Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart Capsule
2.2. Minilysis
2.3. Blood Preparation for Laboratory Haemolysis Test
3. Experiments and Results
3.1. Onboard Temperature Test
3.2. Laboratory Haemolysis Test
4. Discussion on Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
RBCs | Red Blood Cells |
WBCs | White Blood Cells |
AI | Artificial Intelligence |
HDPE | High-Density PolyEthylene |
LED | Light-Emitting Diode |
LDH | Lactate DeHydrogenase |
References
- World Health Organization. World Health Organization Model List of Essential Medicines: 21th List 2019; Technical Report; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Barrett, K.E.; Boitano, S.; Barman, S.M.; Brooks, H.L. Ganong’s Review of Medical Physiology Twenty, 23rd ed.; Mc Graw-Hill: London, UK, 2010. [Google Scholar]
- Ackerman, E.; Koziol, M. The blood is here: Zipline’s medical delivery drones are changing the game in Rwanda. IEEE Spectr. 2019, 56, 24–31. [Google Scholar] [CrossRef]
- Roca-Riu, M.; Menendez, M. Logistic deliveries with drones: State of the art of practice and research. In Proceedings of the 19th Swiss Transport Research Conference (STRC 2019), Ascona, Switzerland, 15–17 May 2019. [Google Scholar]
- Yakushiji, F.; Yakushiji, K.; Murata, M.; Hiroi, N.; Takeda, K.; Fujita, H. The quality of blood is not affected by drone transport: An evidential study of the unmanned aerial vehicle conveyance of transfusion material in japan. Drones 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Homier, V.; Brouard, D.; Nolan, M.; Roy, M.A.; Pelletier, P.; McDonald, M.; de Champlain, F.; Khalil, E.; Grou-Boileau, F.; Fleet, R. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J. Trauma Acute Care Surg. 2021, 90, 515. [Google Scholar] [CrossRef]
- Amicone, D.; Cannas, A.; Marci, A.; Tortora, G. A Smart Capsule Equipped with Artificial Intelligence for Autonomous Delivery of Medical Material through Drones. Appl. Sci. 2021, 11, 7976. [Google Scholar] [CrossRef]
- Tortora, G.R.; Cannas, A. Drone Structure for the Transport of Temperature-Controlled Material. U.S. Patent 11,257,385, 22 February 2022. [Google Scholar]
- Li, Q.; Ge, F.; Tang, H.; Yu, S.; Zhou, H.; Li, A.; Yang, M.; Yu, H.; Zhang, M.; Wang, X.; et al. A primary study on construction of urban unmanned aerial vehicle emergency blood distribution system. Chin. J. Emerg. Med. 2021, 30, 1026–1031. [Google Scholar]
- Hancock, V.; Cardigan, R.; Thomas, S. Red cell concentrate storage and transport temperature. Transfus. Med. 2011, 21, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Nalezinková, M. In vitro hemocompatibility testing of medical devices. Thromb. Res. 2020, 195, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Son, J.H.; Lee, S.H.; Hong, S.; Park, S.m.; Lee, J.; Dickey, A.M.; Lee, L.P. Hemolysis-free blood plasma separation. Lab Chip 2014, 14, 2287–2292. [Google Scholar] [CrossRef] [PubMed]
- Kondejewski, L.H.; Farmer, S.W.; Wishart, D.S.; Hancock, R.E.; Hodges, R.S. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int. J. Pept. Protein Res. 1996, 47, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.; Hunt, N. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect. Immun. 1983, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, W. Immune hemolysis: Diagnosis and treatment recommendations. Semin. Hematol. 2015, 52, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E.; Luzzatto, L. Hemolytic anemia. Semin. Hematol. 1999, 36, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Beris, P.; Picard, V. Non-immune hemolysis: Diagnostic considerations. Semin. Hematol. 2015, 52, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaughey, E.J.; Vecellio, E.; Lake, R.; Li, L.; Burnett, L.; Chesher, D.; Braye, S.; Mackay, M.; Gay, S.; Badrick, T.; et al. Key factors influencing the incidence of hemolysis: A critical appraisal of current evidence. Crit. Rev. Clin. Lab. Sci. 2017, 54, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faghih, M.M.; Sharp, M.K. Modeling and prediction of flow-induced hemolysis: A review. Biomech. Model. Mechanobiol. 2019, 18, 845–881. [Google Scholar] [CrossRef]
- Kato, G.J.; Steinberg, M.H.; Gladwin, M.T. Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Investig. 2017, 127, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Whitehead Jr, R.D.; Mei, Z.; Mapango, C.; Jefferds, M.E.D. Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Ann. N. Y. Acad. Sci. 2019, 1450, 147–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, M. Tietz Textbook of Clinical Chemistry; Burtis, C.A., Ashwood, E.R., Eds.; WB Saunders: Philadelphia, PA, USA, 1999; ISBN 0-7216-5610-2. [Google Scholar]
- Can, O.M.; Ülgen, Y. Estimation of free hemoglobin concentrations in blood bags by diffuse reflectance spectroscopy. J. Biomed. Opt. 2018, 23, 127001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prahl, S. Optical Absorption of Hemoglobin. 1999. Available online: http://omlc.ogi.edu/spectra/hemoglobin (accessed on 1 July 2022).
- Fairbanks, V.F.; Ziesmer, S.C.; O’Brien, P.C. Methods for measuring plasma hemoglobin in micromolar concentration compared. Clin. Chem. 1992, 38, 132–140. [Google Scholar] [CrossRef]
- Niglio, F.; Comite, P.; Cannas, A.; Pirri, A.; Tortora, G. Preliminary Clinical Validation of a Drone-Based Delivery System in Urban Scenarios Using a Smart Capsule for Blood. Drones 2022, 6, 195. [Google Scholar] [CrossRef]
- Suzaki, H.; Kobayashi, N.; Nagaoka, T.; Iwasaki, K.; Umezu, M.; Takeda, S.; Togawa, T. Noninvasive measurement of total hemoglobin and hemoglobin derivatives using multiwavelength pulse spectrophotometry-In vitro study with a mock circulatory system. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 799–802. [Google Scholar]
- McMurdy, J.W.; Jay, G.D.; Suner, S.; Crawford, G. Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination. Clin. Chem. 2008, 54, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Meinke, M.; Gersonde, I.; Friebel, M.; Helfmann, J.; Müller, G. Chemometric determination of blood parameters using visible–near-infrared spectra. Appl. Spectrosc. 2005, 59, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Decker, T.; Lohmann-Matthes, M.L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 1988, 115, 61–69. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Pitruzzello, G.; Rosa, M.; Battisti, A.; Cerri, C.; Tortora, G. Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery. Micromachines 2022, 13, 1664. https://doi.org/10.3390/mi13101664
Liu R, Pitruzzello G, Rosa M, Battisti A, Cerri C, Tortora G. Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery. Micromachines. 2022; 13(10):1664. https://doi.org/10.3390/mi13101664
Chicago/Turabian StyleLiu, Rongrong, Giorgio Pitruzzello, Mafalda Rosa, Antonella Battisti, Chiara Cerri, and Giuseppe Tortora. 2022. "Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery" Micromachines 13, no. 10: 1664. https://doi.org/10.3390/mi13101664
APA StyleLiu, R., Pitruzzello, G., Rosa, M., Battisti, A., Cerri, C., & Tortora, G. (2022). Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery. Micromachines, 13(10), 1664. https://doi.org/10.3390/mi13101664