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Abstract: Fault diagnosis methods based on deep learning have progressed greatly in recent years.
However, the limited training data and complex work conditions still restrict the application of these
intelligent methods. This paper proposes an intelligent bearing fault diagnosis method, i.e., Siamese
Vision Transformer, suiting limited training data and complex work conditions. The Siamese Vi-
sion Transformer, combining Siamese network and Vision Transformer, is designed to efficiently
extract the feature vectors of input samples in high-level space and complete the classification of
the fault. In addition, a new loss function combining the Kullback-Liebler divergence both direc-
tions is proposed to improve the performance of the proposed model. Furthermore, a new training
strategy termed random mask is designed to enhance input data diversity. A comparative test is
conducted on the Case Western Reserve University bearing dataset and Paderborn dataset and our
method achieves reasonably high accuracy with limited data and satisfactory generation capability
for cross-domain tasks.

Keywords: intelligent fault diagnosis; vision transformer; Siamese network; limited data; domain
generation

1. Introduction

Bearings, as core components of rotating mechanisms, are widely applied in industrial
fields. Faults are highly likely to cause entire mechanical system damage and threat to
the safety of employees [1–4]. Playing a crucial role in the maintenance of mechanical
equipment, many fault diagnosis methods have been proposed. Traditional signal-based
mechanical fault diagnosis methods commonly require manual feature extraction based
on knowledge and prior experience [5]. In recent years, deep learning has made progress
in many areas, such as computer vision [6,7], natural language processing [8,9] and defect
detection [10,11]. Therefore, a large number of fault diagnosis methods based on deep
learning have been developed. Zhao et al. [12] designed a novel intelligent fault diagnosis
method for diagnosing accurately and steadily rolling bearing faults. Their approach was
validated on experimental and practical bearing data. Zhang et al. [13] built a novel neural
network that uses raw temporal signals as input. Their method achieved high accuracy
under complex working conditions. He et al. [14] proposed a bearing fault diagnosis
method based on a new strategy’s sparse auto-encoder whose weights were assigned.
Hu et al. [15] proposed a new method using tensor-aligned invariant subspace learning and
convolutional neural networks for cross-domain bearings fault diagnosis. Zhu et al. [16]
proposed a new fault diagnosis approach based on principal component analysis and deep
belief network. The time-consuming and unreliable manual feature extraction method is
gradually being replaced by deep learning methods [5,17–20].

However, deep learning-based methods usually require a large amount of data for
model training. Collecting a considerable amount of data for every type of failure under
each working condition poses a considerable challenge in actual industrial application
scenarios. Some studies of mechanical fault diagnosis have been conducted using limited

Micromachines 2022, 13, 1656. https://doi.org/10.3390/mi13101656 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13101656
https://doi.org/10.3390/mi13101656
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-4759-6000
https://orcid.org/0000-0003-1915-9487
https://doi.org/10.3390/mi13101656
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13101656?type=check_update&version=2


Micromachines 2022, 13, 1656 2 of 22

data. In [21], Zhang et al. applied the Siamese network to fault diagnosis and designed a
Siamese CNN model reporting good performance with limited training samples. A novel
method termed meta-learning fault diagnosis framework was proposed by Li et al. [22] and
performed excellently under complex working conditions. Li et al. [23] designed a deep
balanced domain adaptation neural network achieving exciting results using limited labeled
training data. Hang et al. [24] used principal component analysis and a two-step clustering
algorithm to develop performance in a high-dimensional unbalanced training dataset. A
new fault diagnosis approach based on generative adversarial network (GAN) and stacked
denoising auto-encoder (SDAE) was proposed by Fu et al. [25], the experimental results
representing high diagnosis accuracy under various working conditions. The Feature Space
Metric-based Meta-learning Model (FSM3) was designed by Wang et al. [26] to address
the challenge of limited training samples. Lu et al. [27] proposed a new cross-domain
DC series fault detection framework based on Lightweight Transfer Convolutional Neural
Networks. A new support vector data description based on machine learning was proposed
by Duan et al. [28] for limited data. Huang et al. [29] proposed a novel method for bearings
fault diagnosis under actual conditions and reported that their model achieved good
performance under limited data with noise labels. Bai et al. [30] proposed a novel method
for bearing fault diagnosis using multi-channel convolution neural network (MCNN) and
a multiscale clipping fusion(MSCF) data augmentation algorithm to suit the challenge of
limited sensor data.

At the same time, conventional learning-based methods usually assume that training
data and testing data are independent and identically distributed. However, it is impractical
to collect sufficient data with the same distribution of test data coming from complex work
conditions. This requires the training data to cover all possible operating conditions:
different working loads, speeds, noise and so on. Such strict assumptions hinder the
application of intelligent fault diagnosis methods in actual industry. From a realistic
perspective, the training data are usually collected from specific operating conditions,
different but similar equipment, or software fault simulations, which may cause different
distributions from tested data. Intelligent diagnosis techniques with a strong in-distribution
assumption can fail when differences develop. In recent years, numerous research studies
have produced a variety of cross-domain diagnosis methods based on transfer learning or
domain adaptation employing data with inconsistencies from various source domains to
break the identically distributed assumption [31,32]. These studies’ fundamental principle
is to build a diagnostic model that can effectively perform in the target domain using the
knowledge of the relevant source domain. Exciting performance enhancements have been
made in a variety of cross-domain scenarios, such as in various work conditions [33,34]
and across different equipment [19,35]. Zhang et al. [34] propose a conditional adversarial
domain generalization aiming to extract domain-invariant features from the different source
domains and generalize to unseen target domains. Li et al. [34] implemented adversarial
domain training to extra generalized features learned from different domains to hold in
new working scenarios. Zheng et al. [36] combine priori knowledge and deep domain
generalization network for fault diagnosis.

Although the above methods have achieved exciting results in both research directions,
studies that put limited data and domain generalization into a unified framework are rare.

In recent years, Transformer has achieved great success in natural language processing
and computer vision. Ding et al. [37] applied Transformer to fault diagnosis of rolling
bearings and proposed a novel method termed time–frequency Transformer which achieved
satisfactory performance. Weng et al. [38] designed a one-dimensional Vision Transformer
with Multiscale Convolution Fusion (MCF-1DViT) combining CNN and Vision Transformer
for bearing fault diagnosis. They reported that their method can significantly improve
diagnosis accuracy and anti-noise ability. Tang et al. [39] introduced integrated learning
into the Vision Transformer model for bearing fault diagnosis and achieved good results.
The exciting performance of these methods shows the great potential of Transformer in the
field of fault diagnosis.
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In the current study, we propose a novel fault diagnosis method to improve the model’s
generation ability to face the two challenges, i.e., limited training data and domain gener-
ation for rolling bearings. First, the time-series signal is converted into a time-frequency
graph with short-time Fourier transform (STFT). Second, a Siamese Vision Transformer
(SViT) is designed to extract feature vectors efficiently and implement classification tasks.
In addition, we design a new loss function, bidirectional Kullback-Liebler divergence
(DKLD), to improve the performance of the proposed model. A new training strategy,
i.e., the random mask, is also proposed to reduce the overfitting risk of the model. The
contributions of this study include the following.

(1) The proposed SViT based on a Siamese network and ViT obtains satisfactory prediction
accuracy in limited data and domain generation tasks.

(2) We obtain a new loss function by combining the KL divergence of the two directions
to improve the proposed model’s performance.

(3) A novel training strategy, random mask, focusing on increasing the diversity of input
data distribution is designed to enhance the generation ability of the model.

(4) The experimental result shows that the proposed method achieves effective accuracy
rates and has satisfactory anti-noise and domain generation ability.

The remainder of this paper is organized as follows. Section 2 details our method,
including the Siamese networks, Vision Transformer, the new loss function bidirectional
KL divergence and random mask strategy. Section 3 presents the experiments, results and
discussion. Finally, conclusions are drawn in Section 4.

2. Siamese Vision Transformer
2.1. The Framework of the Proposed Method

As shown in Figure 1, the proposed method is a Siamese-based neural network using
an improved vision transformer as the backbone. The inputs are a pair of time-frequency
graphs obtained from raw vibration signals through STFT. First, the time-frequency graphs
are divided into 8 × 8 patches. After that, the patches are fed into the Random mask layer
r masking the input patches with a random rate p. Second, the 2D patches are flattened
into 1D vectors through linear projection. Then the class token (a trainable vector with
the same sizeas a patch) is concatenated in the font of the flattened vectors. At the same
time, the positional encoders are added to the vectors. Third, the series vectors are fed into
the transformer encoder constructed with two transformer encoder layers. At the top of
the network, the class token outputs are used to calculate the distance of the two input
time-frequency graphs. The details of the layers are shown in Table 1.

Table 1. Details of the proposed model.

NO. Layer Type Input Size Output Size
Size/Stride (Width × Depth)

1 Input / 64 × 64 × 1
2 Patch layer 64 × 64 × 1 8 × 8 × 64
3 Patch Flatten 8 × 8 × 64 64 × 64
4 Fully-connected 64 × 64 32 × 64
5 Class torken &position endoer 32 × 64 32 × 65
6 Transformer Encoder 32 × 65 32 × 65
7 Transformer Encoder 32 × 65 32 × 65
8 Fully-connected 32 × 1 1
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Figure 1. The overall framework of the proposed method.

2.2. Data Processing

Short-time Fourier transform (STFT) uses a fixed-length nonzero window function to
slide along the time axis, truncating the signal int o segments with the same length. Fourier
transform can be used to obtain the local frequency spectra of the segments, assuming that
these segments are stable. A 2D time-frequency graph is obtained by recombining these
local frequency spectra along the time axis. The formula is presented in Equation (1).

STFT =

∞∫
−∞

x(t)g(t− τ)e−jωtdt, (1)

where x(t) is the original signal and g(t − τ) is the window function applied with the
center point at the time τ.

2.3. Siamese Network

The Siamese network algorithm was proposed by Bromley et al. [40,41] for detecting
forged signatures in 1994. A typical Siamese network consists of two twin networks with
the same structure and parameters. The two networks receive different inputs and are
connected by an energy function calculating a metric in high-level feature space. As shown
in Figure 2, tying the weights of the two subnetworks ensures that two highly similar inputs
are not mapped onto extremely different positions in the feature space by their respective
networks. Besides, the network is symmetrical. Thus, whenever two different inputs are
presented to the twin network, the top connection layer calculates the same metric, just as
the same inputs are inputted into the opposite twin network. The Siamese network can
make full use of the limited training samples to achieve efficient feature extraction using
the same or different sample pairs as the training samples.
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Figure 2. Typical Siamese network architecture.

As shown in Equation (2), f is the hidden layer of the model. The output layer is a fully
connected layer that uses the distance feature vector as input and outputs the probability
that two input data belong to the same category. This layer is obtained using Equation (3),
where simg is the sigmoid function and FC represents the fully connected layer.

d(xi
1, xi

2) =
∣∣∣ f (xi

1)− f (xi
2)
∣∣∣, (2)

P(xi
1, xi

2) = simg(FC(d(xi
1, xi

2))), (3)

The network is optimized with an Adam optimizer, which adaptively sets the learning
rate for each parameter.

2.4. Vision Transformer

A transformer is a neural network model that completely relies on a self-attention
mechanism to maintain the relationship between input and output [42]. Because of the
parallel architecture, which is different from the sequential structure of the traditional recur-
rent neural network, the transformer can consider the global information comprehensively
and be trained in parallel. The architecture of the transformer model is depicted in Figure 3
and primarily comprises an encoder, a decoder and a positional embedding layer. To help
the transformer address the issue of long-term dependency more effectively, positional
embedding is utilized to add the relative positioning information of the input data to the
data processed by the embedding layer. The transformer performs well in many time series
tasks based on the above advantages. However, due to the computational complexity of
the self-attention mechanism, it requires more memory and computational power in the
training and prediction process. Considering the information redundancy between adjacent
pixels, to reduce the computational complexity of the model the vision transformer (ViT)
was proposed in [43].

Due to its global information sensing capability, ViT achieves exciting performance
in the field of image and vision recognition. The structure of the ViT model consists of a
projection of flattened patches, a transformer encoder and a classification head. The input
image is first divided into a series of patches. These image patches are then passed through
an embedding layer and output vectors of a specific length. To preserve the positional
relationship of the input image, position embeddings of the same size as embedded vectors
are added to the image patches. The sequence of image patches is passed to the transformer
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encoder, mainly composed of a multi-head attention layer and an MLP layer. The multi-
head attention layer extracts different levels of self-attention information from the input
through each head. The output of the class token is fed to the MLP head to give the
classification result.
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2.4.1. Patch Embedding Layer

The Patch Embedding Layer transforms a conventional visual problem into a seq2seq
problem through image segmentation and linear projection. As shown in Equation (4),
suppose the input image x ∈ Rh×w×c, where h, w, c represent the image’s height, width
and channel, respectively. P(∗) is the dividing operation and xp ∈ RN×(p×p×c) denotes
the sequence of the divided image, where N, p represent the number of image patches
and width of a patch, respectively. L(∗) is the linear projection and x′p ∈ RN×D denotes
the projected vectors, where D represent the dimension of vector space. Concat(∗) is the
operation of vector concatenate and z ∈ R(N+1)∗D denotes the input of the transformer
encoder, where cls_token is a learnable parameter with the same size as the mapped
vector and the positional coders (position_coder) of the image patches are added to the
vector space.

xp = P(x)
xp
′ = L(xp)

z = position_coder + (Concat(cls_token, x′p))
(4)

2.4.2. Transformer Encoder

A transformer encoder layer is composed of multiple identical stacked module layers.
It mainly contains two sub-layers, i.e., the multi-head self-attention layer and the MLP
feedforward layer. In order to improve the stability of the model in training, each sub-layer
is connected internally using residual and layer normalization.

• MLP layer
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The structure of the MLP is shown in Figure 4, including a fully connected layer,
GELU activation function and dropout. In ViT, the Gaussian error linear unit (GELU)
activation function is used in the feedforward layer. GELU activation function is expressed
as Equation (5).

GeLu(x) = x · 1
2
[1 + er f (

x√
2
)] (5)
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• Multiheaded self-attention layer

The self-attention mechanism enables the network model to extract globally valid
features, but the single-head attention mechanism can only learn the feature representation
of a single representation space. In order to comprehensively extract remote features from
global images, the multi-head self-attention mechanism is used to combine features from
different feature subspaces.

The calculation formula of self-attention is written as Equations (6) and (7).

Attention(Q, K, V) = so f tmax(
Q · KT
√

dk
)V, (6)

(Q, K, V) = XW, (7)

where Q, K, V is the query matrix, key matrix and value matrix, respectively. These matrices
are calculated by multiplying the feature matrix X with the learnable matrices W, d denotes
the dimension of Q, K and V. The multi-head self-attention mechanism uses multiple
self-attention heads to learn features from different representation subspaces and finally
integrates these subspace features through linear mapping. The multi-head self-attention
mechanism can be expressed as Equation (8).

MultiHead(Q, K, V) = Concat(head1, head2, · · · , headn)W (8)

where Concat(∗) is the operation of concatenate and W denotes the weight matrix of projection.
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2.4.3. MLP Head

The MLP header layer consists of a fully connected layer and an activation function for
the classification task of diagnosing faults. In this study, the class token vector processed
by the transformer encoder is fed to the MLP header and the probability value of each fault
category is obtained through the SoftMax function. The final fault category is obtained
according to the maximum probability value.

2.5. Bidirectional KL Divergence

Kullback-Liebler (KL) divergence measures the similarity of a probability distribution
to a reference probability distribution [44,45]. A KL divergence of 0 indicates that the two
distributions are the same. For discrete probability distributions P and Q defined in the
same probability space, the KL divergence [46] from Q to P is defined as Equation (9):

DKKL(P || Q) = ∑i Pi log
Pi
Qi

, (9)

By contrast, the KL divergence from P to Q is defined as Equation (10):

DKL(Q || P) = ∑i Qi log
Qi
Pi

, (10)

Equations (8) and (9) clearly show that the KL divergence is asymmetric. As shown
in Equation (8), in the KL divergence from Q to P, when Pi = 0, regardless of the value
of Qi, Pi log Pi

Qi
= 0. In the two-classification problem, the loss function can only proceed

to one term ( DKL(P||Q) = − log Q0 when P1 = 0 or DKL(P||Q) = − log Q1 when P0 = 0).
To fully measure the difference between the label and the predicted value, we design a new
loss function, called bidirectional KL divergence (DKLD), as shown in Equation (11), where
represents the label value and Qi is the predicting probability of the model.

LDKLD = ∑i Pi log
Pi
Qi

+ ∑i Qi log
Qi
Pi

, (11)

The iteration of gradient descent updates the parameters as shown in Equation (12):

W = W − α ∂LDKLD
∂W

b = b− α ∂LDKLD
∂b

(12)

where W is the model’s weight, b is the bias and α is the learning rate. P is a constant and
the gradient can be calculated as Equation (13).

∂LDKLD
∂W

= ∑i
∂Qi
∂W

(1 + log
Qi
Pi
− Pi

Qi
), (13)

Compared with the gradient of the cross-entropy loss function, as shown in Equation (14),
the gradient of DKLD has an additional coefficient 1 + log Qi

Pi
. This coefficient contributes

to the gradient regardless of whether P approaches 0 or 1. We expect that this characteristic
of DKLD can help to improve the performance of the model in cases with limited training
samples. To prevent calculation errors, we limit the value P to [0.001, 1] during calculations.

∂Lcross_entropy

∂W
= ∑i

∂Qi
∂W

(− Pi
Qi

), (14)

The comparison between DKLD and cross-entropy is presented in Table 2.
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Table 2. Comparison between DKLD and cross-entropy.

Cross-Entropy DKLD

Equation ∑i Pi log( 1
Qi
) ∑i Pi log( Pi

Qi
) + ∑i Qi log(Qi

Pi
)

Gradient ∑i
∂Qi
∂W (− Pi

Qi
) ∑i

∂Qi
∂W (1 + log Qi

Pi
− Pi

Qi
)

2.6. Random Mask Strategy

Similar to dropout, the mask strategy randomly deactivates neuron units in each
forward propagation with probability p during training. Unlike the dropout utility neuron
units, the mask strategy has larger operation granularity and the operating object in
this paper is a patch. The deactivated neurons in low-level layers will affect high-level
neurons. Applying mask strategy directly to the input layer can achieve the effect of data
augmentation and ensemble learning at the same time. Mask is applied on input amounts
to feed the input image cropped randomly and irregularly.

Masking patches with a specific distribution was not enough. Motivated by [47,48],
we randomly changed the mask rate on each forward propagation to obtain a new input
image with the uncertain feature. In this paper, the mask rate p ∼ Uni f orm(0.5, 0.9). The
visualization of the random mask strategy is illustrated in Figure 4.

3. Experiments, Results and Discussion
3.1. Experimental Setup

We set up a series of experiments to verify the prediction accuracy and generation
ability of SViT on the Case Western Reserve University (CWRU) bearing datasets [49,50]
and Paderborn bearing dataset [51]. The test platform is an Ubuntu 18.04, Python 3.7 and
Pytorch with an Intel® CORE™ i7 CPU and an Nvidia GTX 3060 GPU.

3.2. Comparison Models and Evaluation Metric

As shown in Table 3, the proposed model was compared with WDCNN, the Siamese
CNN, PSDAN, FSM3, DeIN and HCAE. WDCNN, in which the first layer is a wide
convolution kernel proposed in [24]. The Siamese CNN was designed by Zhang et al. [29].
PSDAN, FSM3, DeIN and HCAE and were proposed in [26,52–54], respectively. The details
of the comparison methods are shown in Table 4. The SViT model was proposed by our
team and the parameters of the comparison models are listed in Table 1.

Table 3. The comparison methods.

Input Type Method Name Implementation Details

Time-based WDCNN Details referred to [55].
Siamese CNN Details referred to [21].

PSDAN Implementation details referred to [52].
FSM3 Details referred to [26].

Time-Frequency DeIN Details referred to [53].
HCAE Implementation details referred to [54]

SViT (our) As shown in Table 1.

Accuracy, precision, recall and F1 score are used to evaluate the performance of the
proposed model. They can be obtained by the following equations:

accuracy =
TP + TN

TP + FP + FN + TN
, (15)

precision =
TP

TP + FP
, (16)

recall =
TP

TP + FN
, (17)
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F1 =
2 ∗ precision ∗ recall

precision + recall
, (18)

where TP, FP, TN, FN represent true positive, false positive, true negative and false
negative, respectively.

Table 4. Details of the comparison methods.

Layers
WDCNN
(Kernel

Size/Stride)

Siamese CNN
(Kernel

Size/Stride)

PSDAN
(Kernel

Size/Stride)

FSM3
(Kernel

Size/Stride)

DeIN
(Kernel

Size/Stride)

HCAE
(Kernel

Size/Stride)

1 Convolution
(64 × 16/16)

Convolution
(64 × 16/16)

Convolution
(128 × 32/1)

Convolution
(64 × 1/16)

Convolution
(2 × 2 × 64/2)

Convolution
(3 × 3 × 16/2)

2 Pooling
(2 × 16/2)

Pooling
(2 × 16/2)

Pooling
(4 × 32/4)

Pooling
(2 × 1/2)

Offset_low
(3 × 3)

Convolution
(3 × 3 × 32/2)

3 Convolution
(3 × 32/1)

Convolution
(3 × 32/1)

Convolution
(32 × 64/1)

Convolution
(3 × 1/1)

Inception_Resnet
16

Convolution
(3 × 3 × 32/2)

4 Pooling
(2 × 32/1)

Pooling
(2 × 32/1)

Pooling
(4 × 64/4)

Pooling
(2 × 1/2) Reduction Convolution

(3 × 3 × 32/2)

5 Convolution
(3 × 64/1)

Convolution
(3 × 64/1)

Convolution
(8 × 128/1)

Convolution
(3 × 1/1)

Offset_pooling
(3 × 3) Flatten layer

6 Pooling
(2 × 64/2)

Pooling
(2 × 64/2)

Pooling
(4 × 128/4)

Pooling
(2 × 1/2)

Pooling
(3 × 3/1)

Fully-connected
(512 × 64)

7 Convolution
(3 × 64/1)

Convolution
(3 × 64/1)

Convolution
(3 × 128/1)

Convolution
(3 × 1/1)

Convolution
(1 × 1/1)

Fully-connected
(64 × 32)

8 Pooling
(2×64/2)

Pooling
(2×64/2)

Pooling
(4 × 128/4)

Pooling
(2 × 1/2) Dropout

Classifier
(fully-connectied-

Softmax)
(32 × 10)

9 Convolution
(3 × 64/1)

Convolution
(3 × 64/1)

Convolution
(3 × 128/1)

Convolution
(3 × 1/1)

Offset_top
(3 × 3)

Transposed
convolution

(3 × 3 × 32/2)

10 Pooling
(2 × 64/2)

Pooling
(2 × 64/2)

Pooling
(4 × 128/4) Flatten GlobalMax_Pooling

Transposed
convolution

(3 × 3 × 32/2)

11 Flatten-layer Flatten-layer Flatten-layer Fully
Connected Softmax

Transposed
convolution

(3 × 3 × 32/2)

12 Fully-connected
(192 × 100)

Fully-connected
(192 × 100)

Fully-Connected
(512 × 256)

Convolution
(3 × 1/1) Inception-resnet8

Transposed
convolution

(3 × 3 × 16/2)

13 Fully-connected
(100 × 10) Distance layer Fully-Connected

(256 × 128)
Convolution

(3 × 1/1) Reduction Reconstruction

14 - Fully-connected
(100 × 1)

Fully-Connected
(128 × 10)
(128 × 2)

Flatten Inception-resnet4 -

15 - - _ Fully
Connected Dropout -

16 - - _ - Convolution
(2 × 2/1) -

17 - - _ Offset_top -
18 - - _ Pooling -
19 - - _ softmax -

3.3. Case Study 1: CWRU Bearing Datasets

To verify the performance of the proposed method, the 12k drive-end bearing fault
data in the CWRU bearing datasets are selected as the original experimental data. Data
are collected from vibration signals, as shown in Figure 5. Table 5 shows four types of
faults in these data: normal, ball fault, inner race fault and outer race fault. Each fault has
three subtypes: 0.007 inches, 0.014 inches and 0.021 inches. Thus, we have 10 different fault
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types. Each type of fault has three different loads: 1, 2 and 3 hp (with motor speeds of 1772,
1750 and 1730 RPM, respectively), as shown in Table 6. The data under different working
conditions are set as domain generation experimental data. Datasets A, B and C correspond
to working conditions with loads of 1, 2 and 3 hp. Each dataset contained 6000 training
samples and 250 test samples, respectively.
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Table 5. Description of CWRU dataset.

Fault Location None Ball Inner Race Outer Race Load

Fault Diameter (inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Class Labels 1 2 3 4 5 6 7 8 9 10

Dataset A
Train 600 600 600 600 600 600 600 600 600 600

1Test 25 25 25 25 25 25 25 25 25 25

Dataset B
Train 600 600 600 600 600 600 600 600 600 600

2Test 25 25 25 25 25 25 25 25 25 25

Dataset C
Train 600 600 600 600 600 600 600 600 600 60 0

3Test 25 25 25 25 25 25 25 25 25 25

Table 6. Three different working conditions.

Datasets Load/HP Rotational Speed/rpm Damage Size/10−3 in.

A 1 1772 7, 14, 21
B 2 1750 7, 14, 21
C 3 1730 7, 14, 21

We use half of the vibration signals to generate training samples and the remaining
signals to generate the test set. As shown in Figure 6, the training samples are generated
by a sliding window of 2048 points with 80 points of overlapping steps. The test set
samples pass through sliding windows of the same size, but the samples are generated
without overlapping. As shown in Table 5, the dataset includes 19,800 training samples and
750 test samples. Finally, the training and test samples of the proposed model are obtained
through STFT.
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3.3.1. Evaluating the Effectiveness of DKLD

We set up a series of comparative experiments by randomly selecting 60, 90, 120, 200,
300, 600, 900, 1500, 6000 and 19,800 samples from datasets A, B and C. Each experiment
uses 60% of the samples as the training set and the remaining samples as the validation
set. To verify the proposed DKLD loss function’s effectiveness, we use DKLD and cross-
entropy to train our model separately with different samples size and then compare the
test results. As shown in Figure 7, in the cases with a small number of training samples,
DKLD significantly improves the model’s performance compared with that of cross-entropy.
For example, when the sample size is 60 and 90, the accuracy rates of using DKLD are
1.33% and 0.56% higher than that of using cross-entropy, respectively. When the training
sample size is increased to 120 and above, the performance of the two-loss functions is
exceptionally close, reaching more than 99%.
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To improve the understanding of the effect of DKLD, we use t-distributed stochastic
neighbor embedding (t-SNE) to visualize the output of the last hidden fully connected
layer of the model trained with DKLD and cross-entropy in 60 sample sizes. As shown in
Figure 8a,b, the features of DKLD are more divisible than cross-entropy, particularly in the
1 and 3 categories. Figure 8c,d shows the confusion matrix of the results.

3.3.2. The Effect of the Number of Transformer Encoder Layers

To observe the effect of the number of transformer encoders, we tested the perfor-
mance of the proposed model with the different number of transformer encoders in the
cross-domain experiment from dataset C to dataset A (the most difficult cross-domain
task [21]). As shown in Figure 9, the proposed model achieved the best performance
with two transformer encoders. SViT with two transformer encoders is implemented in
follow-up experiments.
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Figure 8. Feature visualization via t-SNE (a,b) and confusion matrix (c,d).
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Figure 9. The accuracy of the proposed model with different numbers of transformer encoders.

3.3.3. Ablation Experiments

To verify the effectiveness of the Random Mask strategy and Siamese network struc-
ture, we set up ablation experiments on cross-domain with 600 training samples. The
proposed method is removed the Random mask strategy and Siamese network structure in
turn. When the Siamese network structure is removed, the distance layer is instead of a
fully connected classifier.
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As shown in Table 7, (w/o) means without. It can be seen that the Random mask
strategy and the Siamese network effectively improve the robustness of the model in
cross-domain tasks.

Table 7. Ablation experiments with 600 training samples.

Methods A-B A-C B-A B-C C-A C-B Average

SViT 97.35 93.64 95.42 97.76 88.75 93.31 94.37
(w/o) Random mask 94.89 87.26 85.67 90.14 87.64 82.75 88.06

(w/o) Siamese network 95.13 91.73 92.11 95.82 86.46 92.15 92.23
(w/o) Random mask
&Siamese network 92.01 82.41 81.43 87.21 78.82 80.21 83.68

3.3.4. Comparison of Results with Different Samples Sizes

Implementing the same experimental setup as above, we evaluate the performance of
various methods by using different numbers of training samples. We repeat the sample
selection process five times for each sample size to generate different training sets to reduce
the bias when randomly selecting a small training set. For each random training sample set,
we repeat the algorithm training four times to address the randomness of the algorithm.
Each series of experiments is repeated 20 times. We use one-shot testing in the Siamese
CNN and our method.

Figure 10 clearly shows that as the amount of training samples increases, the accuracy
of all methods also increases, but their standard deviation decreases. This shows the
sensitivity of the intelligent fault diagnosis method based on deep learning to the amount
of training data.
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Figure 10. Diagnosis results of the proposed method compared with those of the comparison models.

Subsequently, we check whether the proposed SViT model’s accuracy is better than
those of the other models in the cases with limited training samples (e.g., 60 and 90). In both
cases, our model performs better than the other models. Simultaneously, the experimental
results indicate that when the training sample size is increased to 900 and above, all the
algorithms’ performance becomes increasingly similar and their accuracy rates are all
higher than 97%. This comparison proves that the proposed SViT exhibits significant
advantages over the comparison algorithms in cases with limited training samples. Even in
the case of 60 training samples, the proposed algorithm’s accuracy rate still reaches 97.56%.



Micromachines 2022, 13, 1656 15 of 22

3.3.5. Performance in Noisy Environment

In this experiment, we evaluate the performance of the proposed model in a noisy
environment. The model is trained with raw data and then tested with samples added
with white Gaussian noise with different signal-to-noise ratios (SNRs). SNR is defined as
the ratio of the signal power to the noise power and it is frequently expressed in decibels

(dB), as follows:SNRdB = 10 log10(
Psignal
Pniose

), where Psignal denotes the power of the signal
and Pniose indicates the power of noise. The SNR range is from −4dB to 10dB. The higher
the SNR value, the stronger the intensity of noise.

In Figure 11, we examine the effect of training sample size on the test accuracy of
each model in different noisy environments. In Figure 11a,b, SNR = −4 and 0 represent
substantial noise interference. By contrast, in Figure 11c,d, SNR = 4 and 8 represent weak
noise interference. The anti-noise capability of the proposed model is better than those
of the other models. In particular, the advantage is more apparent in cases with intense
noise, as shown in Figure 11a,b. Considering that the proposed method is not specifically
designed to improve the anti-noise, according to the report in [21], we speculate that this
anti-noise ability is derived from the twin network structure.
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Figure 11. Results of different sample sizes in a noisy environment. (a) SNR = −4; (b) SNR = 0;
(c) SNR = 4; (d) SNR = 8.

3.3.6. Domain Generation Experiments

To further verify the domain generalization ability of the proposed model, we conduct
a cross-domain experiment where all models are trained in the source domain and tested
in the target domain. It should be noted that the model does not touch the target domain
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data during training. The experiment was repeated five times for each task. The results of
the cross-domain tasks were observed. The classification accuracies of the experiment are
shown in Table 8, in which A-B refers to training on dataset A and testing on dataset B. The
proposed SViT achieved the best performance among all the methods in all the scenarios.
Specifically, SViT achieved an accuracy of 92.24% in C-A task (the most difficult task),
which was 13.4%, 31.88%, 12.86%, 2.8%, 12.56% and 11.57% higher than WDCNN, Siamese
CNN, PSADAN, FSM3, DeIN and HCAE, respectively. This shows that the proposed
method performs better domain generalization than the comparison methods. Tables 9–11
demonstrate precision, recall and F1 score compressions for cross domain task C-A with
6000 training samples. The results show that the proposed SViT outperformed all of the
compared approaches.

Table 8. Mean classification accuracy (%) with 6000 training samples on CWRU.

Methods A-B A-C B-A B-C C-A C-B Average

WDCNN 97.08 91.48 93.00 91.80 78.84 85.88 89.68
Siamese CNN 99.24 90.40 88.28 90.12 60.36 65.36 82.29

PSADAN 98.10 92.67 90.67 90.86 79.38 92.37 90.68
FSM3 98.14 91.54 93.54 97.36 89.44 96.24 94.38
DeIN 93.14 70.76 76.33 83.17 79.68 76.56 79.94

HCAE 98.67 82.67 89.37 90.37 80.67 76.34 86.35
SViT (our) 99.54 93.82 94.24 99.85 92.24 98.78 96.41

Table 9. Precision (%) comparison for cross-domain task C-A with 6000 training samples on CWRU.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

WDCNN 76.67 78.60 79.17 79.47 77.67 79.41 79.93 76.49 81.27 80.13
Siamese CNN 58.30 58.53 58.79 61.97 58.78 64.67 63.10 59.08 59.94 60.54

PSADAN 75.96 83.21 80.20 79.00 79.47 81.46 77.05 80.07 78.71 79.34
FSM3 88.16 91.90 92.39 92.18 86.82 87.42 89.84 88.45 89.93 88.06
DeIN 79.04 81.63 80.20 77.53 81.51 77.78 81.31 80.00 79.80 78.55

HCAE 78.21 82.56 79.19 80.67 82.23 78.48 85.32 82.90 78.07 79.80
SViT (our) 91.30 92.47 93.40 93.16 93.46 91.45 93.29 90.20 93.96 90.07

Table 10. Recall (%) comparison for cross-domain task C-A with 6000 training samples on CWRU.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

WDCNN 76.67 78.33 82.33 80.00 77.67 81.00 79.67 77.00 76.67 79.33
Siamese CNN 55.00 58.33 61.33 63.00 58.00 64.67 61.00 59.67 62.33 60.33

PSADAN 79.00 77.67 78.33 79.00 80.00 82.00 78.33 77.67 81.33 80.67
FSM3 89.33 87.00 89.00 90.33 90.00 88.00 91.33 89.33 89.33 91.00
DeIN 76.67 80.00 78.33 81.67 79.33 79.33 78.33 80.00 80.33 83.00

HCAE 81.33 77.33 78.67 80.67 78.67 82.67 83.33 85.67 78.33 80.33
SViT (our) 91.00 90.00 89.67 95.33 95.33 92.67 92.67 92.00 93.33 90.67

Table 11. F1 score (%) comparison for cross-domain task C-A with 6000 training samples on CWRU.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

WDCNN 76.67 78.46 80.72 79.73 77.67 80.20 79.80 76.74 78.90 79.73
Siamese CNN 56.60 58.43 60.03 62.48 58.39 64.67 62.03 59.37 61.11 60.43

PSADAN 77.45 80.34 79.26 79.00 79.73 81.73 77.69 78.85 80.00 80.00
FSM3 88.74 89.38 90.66 91.25 88.38 87.71 90.58 88.89 89.63 89.51
DeIN 77.83 80.81 79.26 79.55 80.41 78.55 79.80 80.00 80.07 80.71

HCAE 79.74 79.86 78.93 80.67 80.41 80.52 84.32 84.26 78.20 80.07
SViT (our) 91.15 91.22 91.50 94.23 94.39 92.05 92.98 91.09 93.65 90.37
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To further understand cross-domain generation ability, the encoded feather of source
domain data and target domain data in different cross-domain task are investigated. T-
distributed stochastic neighbor embedding (t-SNE) is used to visualize the output of the
class token of the model training with 6600 training samples in the source domain, as
shown in Figure 12.
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3.4. Case Study 2: Paderborn Dataset
3.4.1. Data Description

As shown in Figure 13, there are five modules the Paderborn dataset test rig [51]:
(1) electric motor, (2) torque-measurement shaft, (3) rolling bearing test module, (4) flywheel
and (5) load motor. Bearings are installed in the test module to collect experimental data.
Fault types of bearings include artificial and real damage.
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Figure 13. Test rig of Paderborn bearing dataset.

There work conditions are selected to obtain different domain datasets. In dataset D,
the test platform runs at n = 1500 rpm with a load torque of M = 0.7 Nm and a radial force
on the bearing of F = 1000 N. In dataset E, load torque changes to M = 0.1. In dataset F,
radial force changes to F = 400 N. The details of three datasets are shown in Table 12.

Table 12. Working conditions of test bearing on Paderborn dataset.

Datasets Rotational
[rpm]

Load Torque
[Nm]

Radial Force
[N] Name of Setting

D 1500 0.7 1000 N15_M07_F10
E 1500 0.1 1000 N15_M01_F10
F 1500 0.7 400 N15_M07 _F04

In the experiment, datasets contain vibration signals obtained from healthy, artificially
damaged bearings and naturally damaged bearings. The datasets filenames selected are
shown in Table 13. The details of the datasets selected are in Table 14.
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Table 13. Data sets used for experiments.

Fault Location None Out Race Inner Race

File NO. K001
K002

Artificial
(KA01)

Artificial
(KI01)

Real damages
(KA04)

Real damages
(KI14)

Table 14. Detail of datasets on Paderborn.

Dates Sets Splitting None
(Class 1)

Inner Race
(Class 2)

Out Race
(Class 3)

D
Training 600 600 600
Testing 40 40 40

E
Training 600 600 600
Testing 40 40 40

F
Training 600 600 600
Testing 40 40 40

3.4.2. Results and Analysis

Performing the same implementation, Figure 14 shows the cross-domain tasks accu-
racy of comparison approaches and our method with the increasing number of training
samples. The results show that our method outperformed the state-of-the-art methods in
all the scenarios.
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Figure 14. The mean accuracy of cross-domain task with the different number of training samples on
the Paderborn dataset. (a) D-E; (b) D-F; (c) E-D; (d) E-F; (e) F-D; (f) F-E.
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Table 15 reports the cross-domain tasks accuracy of different methods with 1800 train-
ing samples. The proposed method outperformed all comparative methods by 1.80–4.29%
on average. Tables 16–18 compare the methods in precision, recall and F1 score in the
cross-domain task E-D with 1800 training samples. The results also show that our method
superior to the alternatives.

Table 15. Mean classification accuracy (%) with 1800 samples on the Paderborn dataset.

Methods D-E D-F E-D E-F F-D F-E Average

WDCNN 90.13 97.5 94.99 93.33 95.83 91.16 93.82
Siamese CNN 88.98 95.83 95.83 92.5 96.13 88.19 92.91

PSADAN 94.26 92.82 97.42 95.33 96.01 90.24 94.35
FSM3 97.57 98.04 99.45 99.14 96.89 94.68 97.62
DeIN 90.53 98.12 91.77 89.82 98.24 94.55 93.84

HCAE 95.67 96.84 99.67 96.26 95.76 93.67 96.31
SViT (our) 98.03 98.06 99.83 99.33 97.06 96.34 98.11

Table 16. Precision (%) comparison for cross-domain task E-D with 1800 training samples per class
on the Paderborn dataset.

Class 1 Class 2 Class 3

WDCNN 78.64 79.73 78.31
Siamese CNN 59.21 61.02 61.03

PSADAN 81.51 76.66 80.10
FSM3 89.68 89.86 88.80
DeIN 80.30 79.03 79.83

HCAE 80.64 81.15 80.39
SViT (our) 92.84 92.36 91.65

Table 17. Recall (%) comparison for cross-domain task E-D with 1800 training samples per class on
the Paderborn dataset.

Class 1 Class 2 Class 3

WDCNN 79.17 78.67 78.83
Siamese CNN 62.17 57.67 61.33

PSADAN 80.83 78.83 78.50
FSM3 89.83 88.67 89.83
DeIN 80.17 79.17 79.83

HCAE 79.83 79.67 82.67
SViT (our) 90.83 92.67 93.33

Table 18. F1 score (%) comparison for cross-domain task E-D with 1800 training samples per class on
the Paderborn dataset.

Class 1 Class 2 Class 3

WDCNN 78.90 79.19 78.57
Siamese CNN 60.65 59.30 61.18

PSADAN 81.17 77.73 79.29
FSM3 89.76 89.26 89.31
DeIN 80.23 79.10 79.83

HCAE 80.23 80.40 81.51
SViT (our) 91.83 92.51 92.49

4. Conclusions

In this work, an intelligent bearing fault diagnosis method, i.e., SViT has been proposed
to face the challenges coming from limited data and domain generation. We have designed a
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Siamese Vision transformer (SViT) to extract features efficiently. In addition, a loss function
called DKLD has been proposed to improve our model’s prediction accuracy and generation
capability. Furthermore, a novel random mask training strategy has been conducted with
the SViT to reduce the overfitting risk and improve the model’s generation ability. We
present the experimental results showing that our method has better generalization ability
in the limited data and cross-domain tasks compared with the state-of-the-art approaches.

However, the proposed method in this paper still has some restrictions. For instance,
this method is limited to cross-domain tasks on the same equipment. In addition, In the
prediction stage of SViT, a little more supporting data in the target domain is still required,
which limits the application scenarios of the proposed method.
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