Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LeCun, Y. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Kwon, H.; Kang, S.; Park, W.; Park, J.; Lee, Y. Deep learning based pre-screening method for depression with imagery frontal eeg channels. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 16–18 October 2019. [Google Scholar]
- Joo, M.; Park, A.; Kim, K.; Son, W.-J.; Lee, H.S.; Lim, G.; Lee, J.; Lee, D.H.; An, J.; Kim, J.H.; et al. A deep learning model for cell growth inhibition IC50 prediction and its application for gastric cancer patients. Int. J. Mol. Sci. 2019, 20, 6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.W.; Lim, S.H.; Jeong, J.G.; Kim, Y.J.; Kim, K.G.; Jeon, J.Y. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci. Rep. 2021, 11, 13732. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livne, M.; Rieger, J.; Aydin, O.U.; Taha, A.A.; Akay, E.M.; Kossen, T.; Sobesky, J.; Kelleher, J.D.; Hildebrand, K.; Frey, D.; et al. A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients with Cerebrovascular Disease. Front. Neurosci. 2019, 13, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komar, M.; Yakobchuk, P.; Golovko, V.; Dorosh, V.; Sachenko, A. Deep neural network for image recognition based on the Caffe framework. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 102–106. [Google Scholar]
- Li, K. Recurrent neural network language model adaptation for conversational speech recognition. Interspeech 2018, 2018, 3373–3377. [Google Scholar]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Lee, S.-T.; Kim, H.; Bae, J.-H.; Yoo, H.; Choi, N.Y.; Kwon, D.; Lim, S.; Park, B.-G.; Lee, J.-H. High-Density and Highly-Reliable Binary Neural Networks Using NAND Flash Memory Cells as Synaptic Devices. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Seongjae, C. Volatile and Nonvolatile Memory Devices for Neuromorphic and Processing-in-memory Applications. J. Semicond. Technol. Sci. 2022, 22, 30–46. [Google Scholar]
- Lee, S.-T.; Lee, J.-H. Neuromorphic Computing Using NAND Flash Memory Architecture With Pulse Width Modulation Scheme. Front. Neurosci. 2020, 14, 571292. [Google Scholar] [CrossRef]
- Rosselló, J.L.; Canals, V.; Morro, A.; Oliver, A. Hardware Implementation of Stochastic Spiking Neural Networks. Int. J. Neural Syst. 2012, 22, 1250014. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-T.; Lim, S.; Choi, N.Y.; Bae, J.-H.; Kwon, D.; Park, B.-G.; Lee, J.-H. Operation Scheme of Multi-Layer Neural Networks Using NAND Flash Memory as High-Density Synaptic Devices. IEEE J. Electron Devices Soc. 2019, 7, 1085–1093. [Google Scholar] [CrossRef]
- Sagar, S.; Mohanan, K.U.; Cho, S.; Majewski, L.A.; Das, B.C. Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Sci. Rep. 2022, 12, 3808. [Google Scholar] [CrossRef]
- Mohanan, K.U.; Cho, S.; Park, B.-G. Medium-Temperature-Oxidized GeOx Resistive-Switching Random-Access Memory and Its Applicability in Processing-in-Memory Computing. Nanoscale Res. Lett. 2022, 17, 63. [Google Scholar] [CrossRef]
- Lee, S.T.; Lim, S.; Choi, N.; Bae, J.H.; Kim, C.H.; Lee, S.; Lee, D.H.; Lee, T.; Chung, S.; Lee, J.H.; et al. Neuromorphic technology based on charge storage memory devices. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Shim, W.; Seo, J.-S.; Yu, S. Two-step write–verify scheme and impact of the read noise in multilevel RRAM-based inference engine. Semicond. Sci. Technol. 2020, 35, 115026. [Google Scholar] [CrossRef]
- Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training Deep Spiking Neural Networks Using Backpropagation. Front. Neurosci. 2016, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar]
- Diehl, P.U.; Zarrella, G.; Cassidy, A.; Pedroni, B.U.; Neftci, E. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 863. [Google Scholar] [CrossRef]
- Wu, J.; Chua, Y.; Zhang, M.; Yang, Q.; Li, G.; Li, H. Deep Spiking Neural Network with Spike Count based Learning Rule. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yılmaz, E.; Zhang, M.; Li, H.; Tan, K.C. Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition. Front. Neurosci. 2020, 14, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.-H.; Lim, S.; Park, B.-G.; Lee, J.-H. High-Density and Near-Linear Synaptic Device Based on a Reconfigurable Gated Schottky Diode. IEEE Electron Device Lett. 2017, 38, 1153–1156. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lim, S.; Bae, J.-H.; Kwon, D.; Kim, H.-S.; Park, B.-G.; Lee, J.-H. Pruning for Hardware-Based Deep Spiking Neural Networks Using Gated Schottky Diode as Synaptic Devices. J. Nanosci. Nanotechnol. 2020, 20, 6603–6608. [Google Scholar] [CrossRef]
- Xia, Z.; Kim, D.S.; Jeong, N.; Kim, Y.-G.; Kim, J.-H.; Lee, K.-H.; Park, Y.-K.; Chung, C.; Lee, H.; Han, J. Comprehensive modeling of NAND flash memory reliability: Endurance and data retention. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 5.1–5.4. [Google Scholar] [CrossRef]
- Wann, H.; Hu, C. High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application. IEEE Electron Device Lett. 1995, 16, 491–493. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, H.; Park, J.; Kwon, M.-W.; Baek, M.-H.; Lee, J.-J.; Park, B.-G. System-Level Simulation of Hardware Spiking Neural Network Based on Synaptic Transistors and I&F Neuron Circuits. IEEE Electron Device Lett. 2018, 39, 1441–1444. [Google Scholar] [CrossRef]
- Lee, S.-T.; Woo, S.Y.; Lee, J.-H. Low-Power Binary Neuron Circuit with Adjustable Threshold for Binary Neural Networks Using NAND Flash Memory. IEEE Access 2020, 8, 153334–153340. [Google Scholar] [CrossRef]
- Kiselev, M. Rate coding vs. temporal coding-is optimum between? In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1355–1359. [Google Scholar]
- Han, B.; Roy, K. Deep Spiking Neural Network: Energy Efficiency Through Time Based Coding. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 388–404. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Na, B.; Yoon, S. T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Göltz, J.; Baumbach, A.; Billaudelle, S.; Kungl, A.F.; Breitwieser, O.; Meier, K.; Schemmel, J.; Kriener, L.; Petrovici, M.A. Fast and deep neuromorphic learning with first-spike coding. In Proceedings of the Neuro-Inspired Computational Elements Workshop, Heidelberg, Germany, 17–20 March 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-T.; Bae, J.-H. Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines 2022, 13, 1800. https://doi.org/10.3390/mi13111800
Lee S-T, Bae J-H. Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines. 2022; 13(11):1800. https://doi.org/10.3390/mi13111800
Chicago/Turabian StyleLee, Sung-Tae, and Jong-Ho Bae. 2022. "Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices" Micromachines 13, no. 11: 1800. https://doi.org/10.3390/mi13111800
APA StyleLee, S. -T., & Bae, J. -H. (2022). Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines, 13(11), 1800. https://doi.org/10.3390/mi13111800