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Abstract

:

To address the issue of frequency nonlinearity modeling of RF PAs, which is rarely seen in the literature, a BPNN is applied to model the frequency nonlinearity of RF PAs in this paper. The BPNN is used to model the frequency nonlinearity of the RF PA, based on the actual measured S-parameter data at different ambient temperatures. The modeling results show that BPNN shows the advantage of a high accuracy in modeling the frequency nonlinearity of RF PAs. It is expected that a BPNN will also show the advantages of a high accuracy in the modeling process of other RF devices or circuits.
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1. Introduction


A radio-frequency (RF) power amplifier (PA) is a key component of the wireless system, and its specification directly affects the system’s performance [1,2,3]. Of all of these key specifications, linearity and efficiency are the two most important, from a system application perspective [4]. However, due to the inherent nonlinear behavior of PAs, it is difficult to achieve both a high linearity and a high efficiency [5]. Therefore, the power amplifier must be linearized to maintain a good linearity while improving efficiency [6]. The linearization of PAs is to model the behavior of PAs and then compensate for the nonlinear characteristics of the PAs [6].



The current PA behavioral modeling focuses on modeling the PA’s amplitude nonlinearity (the relationship between input and output power), i.e., describing the specific nonlinear characteristics of its amplitude for specific measured input and output data. However, as the communication rate demand increases, the operating bandwidth under the linear operation becomes wider [7,8,9], resulting in an increasing frequency nonlinear effect. Therefore, in addition to the traditional amplitude nonlinearity, the frequency nonlinear effect affecting the linear operating condition of the wireless communication systems must become an urgent factor to be considered. Furthermore, the characteristics of the triode itself are also a nonlinear function of frequency, making the S-parameters of the PA in the linear operating condition strongly correlated with frequency. Therefore, to know the relationship between the nonlinear characteristics and frequency over the entire bandwidth, it is necessary to model the S-parameters of the PA with frequency in the same way as the amplitude nonlinearity is modeled for the PA, to provide a basis for compensation of the nonlinear characteristics with frequency.



Modeling the amplitude nonlinearity of a power amplifier means choosing some suitable function or way to describe the relationship between the input and output power of a RF power amplifier [10]. Therefore, for the frequency domain modeling of the S-parameters, it is likewise a matter of choosing some appropriate function or way to describe the relationship between the S-parameters and the frequency of the RF power amplifier.



A number of methods for describing the PA behavior have been reported in the literature. For example, in 2005, D. Ronnow et al. of the University of Gävle, used the radial basis function neural networks (RBFNNs) for modeling the PA’s nonlinear behavior [11]. In 2006, Thomas J. Brazil et al. of University College Dublin, Ireland, applied a simplified Volterra model to model the PA’s behavior [12]. In 2009, Slim Boumaiza et al. applied a novel Hammerstein model to model the PA’s behavior [13]. In 2011, Farouk Mkadem et al. proposed a novel two-hidden-layer artificial neural network (2HLANN) model and used it for modeling the PA’s behavior [14]. A modified canonical piecewise-linear (CPWL) function was proposed by Anding Zhu et al., in 2015, and used it to model the behavior of PAs [15]. In 2016, Slim Boumaiza et al. from the University of Waterloo, modeled the behavior of PAs using a generalized memory polynomial (GMP) model [16]. In 2019, Jialin Cai et al. modeled the behavior of PAs using a time-delayed support vector regression (SVR) method [17]. In 2020, Fadhel M. Ghannouchi et al. from the University of Calgary, used deep neural networks (DNNs) to model PAs’ behavior [18]. In 2020, Gaoming Xu et al. from Ningbo University, China, proposed a behavioral model consisting of Chebyshev polynomials (CP) and a long short-term memory (LSTM) network, i.e., CP-LSTM, for the PA’s behavioral modeling [19]. In 2022, we modeled the behavior of the PA’s temperature characteristics, using a support vector machine (SVM) and extreme learning machine (ELM) [20,21], respectively.



All of these studies above model the amplitude nonlinearity of a PA at room temperature and lack the description of the nonlinear characteristics of the PA as a function of frequency. By analyzing the above literature, various functions or ways are quickly used to describe the amplitude nonlinearity of a PA, which indicates that no function or method can perfectly describe the nonlinear characteristics of a PA. Therefore, whenever new functions or ways appear, they are quickly used to describe the PA nonlinear properties. The same applies to describing PAs’ nonlinear characteristics as a frequency function.



A back propagation neural network (BPNN), one of the most widely known neural networks with a high learning accuracy [22], has been commonly used in fields, such as microwave device modeling and antenna design [23,24], and is expected to show its superiority in behavioral modeling describing the S-parameters of PAs at room temperature, as a function of frequency.



When the ambient temperature changes, the S-parameters and the relationship between the S-parameters and frequency also change (degradation of the S-parameters concerning the typical S-parameters with frequency, at room temperature). Therefore, it is necessary to model not only the S-parameters of the PA, at room temperature in the frequency domain, but also the measured data of the S-parameters of the PA at different temperatures, concerning frequency, to provide a basis for the compensation of the S-parameter variation characteristics, at different temperatures relating to frequency. This ensures that the PA can always maintain consistent (or acceptable) characteristics over the entire bandwidth at different temperatures. Unfortunately, modeling the S-parameter versus frequency at room or non-room temperature, is rarely seen in the current literature.



This paper uses a BPNN to model the behavior of a 0.3–1.1 GHz CMOS wideband PA, in the frequency domain, with measured S-parameters at different temperatures. This PA was implemented using a 0.18μm CMOS process. The modeling results are compared with a SVM. The experimental results show that the BPNN can effectively characterize the S-parameter variation of the PA with frequency at different temperatures with a high accuracy.




2. Modeling Process Based on a BPNN


2.1. The Theory of a BPNN


BP (back propagation) neural network, a concept proposed by scientists led by Rumelhart and McClelland in 1986, is a multilayer feedforward neural network trained, according to the error back propagation algorithm and is one of the most widely used neural network models [25]. BP neural networks generally contain an input layer, an output layer, and an implicit layer, where the input layer uses known data, and the output layer is used to output the model predictions [25,26]. The implicit layer can contain a single layer or multiple layers, and the most basic BPNN generally has only one hidden layer [26]. In this paper, for example, a two-layer hidden layer BPNN structure is used, which is schematically as shown in Figure 1.



From this, the learning process of the BPNN can be divided into two parts: the forward transmission of information and the backward propagation of errors [25]. The forward transmission of information is to pass the information from the input layer to the output layer through the processing of the hidden layer. If the output does not reach the predetermined target, the change in the error of the output layer is requested and then back propagated by the network structure, to reverse the error [25,26]. The error signal is propagated backward through the network structure, according to the original connection path, and the weights and thresholds of the neurons in each layer are changed to make them meet the predefined conditions [25,26]. The network structure then propagates the error signal backward according to the initial connection path and then changes the weights and thresholds of the neurons in each layer to make them satisfy the pre-condition [25].



The model used in this paper is a two-layer BPNN model, which has input nodes Pj (j = 1, 2, …r), and the hidden layer nodes are a1i (i = 1, 2, …s1), the activation function is F1, the output node is a2k (k = 1, 2, …s2), the activation function is F2, the weights between the input and the hidden layers are w1ij, the weights between the hidden and output layers are w2ki, the output is A, and the target vector of the BPNN model is T [25]. Based on the above discussion, the specific calculation procedure of the BPNN model coefficients is as follows.



The output of the ith node of the hidden layer is [25]


   a  1 i   =  f 1  (   ∑  j = 1  r    w  1 i j    P j    +  b  1 i   )  



(1)







The output of the kth node of the output layer is [25]


   a  2 k   =  f 2  (   ∑  i = 1    s 1      w  2 k i    a  1 i     +  b  2 i   )  



(2)







The error can be expressed as follows [25].


  E =  1 2    (   ∑  k = 1    s 2      t k    −  a  2 k   )  2   



(3)







The back-propagation of the error can then be derived by the gradient descent method, where the change in the output layer weights and the change in the output layer threshold are [25]


    Δ  w  2 k i   = − η   ∂ E   ∂  w  2 k i     = η ×  δ  k i   ×  a  1 i        δ  k i   =  e k  ×  f 2 ′       e k  =  t k  −  a  2 k      



(4)






  Δ  b  2 k i   = − η   ∂ E   ∂  b  2 k i     = η ×  δ  k i    



(5)







Similarly, it can be deduced that the change in the hidden layer weight and the change in the hidden layer threshold, are as follows [25].


    Δ  w  1 i j   = − η   ∂ E   ∂  w  1 i j     = η ×  δ  i j   ×  P j       δ  i j   =  e i  ×  f 1 ′       e i  =   ∑  k = 1    s 2      δ  k i    w  2 k i        



(6)






  Δ  b  1 i   = η ×  δ  i j    



(7)







According to the above formula, since the hidden function layer has no target vector, the product of the error of the output layer and the derivative of the activation function of the output layer can be taken as the target vector of the hidden function layer [25,26]. Then the change of the weights of the implicit function layer is derived by the backward transfer of the error, and finally, the change of the weights of the previous layer is derived, according to the error of the implicit function, until the end of the derivation to the first layer [25,26].




2.2. Training Process of the BPNN Model


Figure 2 shows the modeling flow of the relationship between the S-parameters of 0.3–1.1 GHz CMOS PA and the frequency at different temperatures.



This paper uses the neural network toolbox in MATLAB to implement the model’s training and validation. First, it obtains the S-parameter data required for modeling, based on the S-parameter file (with the .s2p extension) obtained from the vector network analyzer measurements, and then imports it into the advanced design system (ADS). The training process, based on the BPNN model, consists of the following steps.



Step 1: Establishing a BPNN model with a two-layer hidden layer, according to Figure 1.



Step 2: Determine the input and output variables of the model, the input variables, which are frequency and temperature, and the output variables of the model are the S-parameters.



Step 3: Determine the training and validation data of the model, where 50% of the measured data of the 0.3–1.1 GHz CMOS PA is the training data, and the other 50% of the measured data is the validation data of the model.



Step 4: Forward transmission, calculating the excitation values of the neurons in [27].



Step 5: Reverse error transmission, modifying the weights of the transmission paths in [27].



Step 6: Compare the model’s error with the threshold value. If the error is less than the threshold value, then the model training is completed. However, if the error is greater than the threshold, the model training needs to be repeated. The training process can be carried out by adjusting the model parameters, such as the number of hidden layers, the number of hidden layer neurons, and the learning rate, until the model error is less than the threshold [26,28].



Once the model is trained, it needs to be validated. Then, the trained model is used to predict the values of the S-parameters of the untrained points. The predicted results are then compared with the validation data.



	(1)

	
If the validation result is greater than the threshold, the model is over-learning and needs to be retrained.




	(2)

	
If the validation result is less than the threshold, the model is in a good learning state and can be used.









3. Modeling Results


3.1. The Result of S11


The modeling result of S11 for 0.3–1.1 GHz CMOS PA, is given in Figure 3.



The “Meas.” in Figure 3, Figure 4, Figure 5 and Figure 6 represent the results of the experimental measurements. The instruments and equipment, such as a vector network analyzer, an environmental test chamber (SC3 1000 MHG), and a DC power supply were used in the measurement process.



For the modeling results of S11, the training time required for the BPNN model is 4.143 × 103 ms, 4.247 × 103 ms, and 4.357 × 103 ms for the three temperatures of −40 °C, 25 °C, and 125 °C, respectively. The test errors of the models were 1.7765 × 10−2, 3.2386 × 10−2, and 9.3347 × 10−3, respectively. The S11 has the smallest test error at 125 °C and the largest at a temperature of 25 °C. One possible reason for this phenomenon is the magnitude of the magnitude difference of S11 over the entire frequency range. The larger the magnitude of S11, the larger the measurement error of the model.




3.2. The Result of S12


The modeling result of S12 is shown in Figure 4. The training time required for the BPNN-based model is about 400 ms at the three temperatures of −40 °C, 25 °C, and 125 °C. The test errors of S12 at the three temperatures were 4.2475 × 10−3, 3.3293 × 10−3, and 7.3449 × 10−3, respectively. The test error is the largest at 125 °C and the smallest at 25 °C. A possible reason for this phenomenon is also related to the amplitude difference of S12 over the whole frequency range. The reason why the accuracy of the modeling results of S12 at 125 °C is lower than the accuracy of the model at 25 °C, is the same as that of S11. As can be seen from the figure, the amplitude difference of S12 is the largest at 125 °C, and therefore its model has the largest test error.




3.3. The Result of S21


The modeling result of the BPNN of S21 is given in Figure 5. From the time perspective, the training time required for the model is 0.555 × 103 ms, 0.547 × 103 ms, and 0.541 × 103 ms, at the three temperatures of −40 °C, 25 °C, and 125 °C, respectively. It means that the required training time of the model is around 500 ms at these three temperatures. The required training times for S11 and S12 are around 4000 ms and 400 ms, respectively. This is mainly due to the difference in the number of hidden layer neurons used in each specification during training.



From the perspective of model test errors, the model test errors at the three temperatures were 9.7461 × 10−4, 8.711 × 10−4, and 8.2218 × 10−4, respectively. It indicates that the test error accuracy of the S21 model can reach the order of 10−4 at the three temperatures of −40 °C, 25 °C, and 125 °C. S11 and S12 can reach 10−2 and 10−3 orders of magnitude, respectively. However, it should be noted that by increasing the number of hidden layers of the BPNN model, the model accuracy of S11, S12, and S21 can be further improved, which of course, causes a further increase in the time required for the model training. Therefore, the two elements of time and accuracy need to be considered together in the modeling process.




3.4. The Result of S22


The modeling results of S22 at three temperatures, −40 °C, 25 °C, and 125 °C, are shown in Figure 6. The training times required for the model at these three temperatures are 1.479 × 103 ms, 1.442 × 103 ms, and 1.427 × 103 ms, respectively. The test errors of the models were all in the order of 10−3, specifically 3.5154 × 10−3, 4.7687 × 10−3, and 3.7158 × 10−3. As with the model accuracy of S11, S12, and S21, the model accuracy of S22 can also be further improved by increasing the number of hidden layers. However, only the corresponding model training time will be increased. It also shows that the BPNN model is effective for the prediction of the temperature characteristics of S22.





4. Discussion


The modeling results of S11, S12, S21, and S22 show that the BPNN model can be effectively used to describe the relationship between the S-parameter and frequency at different temperatures. If further improvement in the model’s accuracy is needed, it can be achieved by increasing the number of hidden layers of the model, although this causes an increase in the training time required for the model.



The literature [20] used the SVM to model the S-parameters of a 2.5–5.2 GHz CMOS PA, and the results show that the SVM can be used to model the S-parameters. Therefore, this paper has modeled the S-parameters of a 0.3–1.1 GHz CMOS PA, using a BPNN and SVM, respectively, and tried to compare these two models in terms of modeling speed and accuracy, and the results are shown in Table 1.



From a time perspective, the training time required for the BPNN model far exceeds the training time required for the SVM model. From the perspective of model accuracy, the model accuracy of the BPNN is much higher than the accuracy of the SVM model. That is, the prediction error of the BPNN model is much lower than that of the SVM model. This shows that the BPNN model is very effective in modeling the behavior of the frequency-dependent S-parameters of 0.3–1.1 GHz CMOS power amplifiers at different temperatures. It can also be seen that the model training time is shorter for S12 and S21, than for S11 and S22, which is mainly due to the fact that fewer neurons are used in the model training process for S12 and S21, than for S11 and S22. Therefore, if online training is required, the shorter the training time of the model, the less critical the training time of the model is, if it is trained offline.



It should also be noted that this paper adopts a two-layer hidden layer BPNN model structure, so the accuracy of the BPNN model can be further improved by increasing the number of hidden layers and adjusting the number of neurons in each hidden layer, but the corresponding model training time will also increase. Therefore, a compromise between the model accuracy and time is needed when applying the BPNN to model the behavior of the frequency-dependent S-parameters at different temperatures.



To sum up, from the time required for model training and accuracy, the SVM model and the BPNN model have their advantages and disadvantages, which also shows that no function or method can completely describe the nonlinear characteristics of the PA’s S parameter changing with frequency. Moreover, it can be imagined that the various functions or methods used to describe the nonlinear amplitude characteristics of the PA will also be quickly used to describe the nonlinear variation with frequency in the entire bandwidth of the various RF PAs.




5. Conclusions


Based on the analysis of the current state of research on the behavior modeling of RF PAs, little modeling of the frequency nonlinearity of RF PAs has been seen. Based on the measured S-parameter variation with the frequency of RF PAs, the BPNN is applied to model the frequency nonlinearity, and the obtained modeling results are analyzed and validated. The BPNN shows the advantage of a high accuracy in modeling the frequency nonlinearity of RF PAs. Therefore, it can be expected that the BPNN can be used, not only for modeling other RF devices or circuits, but also will show the same advantages of a high accuracy, as the modeling of frequency nonlinearity of RF PAs.







Author Contributions


Conceptualization, S.Z. and Z.H.; methodology, S.Z. and Z.H.; software, S.Z. and Z.H.; validation, S.Z. and Z.H.; formal analysis, S.Z. and Z.H.; investigation, S.Z. and Z.H.; resources, S.Z. and Z.H.; data curation, S.Z. and Z.H.; writing—original draft preparation, S.Z. and Z.H.; writing—review and editing, S.Z. and Z.H.; visualization, S.Z. and Z.H.; supervision, S.Z. and Z.H.; project administration, S.Z. and Z.H.; funding acquisition, S.Z. and Z.H. All authors have read and agreed to the published version of the manuscript.




Funding


This work was supported by the National Key R&D Program of China under grant 2022YFF0604802 and 2016YFA0202200.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Tsao, Y.-F.; Hsu, H.-S.; Würfl, J.; Hsu, H.-T. Dual-Band Power Amplifier Design at 28/38 GHz for 5G New Radio Applications. IEEE Access 2022, 10, 77826–77836. [Google Scholar] [CrossRef]

	



Kilinc, S.; Yarman, B.S.; Ozoguz, S. A GaN Microwave Power Amplifier Design Based on the Source/Load Pull Impedance Modeling via Virtual Gain Optimization. IEEE Access 2022, 10, 50677–50691. [Google Scholar] [CrossRef]

	



Morales-Fernandez, A.; Fernandez-Barciela, M.; Isasi-Vicente, F.; Martin-Rodriguez, F.; Tasker, P.J. Dual-Band Class J Power Amplifier at 2.45 and 5.8 GHz for UAVs Communications. IEEE Access 2022, 10, 48673–48680. [Google Scholar] [CrossRef]

	



Gotthans, T.; Marsalek, R.; Gotthans, J. Temperature Compensation-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers. In Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 10–12 December 2019; pp. 1–4. [Google Scholar] [CrossRef]

	



Duc, H.L.; Feuvrie, B.; Pastore, M.; Wang, Y. An Analysis of Adaptive Digital Predistortion Algorithms in RF Power Amplifier. In Proceedings of the 2018 25th International Conference on Telecommunications (ICT), Saint-Malo, France, 26–28 June 2018; pp. 456–460. [Google Scholar] [CrossRef]

	



Hammi, O.; Ghannouchi, F. Temperature compensated digital predistorter for 3G power amplifiers. In Proceedings of the 2005 12th IEEE International Conference on Electronics, Circuits, and Systems, Gammarth, Tunisia, 11–14 December 2005; pp. 1–4. [Google Scholar] [CrossRef]

	



Abuella, H.; Elamassie, M.; Uysal, M.; Xu, Z.; Serpedin, E.; Qaraqe, K.A.; Ekin, S. Hybrid RF/VLC Systems: A Comprehensive Survey on Network Topologies, Performance Analyses, Applications, and Future Directions. IEEE Access 2021, 9, 160402–160436. [Google Scholar] [CrossRef]

	



Liu, X.; Huang, Y.; Chang, C.-Y.; Chen, H.-H. Generalized Complementary Coded Scrambling Multiple Access for MIMO Communications. IEEE Trans. Veh. Technol. 2021, 70, 13047–13061. [Google Scholar] [CrossRef]

	



Mokhtari, Z.; Dinis, R. Sum-Rate of Cell Free Massive MIMO Systems with Power Amplifier Non-Linearity. IEEE Access 2021, 9, 141927–141937. [Google Scholar] [CrossRef]

	



Ghannouchi, F.M.; Hammi, O. Behavioral modeling and predistortion. IEEE Microw. Mag. 2009, 10, 52–64. [Google Scholar] [CrossRef]

	



Isaksson, M.; Wisell, D.; Ronnow, D. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks. IEEE Trans. Microw. Theory Tech. 2005, 53, 3422–3428. [Google Scholar] [CrossRef]

	



Zhu, A.; Pedro, J.C.; Brazil, T.J. Dynamic Deviation Reduction-Based Volterra Behavioral Modeling of RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2006, 54, 4323–4332. [Google Scholar] [CrossRef]

	



Mkadem, F.; Boumaiza, S. Extended Hammerstein Behavioral Model Using Artificial Neural Networks. IEEE Trans. Microw. Theory Tech. 2009, 57, 745–751. [Google Scholar] [CrossRef]

	



Mkadem, F.; Boumaiza, S. Physically Inspired Neural Network Model for RF Power Amplifier Behavioral Modeling and Digital Predistortion. IEEE Trans. Microw. Theory Tech. 2011, 59, 913–923. [Google Scholar] [CrossRef]

	



Zhu, A. Decomposed Vector Rotation-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2015, 63, 737–744. [Google Scholar] [CrossRef]

	



Mkadem, F.; Islam, A.; Boumaiza, S. Multi-Band Complexity-Reduced Generalized-Memory-Polynomial Power-Amplifier Digital Predistortion. IEEE Trans. Microw. Theory Tech. 2016, 64, 1763–1774. [Google Scholar] [CrossRef]

	



Cai, J.; Yu, C.; Sun, L.; Chen, S.; King, J.B. Dynamic Behavioral Modeling of RF Power Amplifier Based on Time-Delay Support Vector Regression. IEEE Trans. Microw. Theory Tech. 2019, 67, 533–543. [Google Scholar] [CrossRef]

	



Liu, Z.; Hu, X.; Liu, T.; Li, X.; Wang, W.; Ghannouchi, F.M. Attention-Based Deep Neural Network Behavioral Model for Wideband Wireless Power Amplifiers. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 82–85. [Google Scholar] [CrossRef]

	



Xu, G.; Yu, H.; Hua, C.; Liu, T. Chebyshev Polynomial-LSTM Model for 5G Millimeter-Wave Power Amplifier Linearization. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 611–614. [Google Scholar] [CrossRef]

	



Zhou, S.; Yang, C.; Wang, J. Support Vector Machine–Based Model for 2.5–5.2 GHz CMOS Power Amplifier. Micromachines 2022, 13, 1012. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, S.; Yang, C.; Wang, J. Modeling of Key Specifications for RF Amplifiers Using the Extreme Learning Machine. Micromachines 2022, 13, 693. [Google Scholar] [CrossRef] [PubMed]

	



Chen, W.-C.; Fu, G.-L.; Tai, P.-H.; Deng, W.-J. Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Syst. Appl. 2009, 36, 1114–1122. [Google Scholar] [CrossRef]

	



Xue, M.; Sun, L.; Wang, S.; Liang, P.; Chen, X.; Nian, F. Nonlinear Equivalent Circuit Model Base on BPNN for GaN HEMTs. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 12–14 June 2019; pp. 1–3. [Google Scholar] [CrossRef]

	



Qin, W.; Dong, J.; Li, Y.; Wang, M. Fast Multi-Objective Antenna Design Based on BPNN Surrogate Model. In Proceedings of the 2018 International Applied Computational Electromagnetics Society Symposium—China (ACES), Beijing, China, 29 July–1 August 2018; pp. 1–2. [Google Scholar] [CrossRef]

	



Zhang, J.F. Research on ARIMA and BPNN Model in Prediction of Hand-Foot-Mouth Disease Incidence; Southwest University: Chongqing, China, 2021. [Google Scholar] [CrossRef]

	



Ni, P. Research on the Construction of Stock Index Portfolio: Based on Deep Learning; Nanjing University: Nanjing, China, 2021. [Google Scholar] [CrossRef]

	



Dong, B.W. Analysis on the Relationship Between Fiber Characteristics and Tensile Strength of Paper Based on BPNN. Pap. Sci. Technol. 2022, 41, 62–65. [Google Scholar] [CrossRef]

	



Hsieh, L.-F.; Hsieh, S.-C.; Tai, P.-H. Optimize stock price variation prediction via DOE and BPNN. In Proceedings of the 2010 8th International Conference on Supply Chain Management and Information, Hong Kong, China, 6–9 October 2010; pp. 1–7. [Google Scholar]








[image: Micromachines 13 01831 g001 550] 





Figure 1. Schematic diagram of the structure of the BPNN. 
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Figure 2. Modeling process based on the BPNN. 
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Figure 3. Modeling results of S11. 
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Figure 4. Modeling results of S12. 
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Figure 5. Modeling results of S21. 
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Figure 6. Modeling results of S22. 
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Table 1. Comparison of modeling results of the BPNN and SVM.
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Specification

	
Temperature

	
Training Time (ms)

	
Training Error (MSE)

	
Test Error (MSE)




	
BPNN

	
SVM [20]

	
BPNN

	
SVM [20]

	
BPNN

	
SVM [20]






	
S11

	
−40 °C

	
4.143 × 103

	
27.5078

	
1.7912 × 10−2

	
6.5025 × 10−2

	
1.7765 × 10−2

	
6.3965 × 10−2




	
25 °C

	
4.247 × 103

	
27.2977

	
3.2763 × 10−2

	
1.3129 × 10−1

	
3.2386 × 10−2

	
1.3112 × 10−1




	
125 °C

	
4.357 × 103

	
27.0359

	
9.3889 × 10−3

	
2.2186 × 10−2

	
9.3347 × 10−3

	
2.1894 × 10−2




	
S12

	
−40 °C

	
0.412 × 103

	
27.058

	
5.5512 × 10−3

	
4.1416 × 10−1

	
4.2475 × 10−3

	
4.1301 × 10−1




	
25 °C

	
0.467 × 103

	
27.4604

	
4.4496 × 10−3

	
3.3189 × 10−1

	
3.3293 × 10−3

	
3.3065 × 10−1




	
125 °C

	
0.47 × 103

	
27.3995

	
8.8606 × 10−3

	
1.4380

	
7.3449 × 10−3

	
1.4317




	
S21

	
−40 °C

	
0.555 × 103

	
27.2545

	
9.7952 × 10−4

	
1.8441 × 10−1

	
9.7461 × 10−4

	
1.8134 × 10−1




	
25 °C

	
0.547 × 103

	
27.2932

	
9.0344 × 10−4

	
1.8858 × 10−1

	
8.711 × 10−4

	
1.8705 × 10−1




	
125 °C

	
0.541 × 103

	
26.9892

	
8.4794 × 10−4

	
3.3277 × 10−1

	
8.2218 × 10−4

	
3.2986 × 10−1




	
S22

	
−40 °C

	
1.479 × 103

	
27.2581

	
3.9397 × 10−3

	
1.7729 × 10−1

	
3.5154 × 10−3

	
1.6534 × 10−1




	
25 °C

	
1.442 × 103

	
27.191

	
4.8002 × 10−3

	
1.8305 × 10−1

	
4.7687 × 10−3

	
1.5922 × 10−1




	
125 °C

	
1.427 × 103

	
27.3121

	
3.7454 × 10−3

	
1.9121 × 10−1

	
3.7158 × 10−3

	
1.8743 × 10−1
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