Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Prototype of the Sensor
2.2. The Fabrication Process of the Sensor
2.3. The Pictures of the Fabricated Dielectrics and the Electrodes
3. Results and Discussion
3.1. The Finite Element Simulation Results of the Dielectrics
3.2. The Testing System and Results of the Dielectrics
3.3. The Application Testing Results of the Sensors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, S.T.; Peng, H.; Sun, Q. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Shi, Y. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Bahadir, S.K. Flexible temperature sensors: A review. Sens. Actuators A Phys. 2020, 315, 112282. [Google Scholar] [CrossRef]
- Zazoum, B.; Batoo, K.M.; Khan, M.A.A. Recent Advances in Flexible Sensors and Their Applications. Sensors 2022, 22, 4653. [Google Scholar] [CrossRef]
- Kong, D.; Yang, G.; Pang, G.; Ye, Z.; Lv, H.; Yu, Z.; Wang, F.; Wang, X.V.; Xu, K.; Yang, H. Bioinspired Co-Design of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Adv. Intell. Syst. 2022, 4, 2200050. [Google Scholar] [CrossRef]
- Ye, Z.; Pang, G.; Xu, K.; Hou, Z.; Lv, H.; Shen, Y.; Yang, G. Soft Robot Skin with Conformal Adaptability for On-Body Tactile Perception of Collaborative. IEEE Robot. Autom. Lett. 2022, 7, 5127–5134. [Google Scholar] [CrossRef]
- Luo, H.; Pang, G.; Xu, K.; Ye, Z.; Yang, H.; Yang, G. A Fully Printed Flexible Sensor Sheet for Simultaneous Proximity–Pressure–Temperature Detection. Adv. Mater. Technol. 2021, 6, 2100616. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Di, C. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Xie, M.; Hisano, K.; Zhu, M. Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 2019, 4, 1800626. [Google Scholar] [CrossRef]
- Meng, L.; Turner, A.P.F.; Mak, W.C. Soft and flexible material-based affinity sensors. Biotechnol. Adv. 2020, 39, 107398. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Q.; Bi, Y. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators A Phys. 2021, 321, 112425. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Cho, S. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054. [Google Scholar] [CrossRef] [PubMed]
- Schlicke, H.; Rebber, M.; Kunze, S. Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale 2016, 8, 183–186. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Zhu, P. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 35968–35976. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Shu, Y.; Wang, X.F. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Chortos, A.; Yu, G. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.; Tee, B.C.K.; Mei, J. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, H.; Zhu, W. Muscle-Inspired MXene Conductive Hydrogels with Anisotropy and Low-Temperature Tolerance for Wearable Flexible Sensors and Arrays. Adv. Funct. Mater. 2021, 31, 2105264. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Cao, D. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces 2017, 9, 12147–12164. [Google Scholar] [CrossRef]
- Tian, H.; Shu, Y.; Cui, Y.L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699–705. [Google Scholar] [CrossRef]
- Dai, H.; Thostenson, E.T. Large-area carbon nanotube-based flexible composites for ultra-wide range pressure sensing and spatial pressure mapping. ACS Appl. Mater. Interfaces 2019, 11, 48370–48380. [Google Scholar] [CrossRef] [PubMed]
- Parida, K.; Bhavanasi, V.; Kumar, V. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 2017, 10, 3557–3570. [Google Scholar] [CrossRef]
- Alcheikh, N.; Hajjaj, A.Z.; Younis, M.I. Highly sensitive and wide-range resonant pressure sensor based on the veering phenomenon. Sens. Actuators A Phys. 2019, 300, 111652. [Google Scholar] [CrossRef]
- Ruth, S.R.A.; Beker, L.; Tran, H. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 2020, 30, 1903100. [Google Scholar] [CrossRef]
- Ruth, S.R.A.; Bao, Z. Designing tunable capacitive pressure sensors based on material properties and microstructure geometry. ACS Appl. Mater. Interfaces 2020, 12, 58301–58316. [Google Scholar] [CrossRef]
- Yang, J.; Luo, S.; Zhou, X. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997–15006. [Google Scholar] [CrossRef]
- Chen, L.; Mehregany, M. A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement. Sens. Actuators A Phys. 2008, 145, 2–8. [Google Scholar] [CrossRef]
- Xiong, Y.; Shen, Y.; Tian, L. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 2020, 70, 104436. [Google Scholar] [CrossRef]
- Zhou, Q.; Ji, B.; Wei, Y. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 2019, 7, 27334–27346. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Chhetry, A. A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens. J. 2017, 17, 6558–6564. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Qing, X. A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuators A Phys. 2019, 299, 111579. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, S.; Yue, W. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS Appl. Mater. Interfaces 2019, 11, 48594–48603. [Google Scholar] [CrossRef]
- Guo, Z.; Mo, L.; Ding, Y. Printed and flexible capacitive pressure sensor with carbon nanotubes based composite dielectric layer. Micromachines 2019, 10, 715. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Bi, H.; Zhou, Y. Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon 2017, 114, 209–216. [Google Scholar] [CrossRef]
- Zhao, T.; Li, T.; Chen, L. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Appl. Mater. Interfaces 2019, 11, 29466–29473. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Song, Y.; Guo, H. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 2018, 51, 496–503. [Google Scholar] [CrossRef]
- Li, W.; Jin, X.; Han, X. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Ruth, S.R.A.; Feig, V.R.; Tran, H. Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 2020, 30, 2003491. [Google Scholar] [CrossRef]
- Pignanelli, J.; Schlingman, K.; Carmichael, T.B. A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens. Actuators A Phys. 2019, 285, 427–436. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M.; Maddipatla, D. Highly sensitive porous PDMS-based capacitive pressure sensors fabricated on fabric platform for wearable applications. ACS Sens. 2021, 6, 938–949. [Google Scholar] [CrossRef]
- Ramalingame, R.; Lakshmanan, A.; Müller, F. Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite. J. Sens. Sens. Syst. 2019, 8, 87–94. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Jie, T.A.O.; Zhang, J.L. Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10% Mg composites. Trans. Nonferr. Met. Soc. China 2011, 21, 1074–1079. [Google Scholar] [CrossRef]
- Xia, J.; Wang, X.; Zhang, J.; Kong, C.; Huang, W.; Zhang, X. Flexible Dual-Mechanism Pressure Sensor Based on Ag Nanowire Electrodes for Nondestructive Grading and Quality Monitoring of Fruits. ACS Appl. Nano Mater. 2022, 5, 10652–10662. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Kim, G.; Kim, Y.; Kang, S.; Cho, S.; Kim, S.; Kim, J.-K.; Lee, W.; Kim, D.-E.; et al. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small 2017, 13, 1700368. [Google Scholar] [CrossRef]
- Chen, S.; Zhuo, B.; Guo, X. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl. Mater. Interfaces 2016, 8, 20364–20370. [Google Scholar] [CrossRef]
- Keum, K.; Cho, S.S.; Jo, J.W.; Park, S.K.; Kim, Y.H. Mechanically robust textile-based strain and pressure multimodal sensors using metal nanowire/polymer conducting fibers. Iscience 2022, 25, 104032. [Google Scholar] [CrossRef]
- Wei, P.; Guo, X.; Qiu, X.; Yu, D. Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane. Nanotechnology 2019, 30, 455501. [Google Scholar] [CrossRef]
Electrodes | Dielectric | Sensitivity (Dynamic Range) | Response Time (ms) | Ref. |
---|---|---|---|---|
PDMS/Ag Nanowire | PDMS/ZnO | 0.0178 (0–16 kPa) 0.0057 (16–100 kPa) | 130 (loading) 190 (unloading) | [43] |
Graphite | PDMS | 0.62 (0–2 kPa) 0.28 (2–6 kPa) 0.06 (6–10 kPa) | 200 (loading) 400 (unloading) | [44] |
Indium oxide/Polyethylene terephthalate (PET) | PDMS | 0.01 (0–200 kPa) 0.0009 (200–1000 kPa) | 15 (loading) | [45] |
Ag Nanowire/PEDOT:PSS | Ion-gel film | 0.32 (1 Pa–10 kPa) 0.07 (10–50 kPa) | 227 (loading) 232 (unloading) | [46] |
Cu | PDMS and carbon conductive paste | 1.1 (4 Pa–10 kPa) 0.4 (10–100 kPa) | 60 (loading) 120 (unloading) | [47] |
Copper and MWCNTs | Porous PDMS and MWCNTs | 0.0125 (0–200 kPa) 0.003 (200–1200 kPa) | 100 (loading) 100 (unloading) | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Guo, C.; Ye, X.; Pan, Y.; Tu, J.; Wu, Z.; Chen, Z.; Liu, X.; Huang, J.; Ren, Q.; et al. Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. Micromachines 2022, 13, 1588. https://doi.org/10.3390/mi13101588
Yu H, Guo C, Ye X, Pan Y, Tu J, Wu Z, Chen Z, Liu X, Huang J, Ren Q, et al. Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. Micromachines. 2022; 13(10):1588. https://doi.org/10.3390/mi13101588
Chicago/Turabian StyleYu, Huiyang, Chengxi Guo, Xin Ye, Yifei Pan, Jiacheng Tu, Zhe Wu, Zefang Chen, Xueyang Liu, Jianqiu Huang, Qingying Ren, and et al. 2022. "Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity" Micromachines 13, no. 10: 1588. https://doi.org/10.3390/mi13101588
APA StyleYu, H., Guo, C., Ye, X., Pan, Y., Tu, J., Wu, Z., Chen, Z., Liu, X., Huang, J., Ren, Q., & Li, Y. (2022). Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. Micromachines, 13(10), 1588. https://doi.org/10.3390/mi13101588