FIB) with an air bridge gap of 1.8 µm and a
top metal thickness of 5 µm is shown in Figure 1a-iv. In this work, a 0.2 µm SiN3 protection
layer was designed to protect the bottom metal surface and sidewall from air oxidation,
and a 0.3 µm SiN3 passivation layer was developed to protect the whole device from air
oxidation and physical scratch. Moreover, the second Ti/Au seed metal was utilized for
subsequent electroplating of the top metal. After electroplating, the excess seed metal was
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etched by the reactive ion etching (RIE) method to prevent short circuits. Nevertheless,
due to the limited opening depth of FIB, the first seed metal is not displayed in the image.
Moreover, the interleaved array capacitor contains 49 GaAs substrate metal spheres (GSMS);
a magnified view is provided in Figure 1a-v, with a 15 µm radius on 30 µm center intervals.

Figure 1. (a) Detailed information of proposed BPF: (a-i) 3D structure of the proposed BPF, (a-ii)
magnified view of air bridge, (a-iii) SEM image of air bridge section, (a-iv) FIB image of air bridge
section, (a-v) enlarged view of GSMS. (b) AFM images of fabricated BPF: (b-i) original bottom metal
without Ar sputter etching process, (b-ii) current bottom metal with Ar sputter etching process, (b-iii)
original seed metal without Ar sputter etching process, (b-iv) current seed metal with Ar sputter
etching process.

During processing, insufficient adhesion between the bottom metal layer and the top
metal layer triggers the peel-off issue of the top metal, which will reduce the fabrication
yield. Therefore, appropriate processing technology was utilized to enhance the adhesion in
the effective area. We provide two reasonable assumptions: (1) there is insufficient adhesion
between the bottom metal and the second seed metal; (2) there is insufficient adhesion
between the second seed metal and the top metal. Figure 1b presents the AFM images
of distinct metal layers, where the Ar sputter etching process was tested to cope with the
peel-off issue. It was found that the root mean square (RMS) of the bottom metal increased
from 12.64 to 14.98 nm, whereas the increase in the seed metal RMS was not significant.
Additionally, a higher RMS value reflects a metal surface with a higher roughness; therefore,
adhesion can be enhanced [18], and the peel-off issue can be ameliorated using the Ar
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sputter etching process on the bottom metal layer. Meanwhile, a lower metal peak value was
achieved, which effectively reduces the risk of short circuits in the following metal process.

2.2. Tuning, Modeling, and Simulation

The asymmetrical spiral inductor is modeled and simulated in Figure 2a, where the
inductance and Q-factor can be determined using 3D EM simulation by

Inductance =
imagZ11

2× π × f req
(1)

Q− f actorL =
imagZ11

realZ11
(2)Micromachines 2022, 13, x FOR PEER REVIEW 5 of 15 
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Figure 2. (a) Simulated inductance and Q-factor of the asymmetrical spiral inductor. (b) Simulated
Q-factor of the capacitor with semi-GSMS and without semi-GSMS.

It can be seen in the figure that the Q-factor of the inductor peaks at 1.52 GHz, where
the related inductance is 10.60 nH. Nevertheless, to maintain a compact chip size, a trade-off
should be established among the inductance, the Q-factor, and the self-resonant frequency.
In this work, the center frequency of 2.147 GHz was employed, which can be coarse-
tuned and fine-tuned by altering the capacitor. The interleaved array capacitor consists
of two rectangular parallel plates and a staggered GSMS array, which is composed of
49 GSMS. Additionally, 6 semi-GSMS were designed and attached to each plate to improve
the Q-factor of the capacitor. Figure 2b presents the simulated Q-factor of two diverse
capacitors with and without semi-GSMS. It was found that the Q-factor of the capacitor
with semi-GSMS is higher than that of the capacitor without semi-GSMS at the operating
frequency of 2.147 GHz, contributing to the improvement in the Q-factor of the resonant
circuit and enhancement of the insertion loss performance [19,20]. This could be attributed
to electromagnetic effects between semi-GSMS and GSMS. The calculation formula of the
capacitor is given as [21]

Q− f actorC =
imagY11

realY11
(3)

Figure 3a demonstrates a 2D top view of the interleaved array capacitor. The staggered
GSMS array is divided into 2 arrays for equivalent circuit analysis, which are distinguished
by two different colors. The equivalent circuit model of the proposed capacitor is illustrated
in Figure 3b. Here, Cplate stands for the capacitance between the plates and arrays, Carray1,2
represents the capacitance of the staggered GSMS array with the leakage conductance of
Garray1,2, Cground denotes the capacitance effect caused by the direct magnetic flux from the
signal electrode to the grounding electrode of the interleaved array capacitor, and Cmutual is
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the inductive capacitance formed by the two arrays. The total equivalent capacitance is the
equivalent capacitance formed by the interaction of the above four capacitances.

Figure 3. (a) Top view of the interleaved array capacitor and (b) its equivalent circuit model.

In order to obtain an excellent tunable performance for our proposed BPF, including
excellent coarse-tuning and fine-tuning performance, the capacitor was designed to meet
the demand for small- and large-range variation. The center frequency and transmission
zero frequency of the BPF are controlled by adjusting the capacitance. Therefore, we tested
the effects of a series of diverse arrangement modes, center intervals, radii, and numbers of
GSMS on the capacitance parameters and finally obtained the two most effective tuning
modes, corresponding to coarse-tuning and fine-tuning. For the large-range variation in the
capacitance, we altered the number of layers of the staggered GSMS array and expanded the
GSMS radius of odd layers to 1.81 times that of the original. For the small-range variation
in the capacitance, we expanded the GSMS radius of the odd layers to 1.70~1.81 times
that of the original while keeping the same number of layers, as shown in Figures 4 and 5.
Figure 4a demonstrates the 3D structures of the capacitor with GSMS of various layers of 1,
3, 5, 7, and 9, corresponding to the numbers of GSMS of 5, 16, 27, 38, and 49, respectively.
The related capacitance can be calculated by

Capacitance =
imagY11

2× π × f req
(4)

Figure 4. (a) Three-dimensional structure of the proposed capacitor with 1-layer, 3-layer, 5-layer,
7-layer, and 9-layer GSMS, as well as their corresponding (b) capacitance performances.
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Figure 5. (a) Three-dimensional structure of the proposed capacitor with 1.70-, 1.72-, 1.73-, 1.74-, 1.76-,
1.78-, 1.80-, and 1.81-radius GSMS, as well as their corresponding (b) capacitance performances.

Therefore, the capacitance performance was simulated as illustrated in Figure 4b. It
can be seen in Figure 4 that variation from 0.071 to 0.106 pF for the capacitance can be
achieved while changing the number of layers of the staggered GSMS array. As shown in
the figure, the capacitance decreases more slowly when the number of layers is increased
from 1 to 9, which can be attributed to the difference in 1/d (d denotes the distance between
the parallel plates) between the two adjustment decreases. Meanwhile, Figure 5a provides a
3D view of the proposed capacitor with 9-layer GSMS of diverse radii of 1.70, 1.72, 1.73, 1.74,
1.76, 1.78, 1.80, and 1.81 times the original, and the corresponding capacitance performance
is exhibited in Figure 5b. Note that, for the small-range variation, a total of 8 * 5 = 40 groups
of capacitances were simulated, while Figure 5 depicts the capacitance performance based
on 9-layer GSMS (1 * 8 = 8 groups in total). Moreover, an average variation of 0.0015 pF can
be achieved for the sake of small-range variation. These results prove that our proposed
capacitor possesses excellent wide-range variation capacity for BPF coarse-tuning and
accurate regulation ability for BPF fine-tuning.

2.3. BPF Equivalent Circuit

Figure 6 demonstrates the equivalent circuit model of the proposed BPF. To simplify the
analysis, the equivalent circuit model is divided into three parts: inductance, capacitance,
and substrate loss, which are shown with distinct colors. The equivalent circuit analysis of
the interleaved array capacitor is fully discussed above, and thus we focus on the equivalent
circuit of the inductance and substrate loss in this section.

Figure 6. Equivalent circuit of the proposed BPF.
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For the spiral inductance, it can be approximately equivalent to the circular inductance
for calculation. In [22], it was calculated by the following formula

L = 6.28n2Dav

(
20ρ2 − 100lnρ + 90.02

)
(nH) (5)

where n stands for the number of turns, ρ represents the fill ratio, and Dav denotes the
average diameter of the inductor, which can be calculated using

ρ =
Do − Di
Do + Di

(6)

Dav =
1
2
(Do + Di) (7)

where Do is the outside diameter of the inductor, and Di is the inside diameter of the
inductor. In the figure, Lab and Cab stand for the inductance and capacitance of air bridges,
respectively. As for the substrate loss, the proposed BPF generates various parasitic ef-
fects at high frequencies owing to its multilayer structure [23]. The parasitic capacitance
formed between the planar pattern and the lossy substrate is represented by Cox and was
determined by [17].

Cox =
1
2

lW
εSiN3

tSiN3
(8)

where l represents the total circle length, W stands for the conductor width, and εSiN3 and
tSiN3 denote the permittivity and thickness of the SiN3 layer, respectively. Meanwhile, the
resistance and inductance of the GaAs substrate [24] are also taken into account, which
take the form of Rsub and Csub and can be derived as [25,26]

Rsub =
2

lWG0
(9)

Csub =
1
2

lWC0 (10)

where C0 and G0 are the capacitance and conductance per unit area of the GaAs substrate,
respectively. Therefore, after analyzing the equivalent circuit model of the capacitance,
inductance, and substrate loss, the resonant frequency of the BPF can be calculated accord-
ingly. Based on a low-order resonator, the BPF can be simplified as a combination of an
inductance and a capacitance, and thus the resonant frequency (center frequency) f0 can be
obtained by the following formula:

f0 =
1

2π
√

LTCT
(11)

where LT and CT denote the total inductance and capacitance, respectively. Moreover, the
frequency of transmission zero can be calculated using [27]

ω0 = ωmid
Ωc × FBW +

√
(Ωc × FBW)2 + 4

2
(12)

where ωmid and Ωc represent the mid-band frequency and passband cut-off frequency of
the higher-frequency area, respectively, and FBW indicates the fractional bandwidth, which
can be calculated by

FBW =
ω2 −ω1

ω0
(13)

ω0 =
√
(ω1ω2) (14)
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where ω0 is the operation frequency, and ω2 and ω1 are the passband edge angular frequen-
cies. Therefore, based on the design of the above BPF, the capacitance CT can be altered
flexibly, in order to realize tunable parameters and the desired performance of the BPF.

3. Results and Discussion
3.1. Measurement Preparation and Setup

The proposed BPF was designed and simulated using Advanced Design System (ADS)
2020 and then manufactured and assembled for practical measurement and data recording.
The filter was designed on a GaAs substrate with a dielectric constant of 12.85, loss tangent
of 0.006, and thickness of 200 µm. The performance and parameters of the BPF were
measured using an Agilent 8510C vector network analyzer (VNA). Figure 7a provides a
picture of the measuring instrument VNA, and an image of the BPF assembly is shown in
Figure 7b, where the wire-bonded BPF is installed on a sub-board PCB and then attached
on a die sink composed of an iron cube. As an additional and expanded grounding, the
iron cube has an effect on reducing loss. Furthermore, in order to connect the BPF chip
with the PCB, approximately 400 µm-length Au bonding wire with excellent transmission
performance was applied in this work, which is shown in Figure 7c. Meanwhile, a micro-
scope image of our fabricated BPF is displayed in Figure 7d. Then, to further make the
simulation accord with the actual condition, Figure 7e shows the ADS schematic diagram
simulation considering the bonding wire, which is equivalent to a 0.66 nH inductor, and
a 50 Ω impedance matching transmission line which is connected to an input/output
port. In the measurement, the 200 µm bonding wire is equivalent to a 0.33 nH inductor.
Therefore, a 0.66 nH inductor corresponding to approximately 400 µm Au bonding wire
was implemented in the re-simulation. Since the PCB was applied to carry chips and
actually be measured, the performance of the PCB is also critical.

Figure 7. (a) Image of the measuring instrument VNA, (b) image of the PCB connected to an iron
cube with a mounted BPF chip, (c) enlarged view of the BPF chip with bonding wire, (d) microscope
image of the proposed BPF, and (e) re-simulation schematic with bonding wire.

3.2. PCB Design, Simulation, and Measurement

A 3D view of our proposed sub-board PCB is presented in Figure 8a, and an actual PCB
image is shown in the inset image. The substrate used in the PCB artwork is RT/Duriod
5870 with a dielectric constant of 3.5, loss tangent of 0.0018, thickness of 1.27 mm, and
total dimensions of 20 × 20 mm. A total of 120 conductor vias with a radius of 0.3 mm
and a center interval of 1 mm are distributed on both sides of the feedlines for the sake of
microwave constraint and loss reduction. Additionally, four conductor holes with a radius
of 1.25 mm were designed on the four corners of the PCB board for the screw installation
and to further fix the device under test. The BPF chip, installed on the PCB board with
conductive paste, is connected to the feedlines with Au bonding wire. Additionally, a
conductor hole is grounded under the BPF chip to further ensure the ground connection. To
prove the proposed PCB has minuscule signal loss when transmitting microwave signals,
we connected two feedlines to form a pathway, as shown in Figure 8b. The simulation
and measurement results are illustrated in Figure 8b. It is evident from the graph that in
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the frequency range from 45 MHz to 10 GHz, both the simulated and measured return
losses are less than −12.16 dB, and the insertion loss is exceedingly close to 0 dB. There is
a fluctuation in the insertion loss at 6.86 GHz, which can be attributed to calibration and
welding errors. The results successfully prove that our designed PCB possesses excellent
transmission performance; thus, it can be applied to carry the BPF chip.

Figure 8. (a) Three-dimensional structure of PCB artwork with on-board chip. (b) Simulated and
measured S-parameter of the PCB with connected feedline.

3.3. Measurement Preparation and Setup

To prove the feasibility of coarse-tuning and fine-tuning of our proposed BPF, a
staggered-array capacitor with GSMS of various layers and radii was designed and simu-
lated to further test and verify the BPF’s performance. In order to realize the function of
coarse-tuning, we simulated the capacitor with GSMS of various layers of 1, 3, 5, 7, and
9, corresponding to the numbers of GSMS of 5, 16, 27, 38, and 49, respectively. Based on
coarse-tuning, for the same layers of GSMS, we altered the radius to be 1.70, 1.72, 1.73, 1.74,
1.76, 1.78, 1.8, and 1.81 times that of the original GSMS to achieve fine-tuning. As depicted
in Figure 9, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero
frequency from 4.721 to 5.225 GHz can be achieved, validating the proposed BPF design’s
effectiveness in coarse-tuning. Figure 10a shows the center frequency can be tuned more
accurately within the coarse-tuning range of 1.956 to 2.147 GHz by changing the radii of
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GSMS. Lines of different colors correspond to different coarse-tuning states, while different
points on lines of the same color represent different fine-tuning states. Therefore, there
are 40 different fine-tuning states of the center frequency in the figure, which effectively
verifies the practicable fine-tuning of the proposed BPF.

Figure 9. (a) BPF performance based on coarse-tuning. (b) Results of center frequency and transmis-
sion zero frequency based on coarse-tuning, as well as a partial enlarged view of the S-parameter.

Figure 10. Results of (a) center frequency and (c) transmission zero frequency based on fine-tuning,
as well as specific (b) S11-parameter and (d) S21-parameter results with 9-layer GSMS.
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Furthermore, to quantitatively measure the proposed BPF fine-tuning and coarse-
tuning capabilities, here, we present the physical quantity tuning accuracy ratio (TAR),
which can be calculated with the following formulas:

TAR =
ATV

Rc
× 100% (15)

where Rc stands for the maximum range of tuning, and ATV denotes the average tuning
value, which can be determined by

ATV =
∑k

1 TVi
k− 1

(i = 1, 2, 3 . . . , k) (16)

where k is the number of fine-tuning states, and TVi is the tuning value in the i state. It
can be stated that the tuning accuracy ratio decreases as the maximum range of tuning
increases or the average tuning value decreases.

Therefore, TAR is an effective index applied to reflect coarse-tuning and fine-tuning
abilities, and our proposed BPF was calculated to have a TAR of 2.5% for both the center
frequency and transmission zero frequency. Similarly, the transmission zero frequency by
fine-tuning within the coarse-tuning range of 4.721 to 5.225 GHz is exhibited in Figure 10c.
Specifically, Figure 10b,d are enlarged views of the S11-parameter with 9-layer GSMS and
the S21-parameter with 9-layer GSMS by fine-tuning, corresponding to the center frequency
and transmission zero frequency, respectively. In addition, it can be calculated from the
data that the minimum tuning value of our BPF is 1.0 MHz and 1.0 MHz, and the average
tuning value is 4.7 MHz and 12.8 MHz, for the center frequency and transmission zero
frequency, respectively.

Figure 11 presents the simulated and measured results of our proposed BPF. The
results demonstrate that the center frequencies were 2.147 GHz, 2.080 GHz, and 2.100 GHz
based on the 3D EM, schematic simulation considering wire bonding, and sub-board PCB
measurement. Meanwhile, the transmission zero frequencies were 5.251 GHz, 5.240 GHz,
and 5.188 GHz, respectively. The related return losses of 25.231 dB, 28.401 dB, and 21.496 dB
were obtained. Additionally, corresponding insertion losses of 0.320 dB, 0.305 dB, and
0.384 dB could be observed, respectively. Among the above three results, the maximum
deviation of the center frequency is less than 0.067 GHz, and that of the transmission zero
frequency is less than 0.063 GHz, which proves the accuracy of 3D EM simulation modeling
and schematic simulation considering wire bonding. Furthermore, the measured results
are in good agreement with the simulated results, validating the low loss of the fabricated
PCB artwork and the accuracy of the actual measurement. Moreover, the 3dB passband
was 1.406–2.974 GHz for the measured results, with a wide fraction bandwidth (FBW) of
74.67%. The wide FBW contributes to covering various applications around 2 GHz while
maintaining a compact dimension. Additionally, the TZ frequency around 5 GHz sacrifices
some of the selectivity performance of the proposed BPF, whereas the performance of
the out-of-band suppression is successfully enhanced. Moreover, the TZ frequency could
be tuned through the variation in the interleaved array capacitor or the introduction of
higher-order basic elements, which, reversely, could lead to a relatively large chip size.
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Figure 11. Simulated and measured S-parameter for the proposed BPF.

Table 1 list the results in comparison with the performance of other reported BPFs
in terms of the detailed substrate and process, insertion loss (IL), return loss (RL), chip
area, fraction bandwidth (FBW), center frequency controllability (CFC), transmission zero
frequency controllability (TZC), tuning accuracy ratio (TAR), minimum tuning value (MTV),
and average tuning value (ATV). It can be seen in the table that our designed BPF possesses
a relatively low insertion loss, high return loss, compact chip size, and wide fraction
bandwidth. Meanwhile, the tunability of both the center frequency and transmission
zero frequency is successfully achieved. Moreover, in comparison with other devices, the
designed BPF shows a superior performance in tunability. The relatively lower MTV and
ATV prove the excellent fine-tuning ability of the proposed BPF; thus, both the center
frequency and transmission zero frequency can be tuned accurately. Additionally, the
relatively lower TAR proves that the center frequency and transmission zero frequency
can be tuned in a wide range of frequency, which validates that the BPF is competitive in
tuning applications.

Table 1. Comparison with other reported BPFs.

Ref. Substrate, Process IL
(dB)

RL
(dB) Chip Area FBW

(%) CFC/TZC TAR
(%)

MTV
(MHz)

ATV
(MHz)

[7] Not Given
microstrip 2.5–7.72 >15 Not Given

(0.095 λ0 × 0.058 λ0) 10.2–24.3 Yes/No 11/
N.A.

90/
N.A.

125/
N.A.

[8] RO4003, microstrip 1.4 10 29.4 mm × 29.4 mm
Not Given 34.8–56.5 Yes/No 3.6/

N.A.
>30/
N.A.

>142/
N.A.

[9] RO4003C,
microstrip 0.78–2.02 <50 18.73 mm × 11.68 mm

Not Given 14.0–40.3 Yes/No 8.3/
N.A.

>5/
N.A.

>100/
N.A.

[10] RT/Durid6010,
Not Given 1.8–4.6 <40 Not Given

(0.12 λ0 × 0.08 λ0) N.G. Yes/No 25/
N.A.

>70/
N.A.

>150/
N.A.

[11] Al2O3, SIW 2.6–3.3 15–18 12.5 mm × 9.5 mm
(0.10 λ0 × 0.34 λ0) 5.0–9.0 Yes/Yes 33/

33
>150/
>250

>200/
>300

[12] Rogers RT 4003,
SIW >2.25 >50 13.0 mm × 13.0 mm

Not Given 3.5/6.0 Yes/No >5/
N.A.

>10/
N.A.

>50/
N.A.

[13] Rogers 4350,
microstrip <1 >10 18 mm × 18 mm

Not Given 8.0 Yes/No 12.5/
N.A.

>400/
N.A.

513/
N.A.



Micromachines 2022, 13, 123 13 of 14

Table 1. Cont.

Ref. Substrate, Process IL
(dB)

RL
(dB) Chip Area FBW

(%) CFC/TZC TAR
(%)

MTV
(MHz)

ATV
(MHz)

[14] Rogers 5880,
microstrip 0.78–1.18 N.G. 45.0 mm × 45.0 mm

Not Given 15.2–16.4 Yes/No 25/
N.A.

54/
N.A.

60/
N.A.

[15] GaAs, IPD 0.38 17.4 0.800 mm × 0.988 mm
(0.015 λ0 × 0.018 λ0) 51.3 Yes/Yes 20/

20
103/
117

128/
290

[16] GaAs, IPD 0.62 28.8 1.19 mm ×1.01 mm
Not Given 72.7 Yes/Yes >25/

>25
>100/
>300

>125/
>375

This
work GaAs, IPD 0.38 21.5 0.800 mm × 0.988 mm

(0.015 λ0 × 0.018 λ0) 74.7 Yes/Yes 2.5/
2.5

1.0/
1.0

4.7/
12.8

4. Conclusions

In this paper, GaAs-based IPD technology was applied to the fabrication of our
proposed BPF which is composed of an asymmetrical spiral inductor and an interleaved
array capacitor. Coarse-tuning and fine-tuning modes were introduced to the proposed
BPF, contributing to the realization of relatively wide-range variation and subtle changes
for both the center frequency and transmission zero frequency. In addition, the Ar sputter
etching process was applied to handle the peel-off issue, which successfully enhanced the
fabrication yield. Moreover, the equivalent circuit with approximate analysis was modeled
and calculated. Finally, the BPF chip was mounted on a sub-board PCB artwork which was
connected to a die sink of an iron cube. The measurement results are in good agreement
with the simulated results, which show an excellent RF performance with a high return loss,
low insertion loss, wide FBW, and excellent coarse-tuning and fine-tuning, in particular.
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