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Abstract: In this paper, a 4H-SiC trench gate MOSFET, featuring a super junction layer located on the
drain-region side, is presented to enhance the breakdown voltage and the figures of merit (FOM).
The proposed structure is investigated and compared with the conventional structure with a 2D
numerical simulator—ATLAS. The investigation results have demonstrated that the breakdown
voltage in the proposed structure is enhanced by 21.2%, and the FOM is improved by 39.6%. In
addition, the proposed structure has an increased short-circuit capability.
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1. Introduction

Since the silicon carbide trench-gate metal oxide semiconductor field effect transistor
(UMOSFET) was first reported in 1994 [1], researchers have paid significant attention to it
due to the excellent material properties of SiC, including a higher critical electric field, a
wider band gap and a higher electron saturation drift velocity, compared to silicon [2,3].
However, this reported structure has a serious problem because it cannot reflect the ad-
vantage of the silicon carbide material in the withstand voltage, owing to a high electric
field existing in the corner of the trench gate oxide [4,5]. In order to overcome this problem,
B. J. Baliga proposed a novel UMOSFET incorporated with a P+ shielding region at the
bottom of the trench gate [6], which is used to protect the gate oxide from a high electric
field. However, at the same time, this also increases the specific on-resistance and power
loss of the device by introducing a parasitic JFET region, composed of the p-body, n-drift
and P+ shielding region.

Since then, more research has been done on how to reduce the specific on-resistance
and increase the breakdown voltage of the UMOSFET devices. The research findings
show that there exists a tradeoff between the specific on-resistance and breakdown voltage.
Particularly, the figures of merit (FOM) is utilized to indicate the compromise between the
two performances, which is defined as FOM = BV2/Ron,sp. Moreover, based on the existing
literature, there are two domination ways used to improve the device’s performances. One
is to adopt a new structure [7–18], with a mechanism that reduces the JFET resistance. The
other is adopting a new fabrication process for the gate oxide [19–25], which increases the
channel’s electron mobility to achieve a reduction in the resistance. In this paper, a new
trench gate MOSFET is investigated to improve the electrical characteristics of the device.

A 4H-SiC trench gate MOSFET with a back-side super junction layer (called as BSJ-
UMOS) is investigated. Compared with a conventional trench gate, MOSFET (C-UMOS), the
BSJ-UMOS has a p-type region on the drain-region side, forming a floating super junction,
which modulates the electric field in the N-drift region and introduces an exact peak electric
field at the p-pillar/n+ substrate region junction. A comparative study between BSJ-UMOS
and C-UMOS is conducted in this paper based on a 2D numerical simulator—ATLAS [26]. This
paper is organized as follows. The parameters related to the device structure and simulation
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condition are presented in Section 2. Section 3 presents an analysis and discussion on the
simulation results. Finally, we draw a conclusion in Section 4.

Note that due to the limitation of our present experimental conditions, we are unable
to provide experimental results, and the simulation tools are generally used for the opti-
mization and development of various semiconductor device structures, in order to reduce
the cost of the device manufacturability and development period and, hence, lower the risk
of technology transfer in an industrial environment. Moreover, simulation tools are very
useful to explore the novel device architectural concept for systems with different materi-
als. So, the aim of the simulation work is to compare the electrical characteristics of two
different structures on the same terms, while not revealing the physical devices’ features.

2. Device Structure and Simulation Setup

The 4H-SiC UMOS with a back-side super junction layer (BSJ-UMOS) is as shown in
Figure 1b. The drift region of BSJ-UMOS consists of two parts, which are an N-drift region
and a super junction layer, composed of the p-pillar and n-pillar. The super junction layer
forms extra PN junctions on the drain-region side. As a result, a new electric field peak
comes into being, which can modulate the original electric field distribution and improve
the breakdown voltage.
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Figure 1. Cross-sectional schematic of a half-cell in (a) C-UMOS and (b) BSJ-UMOS.

Figure 1a shows a cross-sectional schematic of the conventional UMOS (C-UMOS).
Note that all the simulation parameters of the two structures are identical, except that there
is an extra PN junction at the back side of the proposed structure. The gate oxide thickness
is 50 nm. The other simulation parameters are presented in Table 1.

A possible fabrication process for BSJ-UMOS is shown in Figure 2. The key fabrication
steps are as follows: (a) forming the n-pillar layer on the n+ wafer by epitaxial growth
technology; (b) forming the p-pillar layer by ion implantation; (c) growing the n-drift
layer by epitaxial growth technology; (d) forming the p-body layer by epitaxial growth
technology and growing the P+ contact region and n+ source region by ion implantation;
(e) forming the trench gate structure with the mature silicon carbide fabrication process;
(f) metalizing all contacts and forming the gate, source, and drain electrodes. Compared
with C-UMOS, such fabrication of BSJ-UMOS would be more complex, as it requires two
extra process steps—growing the epitaxial n-pillar layer on the n+ substrate and forming
the p-pillar layer via ion implantation.
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Table 1. Structural parameters of the simulated devices.

Parameters C-UMOS BSJ-UMOS

Concentration of n+/p+ region (cm−3) 1.0 × 10 19 1.0 × 10 19

Concentration of p-body region (cm−3) 1.0 × 10 17 1.0 × 10 17

Thickness of p-body region (µm) 0.6 0.6
Width of trench gate (µm) 1.0 1.0
Depth of trench gate (µm) 2.5 2.5

Concentration of P+ shielding region (cm−3) 1.0 × 10 18 1.0 × 10 18

Concentration of N-drift region (cm−3) 4.0 × 10 15 4.0 × 10 15

Thickness of N-drift region (µm) 11.2 8.2
Concentration of p-pillar (cm−3) - 5 × 10 16

Thickness of p-pillar region (µm) - 3
Width of p-pillar region (µm) - 1

Concentration of n-pillar region (cm−3) - 1 × 10 16

Thickness of n-pillar region (µm) - 3
Width of n-pillar region (µm) - 2

Concentration of n+ substrate region (cm−3) 1 × 10 19 1 × 10 19

Width of a half cell (µm) 3 3
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Figure 2. A possible fabrication process for BSJ-UMOS (a) growth of the n-pillar layer on n+ substrate
(b) growth of the p-pillar layer by ion implantation (c) growth of the n-drift layer (d) growth of the
p-body, n+ source and p+ contact regions (e) forming the trench gate structure (f). metalizing all contacts.

In this paper, the electrical characteristics of the proposed device are investigated in
detail, with a 2D numerical simulator—ATLAS. Since the simulated n-channel IGBT is
calibrated with an experimental IGBT [26] device in [27], and these physical models have
earlier been applied for 4H-SiC devices [28,29], the simulation is conducted with the same
physical models and parameters as [27]. During the simulation, the following models are
considered: a bandgap narrowing model (BGN), AUGER and Shockley-Read-Hall (SRH)
for recombination and carrier lifetime models and doping- and temperature-dependent
field mobility models (ANALYTIC) [30]. Moreover, all simulations are carried out using
Fermi Dirac statistics, and Selberherr’s impact ionization model is also utilized [30]. During
the simulation, the carrier lifetime in the drift region is set to 1µs, and the channel inversion
mobility is 30 cm2/V·s.

3. Analysis and Discussion of Simulation Results

In this section, a comparative investigation between BSJ-UMOS and C-UMOS is carried
out for the on-state, off-state and short-circuit performances. The effect of the p-pillar’s
parameters on the electrical characteristics is presented in depth.
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3.1. On and Off Characteristics

The comparison of the I-V characteristic between BSJ-UMOS and C-UMOS is shown
in Figure 3. The I-V curves at Vgs = 8 V at the low drain voltage are also given in the inset
of Figure 3. From this graph, it can be seen that the forward conduction performance of
BSJ-UMOS is slightly degraded. At Jds = 100 A/cm2 and Vgs = 8 V, the specific on-resistance
Ron,sp is 3.57 mΩ·cm2 for BSJ-UMOS and increases about 4.08% compared with that for
C-UMOS (3.43 mΩ·cm2). The main factor responsible for this is that the existence of the
p-pillar region forms a depletion layer in the n-pillar region and narrows down the current
flow path. The distribution of the current flowlines in the two structures is shown in
Figure 4. The bold red lines represent the depletion layer border, indicating that the current
flow path close to the drain region is reduced in BSJ-UMOS.
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Figure 4. Distributions of current flowlines at Jds = 100 A/cm2 in (a) C-UMOS and (b) BSJ-UMOS.

The transfer characteristic at Vds = 1.0 V for BSJ-UMOS and C-UMOS is presented in
the inset of Figure 5. Obviously, the two structures have the same threshold voltage, about
5.0 V. Moreover, it can be seen that BSJ-UMOS has a weak current drive capability because
of the introduction of the p-pillar region, which narrows down the current flow path.
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Figure 5. Comparisons of transfer and breakdown characteristics.

The breakdown characteristic is shown in Figure 5. The breakdown voltage is
1515 and 1250 V for BSJ-UMOS and C-UMOS, respectively. The breakdown voltage of
BSJ-UMOS is enhanced by 21.2%. This is due to the introduction of the p-pillar/n-pillar
junction, which modulates the electric field in the drift region. Figure 6 describes the electric
field distribution in BSJ-UMOS and C-UMOS at Vgs = 0 V and Vds = BV. The back-side
super junction, composed of the p-pillar and n-pillar region, has two effects on the electric
field. One is that the electric field in the drift region of BSJ-UMOS is more well-distributed
than in C-UMOS. The other is that there is an additional peak electric field at the p-pillar/n+
substrate junction. These two factors result in the enhancement of the breakdown voltage.
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Figure 7 shows a comparison of the electric field distribution of BSJ-UMOS and
C-UMOS in the vertical cross-section. From this graph, it can be seen that C-UMOS has
only a peak electric field at the P+ shielding/N-drift region junction, and the electric field
reduces from the source to the drain side. By contrast, BSJ-UMOS has a two peak electric
field. One is almost the same as that of C-UMOS, and the other is at the p-pillar/n+
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substrate junction. Moreover, due to the introduction of the p-pillar/n-pillar junction, the
electric field intensity from the P+ shielding to the n+ substrate region is well-distributed
in BSJ-UMOS. In addition, these lead to an improved breakdown characteristic.
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Figure 7. Electric field distributions of the BSJ-UMOS and C-UMOS along the AA’ (x = 0.5 µm) and
BB’ (x = 2.0 µm) lines, as shown in Figure 5a.

The electric field distribution of BSJ-UMOS and C-UMOS in the lateral cross-section is
shown in Figure 8. Due to the existence of the back-side super junction layer, the electric
field in the lateral cross-section is significantly strengthened, especially in the p-pillar and
n-pillar region, in which the electric field intensity is about double, effectively improving
the breakdown voltage of the device.
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Next, the performance of BSJ-UMOS and C-UMOS in terms of the FOM values is compared,
which indicates the tradeoff between the off-state characteristic (BV) and on-state characteristic
(Ron,sp). The FOM values are 652.24 and 467.12 MW/cm2 for BSJ-UMOS and C-UMOS, respec-
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tively. In addition, the FOM of BSJ-UMOS is improved by 39.6%, which indicates the significant
influence of the back-side super junction layer on the devices’ performances.

3.2. Other Performances

In this section, the other performances, gate charge and capacitance, are investigated.
Figure 9 plots the parasitic capacitance performance (input capacitance Cies and miller

capacitance Cres), indicating that the two structures have almost identical parasitic capac-
itance when the drain voltage is lower than 60 V. However, when the drain voltage is
larger, the BSJ-UMOS has lower miller capacitance, mainly due to the p-pillar making the
depletion wider in the n-drift region, as shown in Figure 10. In addition, this is due to the
p-pillar being accelerated the depletion of the n-drift region.
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The gate charge characteristics and its test circuit are shown in Figure 11. From this, it
can be seen that the two structures have an identical gate charge, because the gate charge
is mainly dependent on the front structure, and the two structures have the same front
structure and parameters.
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3.3. Parameter Influence

In this section, we investigate the effect of the concentration of the p-pillar and n-pillar
on the electrical characteristics, mainly including the breakdown voltage, specific on-
resistance and FOM.

Figure 12 shows the effect of the concentration of the p-pillar and n-pillar on the BV
and Ron,sp. As we can see from this, with the increasing of the n-pillar’s concentration, the
specific on-resistance Ron,sp decreases, and the breakdown voltage is almost unchanged
when the p-pillar’s concentration is lower 6 × 1016 cm−3 and then increases. The increasing
of the n-pillar’s concentration makes the depletion layer narrower and the current flow path
wider, leading to a reduction in Ron,sp. With the increasing of the p-pillar’s concentration,
the BV first increases to the maximum value and then decreases, while the Ron,sp is almost
unchanged. This is due to the charge in the back-side super junction layer being gradually
balanced and then imbalanced, with the increasing of the p-pillar’s concentration. As we
can see from Figure 13, the FOM has the same changing trend as the BV, and the changing
reason is also the same.
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3.4. Charge Imbalance and Design Windows

For a super junction structure, the charge imbalance is unavoidable and is a serious
problem that has to be mentioned, especially for silicon carbide device processing technol-
ogy. Figure 14 shows the relationship curve of the BV, Ron,sp and FOM versus the charge
imbalance in BSJ-UMOS. Ideally, the highest BV can be obtained when the charge is balanced.
However, when the charge balance is broken, the breakdown voltage begins to decline from
the highest value. A charge imbalance, changing from negative to positive, means that the
p-pillar’s concentration increases, the depletion layer narrows down and, thus, the Ron,sp
increases, as Figure 14 shows. From Figure 13, we can see that the highest BV and FOM
are achieved when the concentrations of the p-pillar and n-pillar are 6 × 1016 cm−3 and
1 × 1016 cm−3, respectively. However, from Figure 14, it can be seen that the design window
is wider when the concentration of the p-pillar is 5 × 1016 cm−3. In this design window,
when the charge imbalance changes from –20% to 20%, the breakdown voltage is about
1500 V, and the FOM ranges from 642.12 to 663.52 MW/cm2, which is easy for the control of
the process technology.
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3.5. Short-Circuit Capability

The short-circuit case is defined as follows: when the 4H-SiC MOSFET operates in the
conduction mode, the high-voltage source is directly biased at the drain electrode, due to
the shorting of the load [31,32]. At the same time, a high drain current flows through the
device with a high drain voltage, which generates a high power loss and makes the device’s
temperature increase. From the I-V performance (shown in Figure 3), the BSJ-UMOS has a
lower saturation current due to the introduction of the p-pillar, meaning an increased short-
circuit capability. The test circuit of the short-circuit characteristic is shown in Figure 15,
and the simulation results are presented in Figure 16, in which the drain current pulse is
caused by the inductance load. As expected, compared with C-UMOS, BSJ-UMOS has a
lower drain current and minimum lattice temperature during the short-circuit case, since
the existence of the p-pillar shrinks the current flow path. Owing to the lower lattice
temperature, BSJ-UMOS has an improved short-circuit capability.
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4. Conclusions

A 4H-SiC trench gate MOSFET structure with a super junction layer (composed of
the p-pillar and n-pillar) on the drain-region side is investigated in detail and compared
with a conventional trench gate, MOSFET. The investigation results demonstrate that the
proposed structure can significantly enhance the breakdown voltage, with a slight degrada-
tion of the specific on-resistance. The introduction of a back-side super junction layer can
modulate the electric field in the drift region and introduce an exact peak electric field at the
p-pillar/n+ substrate junction, resulting in a significant improvement in the FOM. More-
over, BSJ-UMOS has an increased short-circuit capability due to a lower saturation current.
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