Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Theory for heat transfer:
- (2)
- Theory for the transport of diluted species by Fick’s law approximation:
- (3)
- Theory for structural mechanics:
- (4)
- Theory for thermal expansion:
- (5)
- Theory for hygroscopic swelling:
3. Results
3.1. Hygroscopicity of EMC
3.2. Influences of Hygrothermal Conditions
3.3. Effects of Structure Parameters
4. Conclusions
- The moisture diffusion coefficient and saturation content of the new EMC at 85 °C/85% RH was higher than the values at 60 °C/60% RH;
- For the studied module, both the maximum out-of-plane deformation and maximum stress at 85 °C/85% RH were higher than the values at 60 °C/60% RH;
- When subjected to hygrothermal condition, the stress caused by hygroscopic swelling generally concentrated at the chips and Al leads, but the maximum stress by CTE mismatch was located at the chips;
- Structure parameters can pose significant effect on the distribution of stress and moisture within electronic modules under hygrothermal conditions, which is particularly true when the structure parameters are close to the shortest existing diffusion path.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, X.J.; Lee, S.W.R.; Han, Q. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab. 2009, 49, 861–871. [Google Scholar] [CrossRef]
- Fu, S.-W.; Lee, C.C. A corrosion study of Ag–Al intermetallic compounds in chlorine-containing epoxy molding compounds. J. Mater. Sci. Mater. Electron. 2017, 28, 15739–15747. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, P. The “popcorn effect” of plastic encapsulated microelectronic devices and the typical cases study. In Proceedings of the 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Xi’an, China, 17–19 June 2011; pp. 482–485. [Google Scholar]
- Xin, D. Mechanical properties and the interface failure mechanism of epoxy resin under hygrothermal condition. In School of Civil Engineering and Transportation; South China University of Technology: Guangzhou, China, 2013. [Google Scholar]
- Shi, X.Q.; Zhang, Y.L.; Zhou, W.; Fan, X.J. Effect of Hygrothermal Aging on Interfacial Reliability of Silicon/Underfill/FR-4 Assembly. IEEE Trans. Compon. Packag. Technol. 2008, 31, 94–103. [Google Scholar] [CrossRef]
- Liu, S.; Mei, Y. Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1995, 18, 634–645. [Google Scholar]
- Sheng, C.; Wu, G.; Sun, X.; Liu, S. Molecular Dynamics Investigation of the Thermo-Mechanical Properties of the Moisture Invaded and Cross-Linked Epoxy System. Polymers 2022, 14, 103. [Google Scholar] [CrossRef]
- Xin, D.; Han, Q. Investigation of moisture diffusion in cross-linked epoxy moulding compound by molecular dynamics simulation. Mol. Simul. 2013, 39, 322–329. [Google Scholar] [CrossRef]
- Fan, H.B.; Chan, E.K.L.; Wong, C.K.Y.; Yuen, M.M.F. Moisture diffusion study in electronic packaging using molecular dynamic simulation. In Proceedings of the 56th Electronic Components and Technology Conference 2006, San Diego, CA, USA, 30 May–2 June 2006; pp. 1425–1428. [Google Scholar]
- Sumiya, Y.; Tsuji, Y.; Yoshizawa, K. Peel Adhesion Strength between Epoxy Resin and Hydrated Silica Surfaces: A Density Functional Theory Study. ACS Omega 2022, 7, 17393–17400. [Google Scholar] [CrossRef]
- Tsurumi, N.; Tsuji, Y.; Masago, N.; Yoshizawa, K. Elucidation of Adhesive Interaction between the Epoxy Molding Compound and Cu Lead Frames. ACS Omega 2021, 6, 34173–34184. [Google Scholar] [CrossRef]
- Wang, J.; Liu, R.; Liu, D.; Park, S. Advancement in simulating moisture diffusion in electronic packages under dynamic thermal loading conditions. Microelectron. Reliab. 2017, 73, 42–53. [Google Scholar] [CrossRef]
- Diyaroglu, C.; Madenci, E.; Oterkus, S.; Oterkus, E. A Novel Moisture Diffusion Modeling Approach Using Finite Element Analysis. Electronics 2018, 7, 438. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhou, J.; Chu, H.W.; Zhang, G.; Fan, X. Modeling nonlinear moisture diffusion in inhomogeneous media. Microelectron. Reliab. 2017, 75, 162–170. [Google Scholar] [CrossRef]
- Wong, E.H.; Park, S.B. Moisture diffusion modeling—A critical review. Microelectron. Reliab. 2016, 65, 318–326. [Google Scholar] [CrossRef]
- Yoon, S.; Han, B.; Wang, Z. On Moisture Diffusion Modeling Using Thermal-Moisture Analogy. J. Electron. Packag. 2007, 129, 421–426. [Google Scholar] [CrossRef]
- J-STD-020C; Moisture/Reflow Sensitivity Classification for Nonhermetic Surface-Mount Devices. JEDEC: Arlington, VA, USA, 2014.
- Lau, C.S.; Abdullah, M.Z.; Ani, F.C. Computational fluid dynamic and thermal analysis for BGA assembly during forced convection reflow soldering process. Solder. Surf. Mt. Technol. 2012, 24, 77–91. [Google Scholar] [CrossRef]
- Shinohara, K.; Yu, Q. Fatigue life evaluation accuracy of power devices using finite element method. Int. J. Fatigue 2011, 33, 1221–1234. [Google Scholar] [CrossRef]
- Tee, T.Y.; Kho, C.L.; Yap, D.; Toh, C.; Baraton, X.; Zhong, Z. Reliability assessment and hygroswelling modeling of FCBGA with no-flow underfill. Microelectron. Reliab. 2003, 43, 741–749. [Google Scholar] [CrossRef]
- Nguyen, Q.; Roberts, J.C.; Suhling, J.C.; Jaeger, R.C.; Lall, P. A Study on Die Stresses in Flip Chip Package Subjected to Various Hygrothermal Exposures. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 1339–1350. [Google Scholar]
- COMSOL. Comsol Documentation; COMSOL: Burlington, MA, USA, 2019. [Google Scholar]
- Khalilullah, I.; Reza, T.; Chen, L.; Mazumder, A.M.H.; Fan, J.; Qian, C.; Zhang, G.; Fan, X. In-situ characterization of moisture absorption and hygroscopic swelling of silicone/phosphor composite film and epoxy mold compound in LED packaging. Microelectron. Reliab. 2018, 84, 208–214. [Google Scholar] [CrossRef]
- He, Y.; Kabiri, M. In-situ characterization of moisture absorption and hygroscopic swelling of an epoxy molding compound for electronic packaging. J. Therm. Anal. Calorim. 2021, 147, 5667–5675. [Google Scholar] [CrossRef]
- Barink, M.; Mavinkurve, A.; Janssen, J. Predicting non-Fickian moisture diffusion in EMCs for application in micro-electronic devices. Microelectron. Reliab. 2016, 62, 45–49. [Google Scholar] [CrossRef]
- Wong, K.J.; Low, K.O.; Israr, H.A.; Tamin, M.N. Thickness-dependent non-Fickian moisture absorption in epoxy molding compounds. Microelectron. Reliab. 2016, 65, 160–166. [Google Scholar] [CrossRef]
- Mavinkurve, A.; Martinez, J.L.; van Soestbergen, M.; Zaal, J.J. Moisture absorption by molding compounds under extreme conditions: Impact on accelerated reliability tests. Microelectron. Reliab. 2016, 64, 254–258. [Google Scholar] [CrossRef]
- Jansen, K.M.B.; Zhang, M.F.; Ernst, L.J.; Vu, D.K.; Weiss, L. Effect of temperature and humidity on moisture diffusion in an epoxy moulding compound material. Microelectron. Reliab. 2020, 107, 113596. [Google Scholar] [CrossRef]
- Wong, E.H.; Rajoo, R. Moisture absorption and diffusion characterisation of packaging materials––advanced treatment. Microelectron. Reliab. 2003, 43, 2087–2096. [Google Scholar] [CrossRef]
- Ardebili, H.; Wong, E.H.; Pecht, M. Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging. IEEE Trans. Compon. Packag. Technol. 2003, 26, 206–214. [Google Scholar] [CrossRef]
Parameters | EMC | PCB | Si | Al |
---|---|---|---|---|
Young’s modulus (MPa) | 16,520 [18] | 18,200 [18] | 131,000 [19] | 70,000 [19] |
Poisson’s ratio | 0.25 [18] | 0.25 [18] | 0.28 [19] | 0.3 [19] |
Coefficient of thermal expansion (CTE) (10−6 K−1) | 14.8 [18] | 15 [18] | 2.63 [19] | 21 [19] |
Coefficient of hygroscopic expansion (CHE) (m3/kg) | 4 × 10−4 [20] | 3.5 × 10−4 [21] | 0 | 0 |
Specific heat (J/(kg·K)) | 236 [18] | 920 [18] | 700 [19] | 900 [19] |
Thermal Conductivity (W/(m·K)) | 0.6 [18] | 0.2 [18] | 148.27 [19] | 237 [19] |
Moisture diffusion coefficient (m2/s) | 2.5 × 10−13@85 °C/85% RH 7.2 × 10−14@60 °C/60% RH (From this study) | 1.65 × 10−12@85 °C/85% RH 6.375 × 10−13@60 °C/60% RH * [21] | 0 | 0 |
Saturation concentration (mol/m3) | 220.2@85 °C/85% RH 212.9@60 °C/60% RH (From this work) | 574.4@85 °C/85% RH 368.5@60 °C/60% RH * [21] | 0 | 0 |
EMC Thickness | PCB Thickness | 85 °C/85% RH | 60 °C/60% RH | Thermal Expansion | Hygroscopic Swelling | |
---|---|---|---|---|---|---|
Case 1 | 3.7 mm | 1.7 mm | √ | - | √ | √ |
Case 2 | 3.7 mm | 1.7 mm | - | √ | √ | √ |
Case 3 | 3.7 mm | 1.7 mm | √ | - | √ | - |
Case 4 | 3.7 mm | 1.7 mm | √ | - | - | √ |
Case 5 | 2.7~3.7 mm | 1.7 mm | √ | - | √ | √ |
Case 6 | 3.7 mm | 0.7~1.7 mm | √ | - | √ | √ |
Test Conditions | D (m2/s) | C (mol/m3) |
---|---|---|
85 °C/85% RH | 2.5 × 10−13 | 220.2 |
60 °C/60% RH | 7.2 × 10−14 | 212.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Feng, Z.; Ruan, M.; Xu, G.; Liu, L. Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling. Micromachines 2022, 13, 1704. https://doi.org/10.3390/mi13101704
Chen Z, Feng Z, Ruan M, Xu G, Liu L. Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling. Micromachines. 2022; 13(10):1704. https://doi.org/10.3390/mi13101704
Chicago/Turabian StyleChen, Zhiwen, Zheng Feng, Meng Ruan, Guoliang Xu, and Li Liu. 2022. "Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling" Micromachines 13, no. 10: 1704. https://doi.org/10.3390/mi13101704
APA StyleChen, Z., Feng, Z., Ruan, M., Xu, G., & Liu, L. (2022). Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling. Micromachines, 13(10), 1704. https://doi.org/10.3390/mi13101704