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Abstract: Fast-actuation cutting systems are in high demand for machining of freeform optical parts.
Design of such motion systems requires good balance between structural hardware and controller
design. However, the controller tuning process is mostly based on human experience, and it is not
feasible to predict positioning performance during the design stage. In this paper, a deterministic
controller design approach is adopted to preclude the uncertainty associated with controller tuning,
which results in a control law minimizing positioning errors based on plant and disturbance models.
Then, the influences of mechanical parameters such as mass, damping, and stiffness are revealed
within the closed-loop framework. The positioning error was reduced from 1.19 nm RMS to 0.68 nm
RMS with the new controller. Under the measured disturbance conditions, the optimal bearing
stiffness and damping coefficient are 1.1× 105 N/m and 237.7 N/

(
m·s−1), respectively. We also

found that greater moving inertia helps to reduce all disturbances at high frequencies, in agreement
with the positioning experiments. A quantitative understanding of how plant structural parameters
affect positioning stability is thus shown in this paper. This is helpful for the understanding of how
to reduce error sources from the design point of view.

Keywords: optimal control; ultra-precision machining; microstructure; controller tuning; fast tool servo

1. Introduction

Ultra-precision freeform surfaces are widely used in advanced imaging and illumina-
tion systems, high-power beam-shaping applications, and other high-end scientific instru-
ments [1]; they give the designers greater ability to cope with the performance limitations
commonly encountered in simple-shape designs. However, the stringent requirements for
surface roughness and form accuracy of freeform components pose significant challenges
for current machining techniques—especially in the optical and display market, where
large surfaces with tens of thousands of micro-features need to be machined [2–4].

The machining of such microstructures requires ultra-precision fast-motion systems.
Typically, PID control laws are used; however, the PID control algorithm has only four free
parameters that can be tuned, while the real-world situation is much more complex. The
control algorithm and gains are often selected based on human experience through a “trial
and error” process. It is possible to optimize the controller gains given the mathematical
model of the system. E. A. Padilla-Garcia proposed a concurrent multi-objective dynamic
optimization method to optimize the selection of controllers and motors; the optimization
objectives were the energy consumption, tracking error, and motor weight. The efficiency
of the proposed methodology was validated by simulations of an industrial robot [5].
Alter et al. applied an H−∞ robust control algorithm for controlling a linear motion
stage, and the resulting dynamic stiffness was improved by 27–46% compared to PD
control [6,7]; they further developed a stiffness-enhancement control law for optimal
control, and the dynamic stiffness was improved by around 100% [8]. Dumanli utilized
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a linear–quadratic regulator (LQR) to achieve optimal placement of controller poles and
zeros with acceleration feedback; he applied this algorithm in control of a ball screw feed
drive, and achieved active damping with higher bandwidth [9]. Previous studies have
mostly focused on the enhancement of dynamic stiffness. For precision fast-actuation
cutting systems, the bandwidth and the positioning error are also very important. Wei-Wei
Huang et al. developed a novel robust dual-loop control scheme with a Kalman-filter-based
extended state observer and H∞ control for nano-positioning stages to implement high-
bandwidth tracking operations [10]; they applied the control scheme on a piezo-driven
stage, and the positioning bandwidth was improved from 3.6 kHz to 5.52 kHz. However,
the positioning noise at this bandwidth is 20 nm, which is not sufficient for ultra-precision
cutting systems. The positioning noise is mostly caused by environmental vibrations and
the noises in the electronics. Feinan Zhu developed an improved reset control strategy to
control the positioning of the read head in HDD; in his model, he included the external
disturbances, and successfully reduced the tracking error in a finite time [11]. Parameter
uncertainty can also be treated as a kind of disturbance. F. Mendoza-Mondragón proposed
a two-degrees-of-freedom controller for robust speed regulation in permanent-magnet
synchronous motors (PMSMs) [12]; the experimental results showed that better robust
and disturbance rejection was achieved compared with traditional PI control. Chunhong
Zheng proposed a simple but effective nonlinear proportional–derivative (PD) control
strategy for faster, high-precision positioning [13]. It can be seen that the performance of
positioning systems can be improved by optimizing the controller, but it is still difficult to
predict the minimum tracking error before the hardware is built. Another issue with the
design of fast positioning systems is that the tracking bandwidth and following error are
greatly affected by the structural parameters, such as moving mass or damping. Li Zelong
used multi-objective optimization and finite element simulation to design a flexure-hinge
servo turret with a high natural frequency for fast tool servo applications [14]. It has been
proven that the plant moving mass affects the minimum achievable positioning error [15].
Therefore, a system model that reveals the influences of structural parameters is necessary
in order to achieve a quantitative understanding of how to reduce error from the design
point of view.

In this paper, the uncertainty associated with controller tuning is precluded by adopt-
ing an H2 optimal control algorithm, which results in a control law minimizing positioning
errors based on the plant model and measured disturbances. The minimum positioning
errors are predicted with different structural parameters. A deterministic model to optimize
the structural parameters to be minimized following error is proposed for the first time.
Then, the influence of each structural parameter is analyzed. The results of our analysis
reveal the optimal structural parameters and provide guidance on improving the dynamic
performance of the tool positioning system. The control effects of the optimal controller
and the PID controller are compared through a series of positioning tests.

2. Materials and Methods

In this section, we describe an optimal control strategy that was used to control a fast
positioning system. A model to predict the static following errors was proposed based
on the optimized controller. The results were used to study the influences of different
structural parameters on positioning stability.

2.1. Experimental Setup

A custom-built fast tool servo cutting device for freeform turning is shown in Figure 1a.
This configuration is based on a flat Lorentz actuator. Short-stroke high-frequency motions
are achieved in the Z direction with flexure guidance. The motion along the X direction is
driven by a linear motor and guided by a ball-bearing linear slide. A metrology straight
edge is used as the position reference, and a capacitive displacement sensor is used to
measure against it. The diamond cutter is fixed in the same line as the displacement sensor
and the motor center. In this way, the force passes through the gravity center and the Abbey
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principle is obeyed, which is very important in reducing machine tool errors [16,17]. The
detailed assembly design of the motor and the bearing structure is shown in Figure 1b.
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Figure 1. (a) Photo and (b) structural diagram of the fast-actuation cutting system.

2.2. Experimental Determination of the System Model

An accurate mathematical model of the mechanical and electrical systems was estab-
lished prior to controller design. The lumped-parameter model of the mechanical system
is established as shown in Figure 2. The m1, k1, c1 block represents the tool tip mounting
flexibility, which reflects the dynamic performance of the tool holder and the coil support.
m2 is the mass of the movable body, including the coil assembly and sensor. k2 and c2 are
the stiffness and damping of the flexure bearing, respectively. m3 represents the mass of the
X carriage. m4 is any flexible mass that will disconnect from m2 at high frequency. k5 and
c5 are the stiffness and damping of the motor coil with respect to magnets, respectively.
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Figure 2. Lumped-parameter model of the positioning system.

Sweep sinusoidal signals are selected to test the response of the built positioning
system. Sweep sinusoidal commands are sent from the D/A convertor, and the response
of the open-loop system is measured by the capacitive displacement sensor. The lumped-
parameter model of the system is known, and the mathematical model is used as the
grey-box model. The model parameters are then estimated by fitting the grey-box model
and the experimental data. The estimated parameters are listed in Table 1.
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Table 1. Identified parameters of the developed positioning system.

Parameters Values

m1 + m2 0.074 Kg
k2 21, 965 N/m
c2 2.28 N/(m/s)
m4 0.008 Kg
k4 56, 285 N/m
c4 6.18 N/(m/s)

According to [18], the closed-loop control system can be represented by a transfer
matrix G and a controller K, as shown in Figure 3. Disturbances are modelled as input w,
while output performance to be evaluated is modelled as z. The controller senses the
output y of the plant and then generates a control signal u to the plant. The column number
of inputs w represents the number of disturbances. The transfer matrix G can be partitioned
into four submatrices. Submatrix A represents the characteristic matrix of the plant in
state-space denotation. The B1 block is the input matrix for all of the disturbances, while the
last column (B2) corresponds to the control input u. The block C1 is the output matrix for
the errors to be minimized, and the last row (C2) corresponds to the output measurement.
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The H2-norm of a SISO system with transfer function J(s) is defined as [18]:

‖ J ‖2=

(
1

2π

∫ ∞

−∞
|T(jω)|2dω

)1/2
(1)

For a multivariable system with a transfer function matrix of J(s) = [jmn], the defini-
tion can be generalized to:

‖ J ‖2=

(
∑
mn
‖ jmn ‖ 2

2

)1/2

=

(
1

2π

∫ ∞

−∞
tr
[

T(−jω)TT(jω)
]
dω

)1/2
(2)

The matrix J(s) is the cost function, which is to be minimized in the optimization
process. The selection of the cost function depends on the application requirements. In this
case, the positioning error is to be minimized; thus, the transfer function matrix formed by
the transfer function of each disturbance source to the tool position was selected as the cost.

The controller output u is also included in the cost function to be constrained, be-
cause there are hardware limits on the maximum controller output. The optimal control
calculation is equivalent to solving a Riccati equation [19], and finally a controller transfer
matrix K is calculated.

The input disturbances w in Figure 3 usually have colored spectrum characteristics, so
the input can be modelled as a white noise going through a particular weighting filter. The
transfer functions of the filters are then integrated into the plant model, and an augmented
transfer matrix G is formed, as shown in Figure 4. We and Wu are the weighting filters for
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the positioning error and control output in the cost function, respectively. W1, W2, and W3
are the weighting filters for the disturbances.
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2.3. Modelling of Disturbances and Weighting Functions

The weighting function for the following errors We controls the shape of the closed-
loop sensitivity function. Since for a closed-loop system, the sensitivity at a high frequency
range is always close to unity, We is mainly for controlling the low frequency range sensi-
tivity shape. According to [18], the weighting function can be expressed as:

We =
s/Ms + ωb

s + ωbε
(3)

where Ms limits the peak response near the crossover frequency; ωb is the intended closed-
loop bandwidth; and ε is introduced to make the weighting function strictly proper, and
its value should be selected according to the allowable static state following error under
cutting force, namely, the static stiffness. In this analysis, Ms is set to 1.2721 for critical
damping, and ε is set to 1 × 10−7.

The weighting function for the output of the controller Wu controls how much output
will be commanded to achieve the desired performance. At frequency ranges higher than
intended bandwidth, Wu is used to limit the control output by adding a pole; thus, the
response falls fast at high frequencies, in order to suppress sensor noise. The weighting
function can be expressed as:

Wu =
s + ωbu/Mu

ε1s + ωbu
(4)

where Mu and ωbu limit the control output, and ε1 is introduced to make the weighting
function strictly proper. Mu and ωbu are set as large numbers (1 × 108) to indicate that the
motor power is enough for static positioning.

The disturbances are measured separately at each error source using a data acqui-
sition board and a capacitive sensor. The disturbances are assumed to be stationary
stochastic processes.

As shown in Figure 5a, the capacitive sensor noise is modelled as independent band-
limited white noise. The weighting filters are valued as the square root of the signal’s average
PSD value. The weighting filter for sensor noise is modelled as W1 = 1.36× 10−6 (constant).
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The current loop noise shown in Figure 5b is modelled with large amplitudes at the
low frequencies, and the peak at 7748 Hz is modelled by a poorly damped second-order
peak filter. The weighting filter can be modelled as:

W2 = 1.64× 10−7 × s2 + 0.1ωs + ω2

s2 + 0.005ωs×ω2 ×
s− 200π

s
(5)

where ω = 2π × 7748. Then, the environmental disturbance vibrations are chosen
as follows:

W3 =
2.83× 10−9(s− 2000π)

s
(6)

2.4. Modelling of Following Errors

With the system model, the frequency response functions from each disturbance input
to the tool position FRFi(υ) can be obtained. The error power contribution PSDi from each
disturbance to the final position can be calculated as shown in Equation (7):

PSDi(υ) = Pi(υ)× |FRFi(υ)|2 (7)

where i indicates the disturbance source number (from 1 to 3; P1, P2, and P3 are the PSD
of each error source, and υ is the frequency). Since these disturbances are assumed to be
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mutually uncorrelated, their powers can be combined to reflect the total error power [20].
The synthesized tool position’s PSD is:

PSDFol(υ) = P1(υ)× |1− FRF1(υ)|2 + PSD2(υ) + PSD3(υ) (8)

In order to estimate the time-domain error magnitude from the PSD values, the
cumulative amplitude spectrum (CAS) function is derived. CASi(υ) is the square root of
the integrated PSDi( f ), from 0 Hz to υ Hz.

CASi(υ) =

√∫ υ

0
PSDi( f )d f (9)

The following error can be calculated as follows:

Errorrms = CASi
(
υNyquist

)
(10)

where υNyquist is the Nyquist frequency—namely, the frequency span.

3. Results
3.1. Closed-Loop Response with Optimal Control

Using the above model, the solved optimal controller that minimized the following
errors was a 27 × 27 matrix in the state-space form with 27 state variables. The open-loop
and closed-loop transfer functions of the modelled system with the calculated optimal
controller are shown in Figure 6a. The red line K is the frequency response of the calculated
controller. The dashed black line is the modelled structure transfer function. The blue line
L is the estimated open-loop transfer function, and the black solid line T is the estimated
closed-loop transfer function. The dashed magenta line D is the estimated disturbance
rejection function.

In comparison, the same crossover frequency was achieved with a PID algorithm, and
the calculated controller functions are shown in Figure 6b. There exists a structural resonant
point at frequency of 1645 Hz, which can cause troubles when the PID gains are further
increased. This peak is successfully compensated in the optimal controller, because the
controller has more control of degrees of freedom. The low-frequency control actions are
also different in that the optimal controller is fully determined by the disturbance strengths,
while the PID controller is calculated according to the phase margin set by the user.

The measured following errors with the optimal controller are shown in Figure 7. The
position bandwidth (−3 dB) is found to be around 1.1 kHz. The RMS value is 0.68 nm and
the peak-to-valley value is 5.38 nm. The calculated positioning error is 0.23 nm RMS by the
model prediction, and the peak-to-valley value should be around 1.4–2.3 nm.

In comparison, the PID controller is tuned with the same sampling rate and a similar
bandwidth (1.5 kHz), and the following errors are measured as shown in Figure 8. Because
the sampling rate is kept the same, the measuring error contribution from the feedback
sensor should be the same. The following errors are larger when the bandwidth is increased,
with an RMS value of 1.19 nm and a peak-to-valley value of 7.65 nm with PID control. These
results show that the optimal controller indeed helps to achieve better positioning stability.

The FFT spectra of the two error signals are shown in Figure 9. It can be seen that
the error spectrum is more evenly distributed when the optimal controller is utilized. The
high-frequency noise is higher when the PID controller is used.
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3.2. Study on the Influences of Structural Parameters on Positioning Following Error

From the control point of view, the controller has theoretically done its best to suppress
outside disturbances. If the disturbances cannot be reduced from the roots, it is worthwhile
to study how to reduce the system response to the disturbances by changing the structural
parameters, such as mass, damping, etc. Several selected parameters were studied for their
influences on the positioning following errors based on the closed-loop model, including
the total mass of the moving part, flexure stiffness, damping, and motor force constant. The
effects of changing plant parameters need not be linear. Thus, the current system design is
used as the “operating point”. The structural parameters are changed, and the resultant
following RMS errors are used to compare the sensitivities. This helps to figure out the
most effective way to optimize the performance.

3.2.1. Influence of Moving Mass

When the total moving mass m1 + m2 is doubled based on the current configuration,
all high-frequency noises are reduced, as shown in Figure 10a. The current noise transfer
functions are notably reduced at high frequencies. Base vibration errors are also reduced
at high frequency. The side effect of increasing moving mass is that more force is needed
to achieve the same acceleration. This means bigger motors will be used and, thus, more
heat will be generated. The CAS plot in Figure 10b also shows that the positioning errors
are lower.
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Figure 10. (a) Noise transfer functions; (b) CAS plots for each error source. Performance with
increased moving mass (grey: before; colored: after).

The minimum achievable positioning errors with different moving masses are shown
in Figure 11a. It can be seen that the errors decrease with larger mass, as does the bandwidth
(−3 dB). The minimum achievable error is plotted in Figure 11b. The RMS error also
decreases with increased moving mass, but it is larger than that in Figure 10a because it
deviates from the optimal bandwidth.
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3.2.2. Influence of Flexure Bearing Stiffness and Damping

The flexure bearing in the designed system is the only path that external vibrations can
travel to the tool. Therefore, the stiffness k2 and c2 affect the degree to which environmental
vibrations will be transferred to the tool tip. Meanwhile, they also affect the rejection ability
of force disturbances; this can be seen in Figures 12a and 13a. When the flexure stiffness k2
increases, the transfer function from base vibrations is raised at low frequency. Meanwhile,
when the damping c2 increases, more high-frequency base vibration is transmitted to the
tool. However, the errors caused by the current-stage noise are reduced in both cases, while
the optimal closed-loop bandwidth is also decreased slightly.
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The CAS functions are plotted in Figures 12b and 13b. The total following error is
decreased because the contribution of the base vibration is so small. This is not always
true; when the stiffness or damping is increased to such a level that the base vibration
contribution is comparable to the reduction in the current noise contribution, the total error
will be increased.

There exists an optimal pair of flexure stiffness k2 and damping c2 coefficients under
this disturbance situation, which minimizes the following errors, as can be seen in Figure 14.
In this analysis, the stiffness k2 and damping c2 are adjusted within a large range, and
the total RMS following error is plotted. As the stiffness and damping coefficients are
increased, the following error first deceases and then starts to rise. The minimum following
error of RMS (0.96 nm) is achieved when k2 is equal to 1.1 × 105 N/m and c2 is equal
to 237.7 N/

(
m·s−1). Apparently, this optimal stiffness and damping value is dependent

on the relative strength of the disturbances.
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4. Conclusions

In this paper, optimal control was achieved for a fast-actuating motion system. The
influences of mechanical parameters such as mass, damping, and stiffness were investigated.
The following conclusions can be drawn:

1. The positioning error was reduced from 1.19 nm RMS to 0.68 nm RMS with the new
controller, showing the benefits of a deterministic controller design approach;

2. Under the given disturbances, there exist optimal bearing stiffness and damping
coefficients that result in minimal following errors. The optimal bearing stiffness and
damping coefficients are 1.1× 105 N/m and 237.7 N/

(
m·s−1), respectively;

3. It was found that increasing moving mass helps to reduce following errors, but the
optimal bandwidth will be smaller.

5. Future Work

The current analysis studied the positioning stability of tools when they hold their
position, which is applicable for cutting of flat surfaces. When the tool starts to follow
the high-frequency profiles, there are other disturbances, such as the inertia forces and
cutting forces. Therefore, more detailed modelling of such disturbances can be added in
future works.

Author Contributions: Conceptualization, F.D. and X.L.; methodology, F.D.; validation, D.L. and
Z.Q.; writing—review and editing, F.D. and X.L.; supervision, X.L. and B.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
51905130) and the Heilongjiang Provincial Natural Science Foundation of China (No. LH2020E039).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, F.; Zhang, X.; Weckenmann, A.; Zhang, G.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann.

Manuf. Technol. 2013, 62, 823–846. [CrossRef]
2. Qiao, Z.; Wu, Y.; Wang, B.; Liu, Y.; Qu, D.; Zhang, P. The average effect of multi-divisions cutting method on thermal error in

cutting horizontal grooves array on roller mold. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 233, 1907–1913. [CrossRef]
3. Liu, Y.; Li, D.; Ding, F.; Wu, Y.; Xue, J.; Qiao, Z.; Wang, B. Reduction of pitch error of the micro-prism array in brightness

enhancement film by compensating z-axis positioning accuracy. Appl. Opt. 2021, 60, 5278–5284. [CrossRef] [PubMed]
4. Yuan, W.; Cheung, C.-F. Characterization of Surface Topography Variation in the Ultra-Precision Tool Servo-Based Diamond

Cutting of 3D Microstructured Surfaces. Micromachines 2021, 12, 1448. [CrossRef]

http://doi.org/10.1016/j.cirp.2013.05.003
http://doi.org/10.1177/0954405418805613
http://doi.org/10.1364/AO.424665
http://www.ncbi.nlm.nih.gov/pubmed/34263764
http://doi.org/10.3390/mi12121448


Micromachines 2022, 13, 33 13 of 13

5. Padilla-Garcia, E.A.; Rodriguez-Angeles, A.; Resendiz, J.R.; Cruz-Villar, C.A. Concurrent Optimization for Selection and Control
of AC Servomotors on the Powertrain of Industrial Robots. IEEE Access 2018, 6, 27923–27938. [CrossRef]

6. Alter, D.M.; Tsao, T.-C. Control of Linear Motors for Machine Tool Feed Drives: Design and Implementation of H∞ Optimal
Feedback Control J. Dyn. Syst. Meas. Control. 1996, 118, 649–656. [CrossRef]

7. Alter, D.M.; Tsao, T.-C. Control of Linear Motors for Machine Tool Feed Drives: Experimental Investigation of Optimal Feedfor-
ward Tracking Control J. Dyn. Syst. Meas. Control. 1998, 120, 137–142. [CrossRef]

8. Alter, D.; Tsao, T.-C. Optimal feedforward tracking control of linear motors for machine tool drives. In Proceedings of the 1995
American Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; Volume 1, pp. 210–214.

9. Dumanli, A.; Sencer, B. Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback. Precis. Eng.
2018, 54, 254–268. [CrossRef]

10. Huang, W.-W.; Li, L.; Li, Z.-L.; Zhu, Z.; Zhu, L.-M. Robust high-bandwidth control of nano-positioning stages with Kalman filter
based extended state observer and H∞ control. Rev. Sci. Instrum. 2021, 92, 065003. [CrossRef] [PubMed]

11. Zhu, F.; Wang, H.; Tian, Y. Optimal law based improved reset PID control and application to HDD head-positioning systems. In
Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China,
19–21 May 2017; pp. 258–262.

12. Mendoza-Mondragon, F.; Hernandez-Guzman, V.M.; Rodriguez-Resendiz, J. Robust Speed Control of Permanent Magnet
Synchronous Motors Using Two-Degrees-of-Freedom Control. IEEE Trans. Ind. Electron. 2018, 65, 6099–6108. [CrossRef]

13. Zheng, C.; Su, Y.; Mercorelli, P. A simple nonlinear PD control for faster and high-precision positioning of servomechanisms with
actuator saturation. Mech. Syst. Signal Process. 2019, 121, 215–226. [CrossRef]

14. Li, Z.; Guan, C.; Dai, Y.; Xue, S.; Yin, L. Comprehensive Design Method of a High-Frequency-Response Fast Tool Servo System
Based on a Full-Frequency Error Control Algorithm. Micromachines 2021, 12, 1354. [CrossRef] [PubMed]

15. Hama, T.; Sato, K. High-speed and high-precision tracking control of ultrahigh-acceleration moving-permanent-magnet linear
synchronous motor. Precis. Eng. 2015, 40, 151–159. [CrossRef]

16. Ramesh, R.; Mannan, M.A.; Poo, A.N. Error compensation in machine tools—A review: Part I: Geometric, cut-ting-force induced
and fixture-dependent errors. Int. J. Mach. Tools Manuf. 2000, 40, 1235–1256. [CrossRef]

17. Ramesh, R.; Mannan, M.; Poo, A. Error compensation in machine tools—A review: Part II: Thermal errors. Int. J. Mach. Tools
Manuf. 2000, 40, 1257–1284. [CrossRef]

18. Zhou, K.; Doyle, J.C. Essentials of Robust Control; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 104.
19. Sperilă, A.; Ciubotaru, B.D.; Oară, C. The optimal H2 controller for generalized discrete-time sys-tems. Automatica 2021,

133, 109889. [CrossRef]
20. Ding, F.; Luo, X.; Zhong, W.; Chang, W. Design of a new fast tool positioning system and systematic study on its positioning

stability. Int. J. Mach. Tools Manuf. 2019, 142, 54–65. [CrossRef]

http://doi.org/10.1109/ACCESS.2018.2840537
http://doi.org/10.1115/1.2802339
http://doi.org/10.1115/1.2801310
http://doi.org/10.1016/j.precisioneng.2018.06.002
http://doi.org/10.1063/5.0048870
http://www.ncbi.nlm.nih.gov/pubmed/34243543
http://doi.org/10.1109/TIE.2017.2786203
http://doi.org/10.1016/j.ymssp.2018.11.017
http://doi.org/10.3390/mi12111354
http://www.ncbi.nlm.nih.gov/pubmed/34832766
http://doi.org/10.1016/j.precisioneng.2014.11.005
http://doi.org/10.1016/S0890-6955(00)00009-2
http://doi.org/10.1016/S0890-6955(00)00010-9
http://doi.org/10.1016/j.automatica.2021.109889
http://doi.org/10.1016/j.ijmachtools.2019.04.008

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Experimental Determination of the System Model 
	Modelling of Disturbances and Weighting Functions 
	Modelling of Following Errors 

	Results 
	Closed-Loop Response with Optimal Control 
	Study on the Influences of Structural Parameters on Positioning Following Error 
	Influence of Moving Mass 
	Influence of Flexure Bearing Stiffness and Damping 


	Conclusions 
	Future Work 
	References

