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Abstract: Wire arc additive manufacturing (WAAM) is capable of rapidly depositing metal materials
thus facilitating the fabrication of large-shape metal components. However, due to the multi-process-
variability in the WAAM process, the deposited shape (bead width, height, depth of penetration)
is difficult to predict and control within the desired level. Ultimately, the overall build will not
achieve a near-net shape and will further hinder the part from performing its functionality without
post-processing. Previous research primarily utilizes data analytical models (e.g., regression model,
artificial neural network (ANN)) to forwardly predict the deposition width and height variation based
on single or cross-linked process variables. However, these methods cannot effectively determine
the optimal printable zone based on the desired deposition shape due to the inability to inversely
deduce from these data analytical models. Additionally, the process variables are intercorrelated,
and the bead width, height, and depth of penetration are highly codependent. Therefore, existing
analysis cannot grant a reliable prediction model that allows the deposition (bead width, height,
and penetration height) to remain within the desired level. This paper presents a novel machine
learning framework for quantitatively analyzing the correlated relationship between the process
parameters and deposition shape, thus providing an optimal process parameter selection to control
the final deposition geometry. The proposed machine learning framework can systematically and
quantitatively predict the deposition shape rather than just qualitatively as with other existing
machine learning methods. The prediction model can also present the complex process-quality
relations, and the determination of the deposition quality can guide the WAAM to be more prognostic
and reliable. The correctness and effectiveness of the proposed quantitative process-quality analysis
will be validated through experiments.

Keywords: wire arc additive manufacturing (WAAM); quantitative process-quality analysis; novel
machine learning framework

1. Introduction

Additive manufacturing (AM) is widely used in today’s manufacturing industry to
build geometries in a layer-by-layer material deposition manner instead of subtracting
materials from a monolithic volume. The advantages of such a process go beyond just the
geometric complexity and the wide range of material selection. The deposition manner ad-
ditionally improves the manufacturability rather than being hindered by the machining tool
accessibility. One such metal AM technique is wire arc additive manufacturing (WAAM),
which can produce large metal components using various materials, such as titanium,
aluminum, and nickel-based alloys [1–3], for the automobile and aerospace industries.
However, these advantages are typically realized at a lower resolution and dimensional
accuracy. Specifically, for the layer-by-layer material accumulation, the inaccuracy of the
deposition bead can cause error accumulation while depositing additional layers. Thus,
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the accuracy of the single bead shape is critical to ensure the overall deposition geometry
and to prevent any process anomalies, such as collisions and over/lack-of build.

Recently, some significant research in WAAM characterized the microstructure of
low carbon steel walls [4] and utilized multi-degree-of-freedom in WAAM deposition to
explore freeform additive capabilities [5,6]. Additionally, other researchers have analyzed
the tensile strength from different material deposition systems [7]. However, if a functional
component is desired from the WAAM process, one of the critical aspects is to ensure
that the deposition shape fits the desired input model. For example, in Figure 1, different
processing conditions can result in different deposited bead shape and depth of penetration
(DOP), ultimately affecting the final deposition quality in terms of shape, microstructure,
and mechanical properties. The deposited bead geometry varied based on the following
process parameters: welding current, voltage, contact-to-workpiece distance, and travel
speed [8]. The WAAM process variables of current and wire feed rate are interrelated, so
one cannot be independently adjusted. Thus, the prediction of the deposited bead shape
from selecting the process parameters is an essential aspect of ensuring the success of the
near-net-shape deposition. In addition, creating a printable zone, which determines the
optimal selections and combinations of varied and interconnected process parameters, can
improve the deposition quality.
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In Figure 1, the deposited bead geometry varied based on the following process
parameters: welding current, voltage, contact-to-workpiece distance, and travel speed [8].

Table 1 presents related research that discusses the process parameters’ effect on the
ultimate build qualities [9–20]. The significant parameters that affect the as-desired build
qualities are widely discussed. However, the specific quantitative relationship between
these parameters and the desired qualities is not fully explored, preventing the full control
of the WAAM build quality.

Existing researchers have already discussed the primary effects of welding current
and welding voltage variables on the weld penetration profile [9]. However, the specific
analytical relationship has not been fully discovered to create a desired weld bead geometry
and properties for WAAM deposition. In general, traditional response surface modeling
uses either one or the mixture model of first- and second-order models. The models are
represented below:

Y = C0 + C1 ∗ X1 + C2 ∗ X2 + . . . + Cn ∗ Xn

Y = C0 + C1 ∗ X1 + C2 ∗ X2 + C12 ∗ X1 ∗ X2 + C11 ∗ X2
1 + C22 ∗ X2

2 + . . . + Cn ∗ Xn + Cm ∗ Xm + Cmn ∗ Xn ∗ Xm
+Cnn ∗ X2

n + Cmm ∗ X2
mm

where xn is the variable that can control the response Y; Cn and Cn,m are fitting coefficients.
Once the data are collected, the least square method is used to estimate the proper coeffi-
cients; however, the traditional response surface modeling method can only predict the
response based on the selection of the process variables (xn). This model cannot reversely
define the optimal selection of the variables based on a desired response level.
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Table 1. Existing research on process parameters effect on build qualities.

Analytical Process Parameters Research Output

Wire feed speed (WFS), travel speed (TS),
the ratio between WFS and TS [9]

• The ratio between WFS and TS is the most significant process
parameter for controlling heat input

• Increased heat input will cause added material flow to distort the
width, height, and weld penetration area of the beads

Heat input [11]
• Increased heat input will result in coarse grain, homogeneous

microstructure but lower material hardness

Deposition direction, nozzle tip distance, and gas
pressure [12]

• Pressure and current, nozzle tip distance has the most significant
effect on tensile strength

• Current has the most significant effect on hardness

Path planning trajectory [13]
• WFS, welding current, cooling time, and interlay temperature

affects dimensional accuracy and surface finish

Vibration [14]

• Increased vibration acceleration will decrease the average grain size
as well as homogenize the grain distribution

• Vibration can reduce porosity and increase tensile strength

Air cooling, idle time [15,16]

• Air jet is not effective at preventing an increase in the substrate
temperature

• Air jets can effectively reduce the overall increase in temperature

Figure 2 presents the current workflow from the selected input model to the physical
building process. This workflow compiles the available statistical approaches to analyze
the relationship among various WAAM processing conditions, the weld bead, and related
mechanical properties. Figure 2 shows that the build quality can be determined by selecting
the variables in the process planning stage that need to be examined by comparison with
the desired input geometries. However, due to the limited understanding of the correlated
process parameters and their effects on the deposited bead shape, it is difficult to evaluate
the incorporated controlling effects of the influential process parameters in WAAM.
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Figure 2. WAAM workflow and analytical approaches.

Given the input variants {xi} and response y, the multi-dimensional response model
can be formalized as:

y = f (x1, x2, . . . , xi)

However, the covariant relationships among {xi} remains anonymous. The mathemat-
ical function for representing the system response model is hard to outline. Typically, a
surrogate model/machine learning method is adopted to describe the relationship between
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these correlated process parameters and the final response. However, the methods have
the following limitations that are not suitable for developing a printable zone based on the
desired deposition bead shape:

1. A surrogate model contains one response but with multiple process variables. It is
difficult to reversely infer and indicate the domain of the process variable based on
single/multiple response data (e.g., xi = f−1(y1, y2, x1, x2, . . .)) (xi: process variables,
y: process response).

2. A surrogate model primarily focuses on the possibility of the response deviation and
cannot provide a numerical level of such deviation.

3. Machine learning models, such as k-nearest neighbors (KNN), naïve Bayes mainly
focus on predicting the categorical response. Therefore, the quantitative analysis of
the desired bead shape is not achievable.

4. Other machine learning models, such as response surface methodology (RSM), domi-
nantly use a second-degree polynomial model to indicate the input-output relation-
ship. Still, the reverse indication of the input from the desired output cannot be
obtained.

With the abovementioned limitations of the existing methodologies, WAAM is difficult
to control and predict and can exhibit low process repeatability [21]. Therefore, a quanti-
tative process-quality model that describes the influence of individual process variables
and their correlated impacts is urgently needed to better control print quality. To this
end, a multi-dimensional neural network framework is developed in this paper to draw
such a relationship. The quantitative process-quality relationship between various process
parameters and deposition bead shape is obtained and evaluated to measure and control
geometry as near-net-shape.

The proposed machine learning framework is capable of quantitatively predicting the
response and reversely indicating the optimal printable zone via the deducible process-
quality network. In contrast, the traditional surface response model (RMS) for the process-
quality modeling cannot describe the response which integrates more than two variables.
The objectives of this research are stated as follows:

1. Develop a quantitative process-quality machine learning framework of influential
process parameters towards deposition quality for stainless steel on the WAAM
process.

2. Classify the correlated process parameters and construct a qualitative model towards
the deposition shape level from the correlated parameters.

3. Printable zone development is based on quantitative models in the network that
control the deposition shape at a certain level.

4. A predictive model for controlling the deposited bead shape (width, height, and
penetration depth) based on sets of input process parameters.

2. Methodology

In this paper, wire feed rate is not considered in building the quantitative process-
quality analysis since it is highly dependent and can be reflected by the change of weld
current [22]. This paper proposes a novel machine learning framework that involves three
process variables (current, voltage, and speed) to build a process-quality quantitative model
to control the deposited bead shape. A multi-dimensional variability neural network model,
driven by the machine learning framework (Figure 3) for recognizing the system multi-
process variability, is developed as a process-quality model for predicting and controlling
the bead shape in WAAM.
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Figure 3 presents the proposed machine learning framework, including the forward
prediction of the deposition shape by selecting process inputs, that is capable of reversely
deducing optimal process inputs. The structure in the proposed neural network consists of
(a) the number of hidden layers, (b) the number of neurons in each layer, (c) the activation
function, and (d) the loss estimation function [23]. The activation transformation based on
the input layers is vital to the neural network model; the activation functions in the hidden
layers are:

Uk= ∪ Pk : u(∑ Xi) < Pk < v(∑ Xi)

S(u, v) = ∑k
m=1 ∑l

n=1 Rm,n(u, v)WkUk

The root means square (RMS) is adopted to represent the loss function that determines
the difference between the predicted response value and the targeted value, and the
mathematical expression is given as:

RMS =

√
∑n

i=1(responsei − responset)
2

n
(1)

where i is the index, responsei is the predicted value in the network, and responset is the
target value.

The experimental data collected for this study was gathered with a metal inert gas
(MIG) welding robot using AISI 420 stainless steel. The WAAM deposition process is per-
formed with preheating. The bead was deposited on the 160 mm substrate. Subsequently,
the cross section of the deposited bead was measured. As proposed by other research [14],
the design of the experiment and the response surface methodology were used to obtain
the statistical analysis to investigate the significant level of the process parameter to the
deposited bead shape. However, these methods cannot reversely indicate the optimal selec-
tion of the process parameters to achieve the desired deposition shape. Therefore, a novel
process-quality neural network model is proposed in this section and used as a predictive
method to determine the relationship between the input (current, voltage, and travel speed)
and the deposited bead shape (width, height, and DOP). In addition, a printable zone
includes the optimal process parameters for achieving the desired deposition bead shape
can be constructed. Such printable zone can navigate the printability and improve the
metal AM repeatability. Figure 4 visualizes the deposited bead, including the parameters
that are analyzed in this study.
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The overall workflow for generating the quantitative process-quality neural network
model is presented in Figure 5.
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Figure 5. Process-quality machine learning framework overview.

The point-wise population in Figure 5 generates scattered paired input parameters
within the confidence interval. The generated data will also be grouped, thus ultimately
combining with the response scoring algorithm to construct the deposition shape quan-
titatively. Therefore, the significant analysis of the input process parameters is required
for proceeding with the later steps. Therefore, a stepwise regression model was initially
conducted. This model takes a step-by-step iterative construction of regression models
that involves all situations and possible variables that can be used in the final model. The
simplified, reduced model for bead width contains the significant parameters: current (I),
voltage (U), and speed. Hence, an ANOVA and F-test (at α = 0.05) were conducted to verify
the importance of these variables and justify the individual importance level. From Table 2,
current (I), voltage (U), speed, and their interacted terms are significant for bead width
since the one-way factors display p-values smaller than 0.05.

Table 2. ANOVA analysis of parameter’s effect on bead width.

Term Coef SE Coef T-Value p-Value VIF

Constant 4.050 0.488 8.30 0.000
I (Amps) 0.00840 0.00274 3.06 0.003 1.28
U (Volts) 0.03083 0.00475 6.49 0.000 1.21

Speed
(mm/min) −0.0780 0.00409 −1.91 0.042 1.41
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In addition, a stepwise regression for analyzing the bead height was also conducted by
adding or removing potential explanatory variables and testing for statistical significance
iteratively. After the stepwise regression, the three process parameters present significantly
varying bead height. The ANOVA test of these three variables is presented in Table 3.

Table 3. ANOVA analysis of parameter’s effect on bead height.

Term Coef SE Coef T-Value p-Value VIF

Constant 3.566 0.172 20.78 0.000
I (A) −0.002465 0.000965 −2.55 0.014 1.28
U (V) 0.00506 0.00167 3.03 0.004 1.21

Speed (mm/min) −0.00654 0.00144 −4.55 0.000 1.41

These significant variables were obtained for constructing the neural network frame-
work. The quantitative multi-variant process-quality model will use the obtained significant
variables to describe the intercorrelated effect on the bead shape. The decomposition of the
collected data into three-dimensional space (formatted in (I, U, S, BW, BH, DOP)) will be
first introduced. The decomposition is as follows:

[I, U, S, BW] →: {[Ii , yIi
, BWi], [Ui , yUi

, BWi], [Si , ySi
, BWi]} = {PI, PU, PS}

The algorithm below shows the construction of the machine learning framework from
the decomposed point-wise input variables {PI , PU , PS}.

Algorithm: Machine learning framework for decomposed vectorized data.

Algorithm: Machine Learning Framework Construction

Input: Decomposed Variables {Xi,j} from {Xi}: Xi,j → R3

Output: Point-wise Populated (Ui), and Scored Response {S}

1. Initialize Polyi =
→

Xi,j, ∀ Xi,j ∈{Xi}
2. Populate Pk,i: Pk,i ∈ [Polyi − Bi, Polyi + Bi]
3. Dk,i = dist(Pk,i, Polyi)
4. wk,i ∝ 1/Dk,i
5. S(k, i) := ∑i wk,iPk,i
6. Weight function = argmin‖Xi,j, S(k, i)‖2

7.
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7.      Update {𝑤,} and {𝐵} 6. Weight function = arg 𝑚𝑖𝑛ฮ𝑋,, 𝑆(𝑘, 𝑖)ฮଶ 

Algorithm: Machine Learning Framework Construction 

Input: Decomposed Variables {𝑋,} from {𝑋}: 𝑋, → ℝଷ 
Output: Point-wise Populated (𝑈), and Scored Response {S} 
1. Initialize Poly = 𝑋ప,ఫሬሬሬሬሬሬ⃗ , ∀ 𝑋, ∈{𝑋}  
2. Populate 𝑃,: 𝑃, ∈ ሾPoly୧ െ 𝐵, Poly୧  𝐵ሿ  
3. D୩,୧ = dist(P୩,୧, Poly୧) 
4. w୩,୧ ∝ 1/D୩,୧ 
5. 𝑆(𝑘, 𝑖) : = ∑ 𝑤,𝑃,  

8. Return 𝑈, S 
Update {wk,i} and {Bi}

8. Return Ui, S

In this algorithm, Bi represents the bandwidth of the point-wised populations, and wk,i
stands for the weight on these populations. This algorithm presents a systematic approach
to develop the machine learning framework and create the quantitative response using the
vectorized experimental data. The prediction of the shape (width, height, and DOP) can be
described as follows:

Objectives: min var(dist((xi + ∆i, yi), f ))
Randomized: {∆1, ∆2, . . . , ∆i}
Populate := ([xi, yi])

disti = abs|(xi + ∆i, yi)− f ([xi + ∆i, yi])|
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The deposition shape response model can be obtained through optimization iteration 
on the bandwidth of the point-wised populations and the weight on these populations 
through the proposed algorithm. 

According to the proposed architecture of the quantitative process-quality model, the 
deposited bead response graph with regards to the three process parameters is presented 
in Figures 7–9. Since all three process parameters are highly correlated and individually 
significant to the response, a simple regression model cannot describe such variable-re-
sponse relation. Therefore, a quantitative response model is constructed based on the pro-
posed machine learning framework to describe the complex model among the variables. 

Solution: Shape Response = average( f ([xi + ∆i, yi]))
{xi} represents the vectorized process parameter inputs, {yi} represents the {xi} corre-

sponding vectored axis value, and {∆i} represents the deviation on the process parameters
inputs.

The printable zone (collection of the optimal process parameters) is obtained from a
multi-objective optimization machine learning process using the developed process-quality
response model with a desired response level as the input. {Zi} represents the corresponding
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response from vectorized process parameter - {xi}. { fk} represents the response function for
kth item. The optimization process can be described as follows:

Objectives: min var
(
di f f

(
Zi, Z

))
, Z: targeted response

Randomized: {xi}
Populate := ([xi, yi])

Zi = fk([xi, yi])
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The deposition shape response model can be obtained through optimization iteration 
on the bandwidth of the point-wised populations and the weight on these populations 
through the proposed algorithm. 

According to the proposed architecture of the quantitative process-quality model, the 
deposited bead response graph with regards to the three process parameters is presented 
in Figures 7–9. Since all three process parameters are highly correlated and individually 
significant to the response, a simple regression model cannot describe such variable-re-
sponse relation. Therefore, a quantitative response model is constructed based on the pro-
posed machine learning framework to describe the complex model among the variables. 

Solution: Printable Zone {xi} = range(den
{

xi| fk
}
> 0.8)∩ range(den

{
xi| fk+1

}
> 0.8).

3. Result and Discussion

The proposed machine learning framework has been implemented through Rhino
Grasshopper. Figure 6 presents the working process through the implemented machine
learning framework.
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Figure 6. Deposition shape response construction through implemented machine learning frame-
work.

The deposition shape response model can be obtained through optimization iteration
on the bandwidth of the point-wised populations and the weight on these populations
through the proposed algorithm.

According to the proposed architecture of the quantitative process-quality model, the
deposited bead response graph with regards to the three process parameters is presented in
Figures 7–9. Since all three process parameters are highly correlated and individually sig-
nificant to the response, a simple regression model cannot describe such variable-response
relation. Therefore, a quantitative response model is constructed based on the proposed
machine learning framework to describe the complex model among the variables.

Figures 7–9 show the proposed shape response model from the process variables based
on the novel machine learning framework. The statistical measure (R2) that represents the
proportion of the variance for the developed response models (Figures 7–9) are presented in
Table 4. In addition, the R2 from multi-variant linear regression models, and the traditional
ANN classification methods are presented for comparison.

Table 4. Statistical measures of the proposed model, regression, and ANN classification method.

Bead Width Model Bead Height Model Depth of Penetration
Model

Proposed Model 0.997 0.993 0.9853
Regression 0.9237 0.7181 0.8643

Tradition ANN 0.464 0.857 0.80
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Figure 9. (a) Process-quality model (DOP) using current, voltage, and speed (contour), (b) process-
quality model (DOP) using current, voltage, and speed (3D).

From Table 3, the proposed model shows the most accurate representation of the
deposition bead shape compared with the multi-variant linear regression and the ANN
classification models. This can indicate that the proposed machine learning framework
performs better than the traditional machine learning methods. As mentioned in the
previous section, the developed response model will be used to determine the printable
zone to control the shape within a satisfactory level and predict the deposition bead shape.

Figures 10–12 show the optimal selection of the process parameters based on the
desired level of bead shape from the developed multi-dimensional surface response using
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the multi-objective optimization method mentioned in the previous section. The red lines
represent the optimal input dataset for achieving a desired geometry.
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Figures 10–12 present all process parameter combinations that derive the deposited
shape to different desired condition: BW = 3.7 mm, BH = 2.6 mm, and DOP = 0.59 mm. The
ultimate determination of the optimal process parameters to achieve the desired deposition
shape when considering all conditions requires conducting a global search through three
developed response models. The printable zone plot for the obtained optimal parameter
dataset (current, voltage, and speed) is sketched in Figure 13. Based on the threshold of the
density plot on each process parameter, the optimal range of the process parameters can be
further refined.

The above figure presents an optimal printable zone for controlling the deposited
bead shape at a certain level with a 95% confidence interval. Note, the x-axis in Figure 13
represents the corrected parameter value. This optimal printable zone can also be verified
by including the parameter setting as indicated by Subramanian [24]. To further validate
the result, three weld bead profiles are measured using PlotDigitizer Software based on
the different experimental set up are obtained and compared with the prediction bead
shape. The shape prediction process and the measured bead width are illustrated through
Figure 14.

Figure 14 provides a shape prediction process using the developed model and the
defined process parameters. The targeted objective is minimized, and the ultimate result
would provide the predicted bead deposition shape. As shown in Figure 14, the measure-
ment data is also provided to validate the prediction. Table 5 below shows the prediction
and measurement variation through different process parameters.
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Table 5. Shape variation between prediction and measurements.

Sample No. Current (A) Voltage (V) Speed (mm/min) BW (mm) BH (mm) DOP
(mm)

1 Measured 215 25 450 9.23 3.12 5.71
1 Predicted 9.217 3.108 5.721
2 Measured 215 27 450 9.3 3.41 2.54
2 Predicted 9.218 3.451 2.551
3 Measured 250 26 600 8.56 3.3 2.45
3 Predicted 8.528 3.158 2.51

From Table 5, the maximum variation between the prediction and the measurement
is less than 5% which can further validate the accuracy of the proposed process-quality
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model through the novel machine learning framework. Compared with the regression and
the ANN models, the proposed machine learning model achieves the highest accuracy on
the developed prediction models. The shape prediction model performance accuracy is
99.8%, 99.1%, and 99.6% for bead width, 99.6%, 98.8%, and 95.7% for bead height, 99.8%,
99.5%, and 97.5% for DoP based on the experimental data.

4. Conclusion and Future Recommendations

The developed machine learning framework would bring the following benefits
compared with other existing analytical methods:

• Prediction models are eased to be adapted based on the increasing amount of collected
data.

• Prediction provides a quantitative analysis of the process-quality relation.
• The reversely computed printable zone provides a numerical control to the WAAM

system.

The proposed quantitative shape model from the various process parameters can pro-
vide the numerical prediction on the bead shape and can lead to the following conclusions:

• An increase in the current would result in a wider bead width and height.
• An increase in the voltage would result in a wider bead width, and the bead height

would first increase then decrease.
• An increase in the speed would first result in a wider bead width and then reduce

the width, and it shows similar changes for the bead height. In contrast, the depth of
penetration would decrease with the increase in the speed.

• Wider bead width will lead to a smaller bead height and a larger depth of penetration.

The precise prediction of the deposited bead shape from the selection of the process
parameters can be achieved through the proposed quantitative process model using the
proposed machine learning framework. The multi-dimensional neural network model
can rapidly react to data changes and systematically demonstrate the multi-dimensional
connections among the process-quality network. In addition, the reverse computed optimal
printable zone from the desired process quality level can also be deduced. This quantitative
process method can comprehensively oversee such complex processes with multi-process
variabilities.

The proposed quantitative predictive model of the deposition geometry can pave
the path in full feedback controlling the multi-layering process. The lack-of-built volume
and the over-built volumes can be compensated by correctly adjusting the processing
parameters in the real-time printing process through the developed model. In addition,
the proposed machine learning framework is eased to adopt to other material processing
systems.
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