Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, W.J.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S.G. Energy harvesting MEMS device based on thin film piezoectric cantilevers. Electroceramics 2006, 17, 543. [Google Scholar] [CrossRef]
- Tian, X.; Wang, H.-g.; Wang, H.; Wang, Z.; Sun, Y.; Zhu, J.; Zhao, J.; Zhang, S.; Yang, Z. Design and test of a piezoelectric micropump based on hydraulic amplification. AIP Adv. 2021, 11, 065230. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef]
- Shi, M.; Holmes, A.S.; Yeatman, E.M. Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force. Appl. Phys. Lett. 2020, 116, 264101. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, S.; Ma, J.; Zhang, Y.; Li, J.; Wen, J. Piezoelectric inertial rotary actuator operating in two-step motion mode for eliminating backward motion. Appl. Phys. Lett. 2020, 117, 031902. [Google Scholar] [CrossRef]
- Shilpa, G.D.; Sreelakshmi, K.; Ananthaprasad, M.G. PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: A review. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012190. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Guo, L.Q.R.; Li, B.; Chen, D.; Zou, H. Orientation transition, dielectric, and ferroelectric behaviors of sol-gel derived PZT thin films deposited on Ti–Pt alloy layers: A Ti content-dependent study. Ceram 2020, 46, 10256. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Wang, X.; Liu, Y.; Zhou, J. Synthesis, Microstructure and Properties of Magnetron Sputtered Lead Zirconate Titanate (PZT) Thin Film Coatings. Coatings 2021, 11, 944. [Google Scholar] [CrossRef]
- Nguyen, M.D. Ferroelectric and Piezoelectric properties of epitaxial PZT films and devices on silicon. Ph.D. Thesis, University of Twente, Twente, The Netherlands, 2010. [Google Scholar]
- Nguyen, M.D.; Nazeer, H.; Dekkers, M.; Blank, D.H.A.; Rijnders, G. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films. Smart Mater. Struct. 2013, 22, 085013. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; James, A.R.; Prakash, C.; Goel, T.C.; Zimik, K. Electrical properties of PZT thin films grown by sol-gel and PLD using a seed layer. Mater. Sci. Eng. B 2004, 112, 96. [Google Scholar] [CrossRef]
- Araujo, E.B.; Lima, E.C.; Bdikin, I.K.; Kholkin, A.L. Imprint effect in PZT thin films at compositions around the morphotropic phase boundary. Ferroelectrics 2016, 498, 18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choi, C.H.; Park, B.H.; Noh, T.W.; Lee, J.K. Built-in voltages and asymmetric polarization switching in Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 1998, 72, 3380. [Google Scholar] [CrossRef]
- Catalan, G.; Lubk, A.; Vlooswijk, A.H.G.; Snoeck, E.; Magen, C.; Janssens, A.; Rispens, G.; Rijnders, G.; Blank, D.H.A.; Noheda, B. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 2011, 10, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruverman, A.; Rodriguez, B.J.; Kingon, A.I.; Nemanich, R.J.; Tagantsev, A.K.; Cross, J.S.; Tsukada, M. Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Appl. Phys. Lett. 2003, 83, 728. [Google Scholar] [CrossRef] [Green Version]
- Afanasjev, V.P.; Petrov, A.A.; Pronin, I.P.; Tarakanov, E.A.; Kaptelov, E.J.; Graul, J. Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films. J. Phys. Condens. Mat. 2001, 13, 8755. [Google Scholar] [CrossRef]
- Misirlioglu, I.B.; Okatan, M.B.; Alpay, S.P. Asymmetric hysteresis loops and smearing of the dielectric anomaly at the transition temperature due to space charges in ferroelectric thin films. J. Appl. Phys. 2010, 108, 034105. [Google Scholar] [CrossRef] [Green Version]
- Qu, T.L.; Zhao, Y.G.; Xie, D.; Shi, J.P.; Chen, Q.P.; Ren, T.L. Resistance switching and white-light photovoltaic effects in BiFeO3/Nb–SrTiO3 heterojunctions. Appl. Phys. Lett. 2011, 98, 173507. [Google Scholar] [CrossRef]
- Kholkin, A.L.; Brooks, K.G.; Taylor, D.V.; Hiboux, S.; Setter, N. Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 1998, 22, 525. [Google Scholar] [CrossRef]
- Lucke, P.; Bayraktar, M.; Schukkink, N.; Yakshin, A.E.; Rijnders, G.; Bijkerk, F.; Houwman, E.P. Influence of DC Bias on the Hysteresis, Loss, and Nonlinearity of Epitaxial PbZr0.55Ti0.45O3 Films. Adv. Electron. Mater. 2021, 7, 2100115. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Das, J.K.; Dastidar, A. Analysis of MEMS cantilever geometry for designing of an array sensor. Int. Conf. Signal Processing Commun. Power Embed. Syst. (SCOPES) 2016, 1, 625. [Google Scholar]
- Delimova, L.A.; Yuferev, V.S. Transient carrier transport and rearrangement of space charge layers under the bias applied to ferroelectric M/PZT/M structures. J. Phys. Conf. Ser. 2019, 1400, 055003. [Google Scholar] [CrossRef]
- Nie, C.; Chen, X.F.; Feng, N.B.; Wang, G.S.; Dong, X.L.; Gu, Y.; He, H.L.; Liu, Y.S. Effect of external fields on the switching current in PZT ferroelectric ceramics. Solid State Commun. 2010, 150, 101. [Google Scholar] [CrossRef]
- Balke, N.; Granzow, T.; Rödel, J. Degradation of lead-zirconate-titanate ceramics under different dc loads. J. Appl. Phys. 2009, 105, 104105. [Google Scholar] [CrossRef]
- Hu, L.; Dalgleish, S.; Matsushita, M.M.; Yoshikawa, H.; Awaga, K. Storage of an electric field for photocurrent generation in ferroelectric-functionalized organic devices. Nat. Commun. 2014, 5, 3279. [Google Scholar] [CrossRef] [Green Version]
- Hafner, J.; Benaglia, S.; Richheimer, F.; Teuschel, M.; Maier, F.J.; Werner, A.; Wood, S.; Platz, D.; Schneider, M.; Hradil, K.; et al. Multi-scale characterisation of a ferroelectric polymer reveals the emergence of a morphological phase transition driven by temperature. Nat. Commun. 2021, 12, 152. [Google Scholar] [CrossRef]
- Akkopru-Akgun, B.; Zhu, W.; Lanagan, M.T.; Trolier-McKinstry, S. The effect of imprint on remanent piezoelectric properties and ferroelectric aging of PbZr0.52Ti0.48O3 thin films. J. Am. Ceram. Soc. 2019, 102, 5328. [Google Scholar] [CrossRef]
- Morris, D.J.; Youngsman, J.M.; Anderson, M.J.; Bahr, D.F. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism. Smart Mater. Struct. 2008, 17, 065021. [Google Scholar] [CrossRef]
- Uzun, Y.; Kurt, E.; Kurt, H.H. Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum. Sens. Actuator A Phys. 2015, 224, 119. [Google Scholar] [CrossRef]
- Liu, F.; Fina, I.; Bertacco, R.; Fontcuberta, J. Unravelling and controlling hidden imprint fields in ferroelectric capacitors. Sci. Rep. 2016, 6, 25028. [Google Scholar] [CrossRef] [Green Version]
- Pintilie, L.; Vrejoiu, I.; Hesse, D.; LeRhun, G.; Alexe, M. Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr,Ti)O3 films. Phys. Rev. B 2007, 75, 104103. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Zhang, Q.M. Schottky emission at the metal polymer interface and its effecton the polarization switching of ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymer thin films. Appl. Phys. Lett. 2004, 85, 1719. [Google Scholar] [CrossRef]
- Chirila, C.; Boni, A.G.; Pasuk, I.; Negrea, R.; Trupina, L.; Rhun, G.L.; Yin, S.; Vilquin, B.; Pintilie, I.; Pintilie, L. Comparison between the ferroelectric/electric properties of the PbZr0.52Ti0.48O3 films grown on Si (100) and on STO (100) substrates. J. Mater. Sci. 2015, 50, 3883. [Google Scholar] [CrossRef]
- Tsai, F.Y.; Blanton, T.N.; Harding, D.R.; Chen, S.H. Temperature dependence of the properties of vapor-deposited polyimide. J. Appl. Phys. 2003, 93, 3760. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teuschel, M.; Heyes, P.; Horvath, S.; Novotny, C.; Rusconi Clerici, A. Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation. Micromachines 2022, 13, 1705. https://doi.org/10.3390/mi13101705
Teuschel M, Heyes P, Horvath S, Novotny C, Rusconi Clerici A. Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation. Micromachines. 2022; 13(10):1705. https://doi.org/10.3390/mi13101705
Chicago/Turabian StyleTeuschel, Marco, Paul Heyes, Samu Horvath, Christian Novotny, and Andrea Rusconi Clerici. 2022. "Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation" Micromachines 13, no. 10: 1705. https://doi.org/10.3390/mi13101705
APA StyleTeuschel, M., Heyes, P., Horvath, S., Novotny, C., & Rusconi Clerici, A. (2022). Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation. Micromachines, 13(10), 1705. https://doi.org/10.3390/mi13101705