Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems
Abstract
:1. Introduction
2. Recent Progress in Structural Design for Self-Powered Systems
2.1. Working Principle of TENG
2.2. Structural Flexibility for High-Performance Energy Conversion
2.2.1. Design of Rich Energy Collection Channels
2.2.2. Increase Surface Charge Density
2.2.3. Design for Reducing Power Loss
2.3. Flexible TENG for Detection of Mechanical Stimuli
2.3.1. Highly Customized Design
2.3.2. Multiple Components Designed for Coordinated Operation
2.3.3. Bionic Design and Improvement of Biocompatibility
2.3.4. Highly Sensitive Textile Structure
2.4. Structural Design for Reliable Output in Extreme Conditions
2.4.1. Corrosion Resistance
2.4.2. Wear Resistance
2.4.3. Stretchability
2.4.4. High-Temperature Resistance
2.4.5. Self-Luminescence
2.5. Flexible Design toward Multifunctionality
2.5.1. Multistimuli Perception
2.5.2. Multi-Working Mode
3. Structural Flexibility Promotes Self-Powered Systems
3.1. Tactile Sensors
3.2. Display
3.3. Medical Devices
3.4. Cathodic Protection Device
4. Conclusions and Perspectives
4.1. Increase Output Power
4.2. Higher Sensitivity
4.3. Comfortability and Stability
4.4. Environmental Tolerance
4.5. Multifunctionality
4.6. Cost Reduction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yokota, T.; Fukuda, K.; Someya, T. Recent Progress of Flexible Image Sensors for Biomedical Applications. Adv. Mater. 2021, 33, 2004416. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Kim, D.H.; Price, J.T.; Lee, J.Y.; Chung, H.U.; Allen, E.; Walter, J.R.; Jeong, H.; Cao, J.; Kulikova, E.; et al. Comprehensive Pregnancy Monitoring with a Network of Wireless, Soft, and Flexible Sensors in High- and Low-Resource Health Settings. Proc. Natl. Acad. Sci. USA 2021, 118, e2100466118. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Dao, D.V.; Mitsubayashi, K. Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEE J. Trans. Elec. Eng. 2022, 17, 626–636. [Google Scholar] [CrossRef]
- Li, S.; Cao, P.; Li, F.; Asghar, W.; Wu, Y.; Xiao, H.; Liu, Y.; Zhou, Y.; Yang, H.; Zhang, Y.; et al. Self-Powered Stretchable Strain Sensors for Motion Monitoring and Wireless Control. Nano Energy 2022, 92, 106754. [Google Scholar] [CrossRef]
- Vu, C.C.; Kim, J. Fractal Structures in Flexible Electronic Devices. Mater. Today Phys. 2022, 27, 100795. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhang, Z.; Zhao, L.; Lee, C.; Luo, G.; Mao, Q.; Yang, P.; Lin, Q.; Li, X.; et al. Self-Sustained Autonomous Wireless Sensing Based on a Hybridized TENG and PEG Vibration Mechanism. Nano Energy 2021, 80, 105555. [Google Scholar] [CrossRef]
- Huynh, N.D.; Lin, Z.-H.; Choi, D. Dynamic Balanced Hybridization of TENG and EMG via Tesla Turbine for Effectively Harvesting Broadband Mechanical Pressure. Nano Energy 2021, 85, 105983. [Google Scholar] [CrossRef]
- Ghaderiaram, A.; Bazrafshan, A.; Firouzi, K.; Kolahdouz, M. A Multi-Mode R-TENG for Self-Powered Anemometer under IoT Network. Nano Energy 2021, 87, 106170. [Google Scholar] [CrossRef]
- Fernandes, C.; Taurino, I. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors 2022, 22, 3062. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Rim, Y.S.; Min, W.K.; Park, K.; Kim, H.T.; Hwang, G.; Song, J.; Kim, H.J. Biocompatible and Biodegradable Neuromorphic Device Based on Hyaluronic Acid for Implantable Bioelectronics. Adv. Funct. Mater. 2021, 31, 2107074. [Google Scholar] [CrossRef]
- Picco, C.J.; Domínguez-Robles, J.; Utomo, E.; Paredes, A.J.; Volpe-Zanutto, F.; Malinova, D.; Donnelly, R.F.; Larrañeta, E. 3D-Printed Implantable Devices with Biodegradable Rate-Controlling Membrane for Sustained Delivery of Hydrophobic Drugs. Drug Deliv. 2022, 29, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Yang, J.; Pu, W. Bioinspired Soft Robotic Fingers with Sequential Motion Based on Tendon-Driven Mechanisms. Soft Robot. 2022, 9, 531–541. [Google Scholar] [CrossRef]
- Youssef, S.M.; Soliman, M.; Saleh, M.A.; Mousa, M.A.; Elsamanty, M.; Radwan, A.G. Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. Micromachines 2022, 13, 110. [Google Scholar] [CrossRef]
- Piazzoni, M.; Piccoli, E.; Migliorini, L.; Milana, E.; Iberite, F.; Vannozzi, L.; Ricotti, L.; Gerges, I.; Milani, P.; Marano, C.; et al. Monolithic Three-Dimensional Functionally Graded Hydrogels for Bioinspired Soft Robots Fabrication. Soft Robot. 2022, 9, 224–232. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Li, W.; Zu, L.; Tang, W.; Wang, Z.L. Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy. Adv. Funct. Mater. 2021, 31, 2104770. [Google Scholar] [CrossRef]
- Kim, M.-H.; Nam, S.; Oh, M.; Lee, H.-J.; Jang, B.; Hyun, S. Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots. Soft Robot. 2022, 9, 486–496. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.; Wu, M.; Sun, Z.; Gao, M.; Li, W.; Li, C.; Yu, H.; Zhang, C.; Xu, Y.; et al. A Flexible Triboelectric Nanogenerator Based on Cellulose-Reinforced MXene Composite Film. Adv. Mater. Interfaces 2022, 9, 2102124. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Ping, J.; He, J.; Wu, J. A Flexible, Recyclable, and High-Performance Pullulan-Based Triboelectric Nanogenerator (TENG). Adv. Mater. Technol. 2020, 5, 1900905. [Google Scholar] [CrossRef]
- Qian, Y. Facile Synthesis of Sub-10 Nm ZnS/ZnO Nanoflakes for High-Performance Flexible Triboelectric Nanogenerators. Nano Energy 2021, 88, 106256. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, T.; Li, Y.; Wei, D.; Tao, B.; Yin, Z.; Zhang, C.; Wu, H. Multidimensional Force Sensors Based on Triboelectric Nanogenerators for Electronic Skin. ACS Appl. Mater. Interfaces 2021, 13, 56320–56328. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Xu, L.; Cheng, X.; Li, Y.; Huang, X.; Guo, W.; Liu, S.; Wang, Z.L.; Wu, H. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing. Adv. Funct. Mater. 2020, 30, 1907312. [Google Scholar] [CrossRef]
- Wang, Z.L. Self-Powered Nanosensors and Nanosystems. Adv. Mater. 2012, 24, 280–285. [Google Scholar] [CrossRef]
- Cai, T.; Liu, X.; Ju, J.; Lin, H.; Ruan, H.; Xu, X.; Lu, S.; Li, Y. Flexible Cellulose/Collagen/Graphene Oxide Based Triboelectric Nanogenerator for Self-Powered Cathodic Protection. Mater. Lett. 2022, 306, 130904. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Zou, Y.; Zhang, C.; Zheng, B.; Huang, C.; Zhang, B.; Xing, C.; Xu, Y.; Wang, J. Performance-Enhanced Flexible Triboelectric Nanogenerator Based on Gold Chloride-Doped Graphene. ACS Appl. Electron. Mater. 2020, 2, 1106–1112. [Google Scholar] [CrossRef]
- Dong, S.; Xu, F.; Sheng, Y.; Guo, Z.; Pu, X.; Liu, Y. Seamlessly Knitted Stretchable Comfortable Textile Triboelectric Nanogenerators for E-Textile Power Sources. Nano Energy 2020, 78, 105327. [Google Scholar] [CrossRef]
- Comparative Study on the Contact-Separation Mode Triboelectric Nanogenerator. J. Electrost. 2022, 116, 103685. [CrossRef]
- Ji, S.; Fu, T.; Hu, Y. Effect of Surface Texture on the Output Performance of Lateral Sliding-Mode Triboelectric Nanogenerator. J. Phys. Conf. Ser. 2020, 1549, 042095. [Google Scholar] [CrossRef]
- Manjari Padhan, A.; Hajra, S.; Sahu, M.; Nayak, S.; Joon Kim, H.; Alagarsamy, P. Single-Electrode Mode TENG Using Ferromagnetic NiO-Ti Based Nanocomposite for Effective Energy Harvesting. Mater. Lett. 2022, 312, 131644. [Google Scholar] [CrossRef]
- Walden, R.; Kumar, C.; Mulvihill, D.M.; Pillai, S.C. Opportunities and Challenges in Triboelectric Nanogenerator (TENG) Based Sustainable Energy Generation Technologies: A Mini-Review. Chem. Eng. J. Adv. 2022, 9, 100237. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Y.; Xu, L.; Zhao, M.; Shi, M.; Wang, Z.L.; Lu, X. Triboelectric Nanogenerators with Simultaneous Outputs in Both Single-Electrode Mode and Freestanding-Triboelectric-Layer Mode. Nano Energy 2019, 66, 104169. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Z.L. Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy. Small 2022, 18, 2107034. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Zhang, Z. Fundamental Theories and Basic Principles of Triboelectric Effect: A Review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Shaukat, R.A.; Chougale, M.Y.; Khan, M.U.; Kim, J.; Bae, J. Particle Triboelectric Nanogenerator (P-TENG). Nano Energy 2022, 100, 107475. [Google Scholar] [CrossRef]
- Wang, Y.; Matin Nazar, A.; Wang, J.; Xia, K.; Wang, D.; Ji, X.; Jiao, P. Rolling Spherical Triboelectric Nanogenerators (RS-TENG) under Low-Frequency Ocean Wave Action. J. Mar. Sci. Eng. 2021, 10, 5. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Wu, Z.; Zhang, L.; Sun, W.; Li, T.; Wang, D.; Zhou, F. Conductive Elastic Sponge-Based Triboelectric Nanogenerator (TENG) for Effective Random Mechanical Energy Harvesting and Ammonia Sensing. Nano Energy 2021, 79, 105422. [Google Scholar] [CrossRef]
- Cao, Y.; Shao, H.; Wang, H.; Li, X.; Zhu, M.; Fang, J.; Cheng, T.; Lin, T. A Full-Textile Triboelectric Nanogenerator with Multisource Energy Harvesting Capability. Energy Convers. Manag. 2022, 267, 115910. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R.X.; et al. A Droplet-Based Electricity Generator with High Instantaneous Power Density. Nature 2020, 578, 392–396. [Google Scholar] [CrossRef]
- Fan, Y.; Li, S.; Tao, X.; Wang, Y.; Liu, Z.; Chen, H.; Wu, Z.; Zhang, J.; Ren, F.; Chen, X.; et al. Negative Triboelectric Polymers with Ultrahigh Charge Density Induced by Ion Implantation. Nano Energy 2021, 90, 106574. [Google Scholar] [CrossRef]
- Sahoo, M.; Lai, S.-N.; Wu, J.-M.; Wu, M.-C.; Lai, C.-S. Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator. Nanomaterials 2021, 11, 2276. [Google Scholar] [CrossRef]
- Zhong, J.; Qian, S.; Wang, X.; Yang, C.; He, J.; Hou, X.; Chou, X. An Omnidirectional Stretchable Hyper-Elastic Dielectric Composed Triboelectric Textile for Energy Harvesting. Mater. Lett. 2022, 306, 130859. [Google Scholar] [CrossRef]
- Zhang, Y.; Lyu, F.; Yang, P.; Wu, W.; Gao, J. IoT Intelligence Empowered by End-Edge-Cloud Orchestration. China Commun. 2022, 19, 152–156. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, X.; Geng, W.; Mu, J.; Zhang, L.; Wang, X.; He, J.; Xiong, J.; Chou, X. Human Movement Monitoring and Behavior Recognition for Intelligent Sports Using Customizable and Flexible Triboelectric Nanogenerator. Sci. China Technol. Sci. 2022, 65, 826–836. [Google Scholar] [CrossRef]
- Yuan, Z.; Shen, G.; Pan, C.; Wang, Z.L. Flexible Sliding Sensor for Simultaneous Monitoring Deformation and Displacement on a Robotic Hand/Arm. Nano Energy 2020, 73, 104764. [Google Scholar] [CrossRef]
- Zhu, G.; Ren, P.; Yang, J.; Hu, J.; Dai, Z.; Chen, H.; Li, Y.; Li, Z. Self-Powered and Multi-Mode Flexible Sensing Film with Patterned Conductive Network for Wireless Monitoring in Healthcare. Nano Energy 2022, 98, 107327. [Google Scholar] [CrossRef]
- Zhao, X. Fingerprint-Inspired Electronic Skin Based on Triboelectric Nanogenerator for Fine Texture Recognition. Nano Energy 2021, 8, 106001. [Google Scholar] [CrossRef]
- Yu, J.; Hou, X.; He, J.; Cui, M.; Wang, C.; Geng, W.; Mu, J.; Han, B.; Chou, X. Ultra-Flexible and High-Sensitive Triboelectric Nanogenerator as Electronic Skin for Self-Powered Human Physiological Signal Monitoring. Nano Energy 2020, 69, 104437. [Google Scholar] [CrossRef]
- Feng, P.-Y.; Xia, Z.; Sun, B.; Jing, X.; Li, H.; Tao, X.; Mi, H.-Y.; Liu, Y. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. ACS Appl. Mater. Interfaces 2021, 13, 16916–16927. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Ma, L.; Yao, Y.; Zhu, X.; Peng, L.; Liu, X.; Li, K.; Qu, M. A Humidity-Resistant, Stretchable and Wearable Textile-Based Triboelectric Nanogenerator for Mechanical Energy Harvesting and Multifunctional Self-Powered Haptic Sensing. Chem. Eng. J. 2021, 423, 130200. [Google Scholar] [CrossRef]
- Liu, S.; Ma, K.; Yang, B.; Li, H.; Tao, X. Textile Electronics for VR/AR Applications. Adv. Funct. Mater. 2021, 31, 2007254. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, X.; Sun, Z.; Zhu, S.; Xiong, L.; Liang, Q.; Wong, M.-C.; Huang, L.-B.; Qin, Q.; Hao, J. Highly Integrated, Scalable Manufacturing and Stretchable Conductive Core/Shell Fibers for Strain Sensing and Self-Powered Smart Textiles. Nano Energy 2022, 98, 107240. [Google Scholar] [CrossRef]
- Yan, L.; Mi, Y.; Lu, Y.; Qin, Q.; Wang, X.; Meng, J.; Liu, F.; Wang, N.; Cao, X. Weaved Piezoresistive Triboelectric Nanogenerator for Human Motion Monitoring and Gesture Recognition. Nano Energy 2022, 96, 107135. [Google Scholar] [CrossRef]
- Graham, S.A.; Chandrarathna, S.C.; Patnam, H.; Manchi, P.; Lee, J.-W.; Yu, J.S. Harsh Environment–Tolerant and Robust Triboelectric Nanogenerators for Mechanical-Energy Harvesting, Sensing, and Energy Storage in a Smart Home. Nano Energy 2021, 80, 105547. [Google Scholar] [CrossRef]
- Rodrigues, C.; Kumar, M.; Proenca, M.P.; Gutierrez, J.; Melo, R.; Pereira, A.; Ventura, J. Triboelectric Energy Harvesting in Harsh Conditions: Temperature and Pressure Effects in Methane and Crude Oil Environments. Nano Energy 2020, 72, 104682. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.; Jeong, Y.; Hwang, S.; Yoo, H.; Jeong, Y.; Gu, J.; Mahato, M.; Ko, J.; Jeon, S.; et al. All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems. Adv. Energy Mater. 2022, 12, 2201341. [Google Scholar] [CrossRef]
- Ye, C.; Liu, D.; Peng, X.; Jiang, Y.; Cheng, R.; Ning, C.; Sheng, F.; Zhang, Y.; Dong, K.; Wang, Z.L. A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano 2021, 15, 18172–18181. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.; Kong, X.; Li, S.; Chen, X.; Zhang, L.; Wang, Z.L. Self-Healing and Elastic Triboelectric Nanogenerators for Muscle Motion Monitoring and Photothermal Treatment. ACS Nano 2021, 15, 14653–14661. [Google Scholar] [CrossRef]
- Lu, Z.; Jia, C.; Yang, X.; Zhu, Y.; Sun, F.; Zhao, T.; Zhang, S.; Mao, Y. A Flexible TENG Based on Micro-Structure Film for Speed Skating Techniques Monitoring and Biomechanical Energy Harvesting. Nanomaterials 2022, 12, 1576. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Seong, J.; Bak, B.; Choi, U.H.; Kim, J. Ionic Liquid-Based Molecular Design for Transparent, Flexible, and Fire-Retardant Triboelectric Nanogenerator (TENG) for Wearable Energy Solutions. Nano Energy 2021, 84, 105925. [Google Scholar] [CrossRef]
- Guo, Z.H.; Wang, H.L.; Shao, Y.; Li, L.; Jia, L.; Pu, X. Flexible Ionic Diodes with High Rectifying Ratio and Wide Temperature Tolerance. Adv. Funct. Mater. 2022, 8, 2112432. [Google Scholar] [CrossRef]
- Li, H. Mechanically and Environmentally Stable Triboelectric Nanogenerator Based on High-Strength and Anti-Compression Self-Healing Ionogel. Nano Energy 2021, 11, 106645. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.-T.; Hsiao, Y.-C.; Lai, Y.-C. Mycena Chlorophos-Inspired Autoluminescent Triboelectric Fiber for Wearable Energy Harvesting, Self-Powered Sensing, and as Human–Device Interfaces. Nano Energy 2022, 94, 106944. [Google Scholar] [CrossRef]
- Zeng, Y.; Cheng, Y.; Zhu, J.; Jie, Y.; Ma, P.; Lu, H.; Cao, X.; Wang, Z.L. Self-Powered Sensors Driven by Maxwell’s Displacement Current Wirelessly Provided by TENG. Appl. Mater. Today 2022, 27, 101375. [Google Scholar] [CrossRef]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Chen, Z.; Zhao, D.; Ma, R.; Yi, W.; Zhang, C.; Liu, D.; Chen, X.; Yang, Y.; Wang, X.; et al. Tactile Electronic Skin to Simultaneously Detect and Distinguish between Temperature and Pressure Based on a Triboelectric Nanogenerator. Nano Energy 2020, 75, 105073. [Google Scholar] [CrossRef]
- Yin, F.; Guo, Y. Hybrid Electronic Skin Combining Triboelectric Nanogenerator and Humidity Sensor for Contact and Non-Contact Sensing. Nano Energy 2022, 101, 107541. [Google Scholar] [CrossRef]
- Wu, F.; Lan, B.; Cheng, Y.; Zhou, Y.; Hossain, G.; Grabher, G.; Shi, L.; Wang, R.; Sun, J. A Stretchable and Helically Structured Fiber Nanogenerator for Multifunctional Electronic Textiles. Nano Energy 2022, 101, 107588. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Chen, H.; Zhang, J.; Zhang, H. An Ultrathin Stretchable Triboelectric Nanogenerator with Coplanar Electrode for Energy Harvesting and Gesture Sensing. J. Mater. Chem. A 2017, 5, 12361–12368. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Liu, H.; Zhang, Y.; Lin, Q.; Chen, T.; Sun, L. Multifunctional Self-Powered E-Skin with Tactile Sensing and Visual Warning for Detecting Robot Safety. Adv. Mater. Interfaces 2020, 7, 2000536. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, L.; Wang, Y.; Li, J.; Nie, J.; Wang, Z.L. A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Adv. Funct. Mater. 2021, 31, 2104928. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, X.; Wang, K.; He, D.; Yuan, Z.; Xu, J.; Wu, Z.; Wang, Z.L. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xie, Z.; Yao, K.; Li, D.; Liu, Y.; Gao, Z.; Lu, W.; Chang, L.; Yu, X. Trampoline Inspired Stretchable Triboelectric Nanogenerators as Tactile Sensors for Epidermal Electronics. Nano Energy 2021, 81, 105590. [Google Scholar] [CrossRef]
- Cai, Y.-W.; Zhang, X.-N.; Wang, G.-G.; Li, G.-Z.; Zhao, D.-Q.; Sun, N.; Li, F.; Zhang, H.-Y.; Han, J.-C.; Yang, Y. A Flexible Ultra-Sensitive Triboelectric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 2021, 81, 105663. [Google Scholar] [CrossRef]
- Zhu, G.-J.; Ren, P.-G.; Wang, J.; Duan, Q.; Ren, F.; Xia, W.-M.; Yan, D.-X. A Highly Sensitive and Broad-Range Pressure Sensor Based on Polyurethane Mesodome Arrays Embedded with Silver Nanowires. ACS Appl. Mater. Interfaces 2020, 12, 19988–19999. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.-J.; Ren, P.-G.; Guo, H.; Jin, Y.-L.; Yan, D.-X.; Li, Z.-M. Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires. ACS Appl. Mater. Interfaces 2019, 11, 23649–23658. [Google Scholar] [CrossRef]
- Fan, M.; Wu, L.; Hu, Y.; Qu, M.; Yang, S.; Tang, P.; Pan, L.; Wang, H.; Bin, Y. A Highly Stretchable Natural Rubber/Buckypaper/Natural Rubber (NR/N-BP/NR) Sandwich Strain Sensor with Ultrahigh Sensitivity. Adv. Compos. Hybrid Mater. 2021, 4, 1039–1047. [Google Scholar] [CrossRef]
- Zhang, S.; Qu, C.; Xiao, Y.; Liu, H.; Song, G.; Xu, Y. Flexible Alternating Current Electroluminescent Devices Integrated with High Voltage Triboelectric Nanogenerators. Nanoscale 2022, 14, 4244–4253. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chang, Y.; Liao, J.; Chang, S.; Dai, S.; Shang, Y.; Shan, C.-X.; Dong, L. Integrated, Self-Powered, and Omni-Transparent Flexible Electroluminescent Display System. Nano Energy 2022, 99, 107392. [Google Scholar] [CrossRef]
- Sun, J.; Chang, Y.; Dong, L.; Zhang, K.; Hua, Q.; Zang, J.; Chen, Q.; Shang, Y.; Pan, C.; Shan, C. MXene Enhanced Self-Powered Alternating Current Electroluminescence Devices for Patterned Flexible Displays. Nano Energy 2021, 86, 106077. [Google Scholar] [CrossRef]
- Wei, L.; Wang, J.-W.; Gao, X.-H.; Wang, H.-Q.; Wang, X.-Z.; Ren, H. Enhanced Dielectric Properties of a Poly(Dimethyl Siloxane) Bimodal Network Percolative Composite with MXene. ACS Appl. Mater. Interfaces 2020, 12, 16805–16814. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Sun, J.; Dong, L.; Jiao, F.; Chang, S.; Wang, Y.; Liao, J.; Shang, Y.; Wu, W.; Qi, Y.; et al. Self-Powered Multi-Color Display Based on Stretchable Self-Healing Alternating Current Electroluminescent Devices. Nano Energy 2022, 95, 107061. [Google Scholar] [CrossRef]
- Chang, X.; Chen, L.; Chen, J.; Zhu, Y.; Guo, Z. Advances in Transparent and Stretchable Strain Sensors. Adv. Compos. Hybrid Mater. 2021, 4, 435–450. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Chang, X.; Pan, D.; Song, G.; Guo, Z.; Naik, N. Recent Progress in Essential Functions of Soft Electronic Skin. Adv. Funct. Mater. 2021, 31, 2104686. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Yang, S.; Tao, X.; Zi, Y.; Daoud, W.A. Solvent-Free Adhesive Ionic Elastomer for Multifunctional Stretchable Electronics. Nano Energy 2022, 91, 106611. [Google Scholar] [CrossRef]
- Zhou, K.; Xu, W.; Yu, Y.; Zhai, W.; Yuan, Z.; Dai, K.; Zheng, G.; Mi, L.; Pan, C.; Liu, C.; et al. Tunable and Nacre-Mimetic Multifunctional Electronic Skins for Highly Stretchable Contact-Noncontact Sensing. Small 2021, 17, 2100542. [Google Scholar] [CrossRef]
- Zhu, G.; Ren, P.; Hu, J.; Yang, J.; Jia, Y.; Chen, Z.; Ren, F.; Gao, J. Flexible and Anisotropic Strain Sensors with the Asymmetrical Cross-Conducting Network for Versatile Bio-Mechanical Signal Recognition. ACS Appl. Mater. Interfaces 2021, 13, 44925–44934. [Google Scholar] [CrossRef]
- Liu, G.; Xu, S.; Liu, Y.; Gao, Y.; Tong, T.; Qi, Y.; Zhang, C. Flexible Drug Release Device Powered by Triboelectric Nanogenerator. Adv. Funct. Mater. 2020, 30, 1909886. [Google Scholar] [CrossRef]
- Qin, Y.; Mo, J.; Liu, Y.; Zhang, S.; Wang, J.; Fu, Q.; Wang, S.; Nie, S. Stretchable Triboelectric Self-Powered Sweat Sensor Fabricated from Self-Healing Nanocellulose Hydrogels. Adv. Funct. Mater. 2022, 32, 2201846. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Kottapalli, A.G.P.; Pei, Y. Bioinspired Sweat-Resistant Wearable Triboelectric Nanogenerator for Movement Monitoring during Exercise. Nano Energy 2022, 95, 107018. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Thakor, N.V.; Lee, C. Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode. ACS Nano 2019, 13, 3589–3599. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Suo, H.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z.; Zhou, N.; Zhang, L.; Tao, J.; Zhu, J. Self-Powered and Photothermal Electronic Skin Patches for Accelerating Wound Healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Zhang, Z.; Kang, Y.; Sun, M.; Ma, L. Preparation of a Superhydrophobic TiN/PTFE Composite Film toward Self-Cleaning and Corrosion Protection Applications. J. Mater. Sci. 2021, 56, 1413–1425. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Ren, C.; Ju, P.; Huang, Y.; Zhang, F.; Zhao, F.; Zhang, Z.; Zhang, D. Detection of Corrosion Inhibitor Adsorption via a Surface-Enhanced Raman Spectroscopy (SERS) Silver Nanorods Tape Sensor. Sens. Actuators B Chem. 2020, 321, 128617. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Zhang, D.; Huang, Y.; Huang, L.; Wang, P.; Qian, H.; Li, X.; Terryn, H.A.; Mol, J.M.C. Dual-Action Self-Healing Protective Coatings with Photothermal Responsive Corrosion Inhibitor Nanocontainers. Chem. Eng. J. 2021, 404, 127118. [Google Scholar] [CrossRef]
- Rodrigues, C.; Ramos, M.; Esteves, R.; Correia, J.; Clemente, D.; Gonçalves, F.; Mathias, N.; Gomes, M.; Silva, J.; Duarte, C.; et al. Integrated Study of Triboelectric Nanogenerator for Ocean Wave Energy Harvesting: Performance Assessment in Realistic Sea Conditions. Nano Energy 2021, 84, 105890. [Google Scholar] [CrossRef]
- Xing, J.; Tao, P.; Wu, Z.; Xing, C.; Liao, X.; Nie, S. Nanocellulose-Graphene Composites: A Promising Nanomaterial for Flexible Supercapacitors. Carbohydr. Polym. 2019, 207, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, W.; Li, T.; Wang, D. Hydrophobic MAO/FSG Coating Based TENG for Self-Healable Energy Harvesting and Self-Powered Cathodic Protection. Sci. China Technol. Sci. 2022, 65, 726–734. [Google Scholar] [CrossRef]
- Sun, W.; Luo, N.; Liu, Y.; Li, H.; Wang, D. A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection. ACS Appl. Mater. Interfaces 2022, 14, 10498–10507. [Google Scholar] [CrossRef]
- Sun, W.; Wang, N.; Li, J.; Xu, S.; Song, L.; Liu, Y.; Wang, D. Humidity-Resistant Triboelectric Nanogenerator and Its Applications in Wind Energy Harvesting and Self-Powered Cathodic Protection. Electrochim. Acta 2021, 391, 138994. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Lu, Y.; Mi, Y.; Meng, J.; Cao, X.; Wang, N. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines 2022, 13, 1586. https://doi.org/10.3390/mi13101586
Zhao Z, Lu Y, Mi Y, Meng J, Cao X, Wang N. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines. 2022; 13(10):1586. https://doi.org/10.3390/mi13101586
Chicago/Turabian StyleZhao, Zequan, Yin Lu, Yajun Mi, Jiajing Meng, Xia Cao, and Ning Wang. 2022. "Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems" Micromachines 13, no. 10: 1586. https://doi.org/10.3390/mi13101586
APA StyleZhao, Z., Lu, Y., Mi, Y., Meng, J., Cao, X., & Wang, N. (2022). Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines, 13(10), 1586. https://doi.org/10.3390/mi13101586