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Abstract: Corrosion of steel bars is of great significance for safety and service life of reinforced
concrete structures. This work develops a prediction method for steel corrosion mass loss rate before
the crack of concrete structure based on a spiral distributed fiber optic sensor. Reinforced concrete
sample instrumented with a spiral distributed fiber optic sensor were prepared. The mathematic
relationship between the corrosion mass loss rate of steel bar and the spiral distributed strain is
theoretically derived. Meanwhile, numerical analysis by MATLAB shows that these parameters
such as the protective layer thickness, corrosion mass loss rate, bar diameter, corrosion expansion
coefficient have a remarkable influence on spiral distributed strain. Additionally, electrical accelerated
corrosion experiment was performed on the reinforced concrete specimens. The helix strain along the
distributed sensor was used to evaluate the corrosion mass loss of steel bar. Further, the influencing
factors on the corrosion sensitivity are illustrated here and the corrosion mass loss rate before concrete
crack is also quantified. This research provides insights into the corrosion deteriorate mechanism.

Keywords: steel corrosion; spiral distributed sensor; reinforced concrete

1. Introduction

Many engineering structures are made of reinforced concrete. Steel bars corrosion
has been a main challenge for durability of reinforced concrete structures, which has
attracted a wide attention of scholars both at home and abroad [1–3]. Steel bar corrosion
not only re-duces the load-carrying capacity owing to the reduced cross section of the
bar, but also degrades the concrete-steel interface and consequently causes concrete cracks
which in turn accelerate steel corrosion. It is significant to predict steel bar corrosion of
reinforced concrete to ensure its safety and effective asset management. The researchers
mainly focused on two aspects, i.e., theoretical mechanics analysis and test methods.
Theoretical analysis of corrosion-induced damage of reinforced concrete structure [4–10]
has shown that its degradation process is divided into three stages: corrosion expansion
stage, protective layer cracking stage, crack extension stage. Moreover, the reinforcing bar
corrosion cannot be effectively evaluated [7,9] before the crack propagates to the surface of
the concrete structure. These corrosive cracking models are established through analysis
of elastic mechanics. These literatures show that the concrete crack play a significant role
for a structural degradation. In addition, the efforts to find some practicable methods for
predicting the concrete corrosion have been made [11–14]. In recent years, due to its small
volume, light weight, resistance to electromagnetic interference, stability under chemical
attack and long-term monitoring, fiber optic sensors have a remarkable development. The
comparison with traditional corrosion monitoring methods is shown in the Table 1. Among
them, special FBG sensors [15,16] were used to monitor the corrosion based on the principle
of expansion of steel corrosion. An alternative approach is to electroplate a Fe-C film caused
strain changes in the FBG and LPFG sensor [17–20], and thus corrosion was monitored by
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the central frequency shift of FBG. Another paradigm of FBG corrosion sensor is based on
thermal effect [21]. Due to the water content and bond condition between the sensor and
steel bar, it is difficult to interpret the sensor data in real application. Moreover, residual
strain sensors [11] based on the mechanism of prestress loss were developed to solve the
corrosion problem.

Table 1. Comparison with traditional corrosion monitoring methods.

Optical Fiber
Sensing

Half-Cell
Potential

Electrochemical
Impedance Acoustic Emission Electromagnetic

Sensing

Non-Destructive Testing Y N Y Y Y
Realtime measurement Y N N N Y

Quantitative measurement Y N N N N
anti-interference Y N N N N

Despite of the exciting advancement, the FBG and LPFG sensor only measures mon-
itoring corrosion at a single spot installing a sensor, and the degradation of a corrosion
sensor is quick and irreversible [18–20,22,23]. To monitor the corrosion condition of a
real-scale civil engineering, a large quantity of sensors is necessary to obtain detailed
information of different locations. However, due to the space and time randomness of
corrosion and the concealment of steel bar, the researchers turned to a fully distributed
optical fiber sensor to predict the steel corrosion. fiber optic rings [12,24–26] has been
developed. Nevertheless, the tightly spaced optical fibers cause a corrosion resistance and
degraded bond strength. Additionally, this proposed ring sensor was still a single spot
sensor and further was limited to a meter order instead of pinpointing the corrosion sites.
To develop a real-time, in-situ corrosion monitoring method and monitor the deterioration
process of reinforced concrete, a helix distributed sensor [27–35] has been developed based
on the measurement of expansive stain induced by steel bar corrosion. However, these
authors still employed a ring sensor mathematic model to calculated fiber strain rather
than a helix pattern model, causing a greater error. Simultaneously, these researches still
failed to provide a prediction model for corrosion mass loss.

Thus, this work has two main objectives: (1) deduces a theoretical mathematic model
between the corrosion rate of steel bar and optical fiber strain based on a helix pattern rather
than a ring pattern, and (2) attains a practicable model between steel corrosion mass loss
rate and spiral distributed strain from a helix distributed sensor. The influencing fac-tors on
the corrosion sensitivity are illustrated by numerical analysis with MATLAB. Meanwhile,
the mathematical model between steel corrosion rate and the spiral distributed strain
is experimentally verified and illustrated. This work ultimately provides a quantitative
method of predict the corrosion mass loss rate before the concrete crack occurs.

2. Structure and Principle of the Distributed Sensor
2.1. Strain Sensing Principle of Brillouin Distributed Sensor

BOTDA technology is based on stimulated Brillouin scattering effect. The Brillouin
frequency shift depend on the fiber strain and temperature. When the temperature and
strain change, the Brillouin frequency will shift. Thus the temperature and strain can be
calculated from the Brillouin frequency shift [36]:

vB(ε, T) = vB(0, T0) + Cεε+ CT(T − T0) (1)

where T represents the ambient temperature, vB(ε , T) is the Brillouin frequency shift;
vB(0, T0) is the Brillouin frequency shift at T0 temperature, Cε and CT represent the sensi-
tivity strain and temperature coefficient, respectively. The strain and temperature sensitivity
coefficient were 0.0497 MHZ/µε and 1.17 MHZ/◦C, respectively. Thus, the fiber strain can
be attained:

ε= [vB(ε, T)− vB(0, T0)− CT(T − T0)]/Cε (2)
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2.2. Temperature Compensation Principle of FBG

Due to a temperature change, the wavelength shift of FBG free from stress can be
expressed as:

∆λB

λB
= (αs + ζs)∆T (3)

where αs =
1
Λ

∆Λ
∆T = 1

L
∆L
∆T represents the thermal expansion coefficient of the fiber, which

describes the relationship between the grating period and temperature; ζs = 1
ne f f
· ∆ne f f

∆T
represents the thermal optical coefficient of the fiber, which describes the relationship
between the effective refractive index of the grating and temperature. Therefore, the
temperature change can be obtained from the wavelength shift. The relationship between
bare grating wavelength and temperature can be calculated as:

∆λB = k∆T (4)

where k is 11 pm/◦C. FBG located in the rubber sleeve is free in this experiment due to the
much larger sleeve diameter than the diameter of FBG and is influenced by only temperature.

2.3. Structure Design of Distributed Sensor

A spiral distributed optical fiber sensor was developed here, as shown in Figure 1. The
sensing fiber was wrapped on the steel rebar and the mortar layer with a given winding
helix angle. This winding pattern decreased light loss and consequently, lengthen the
tested fiber sensor. Compared with a ring sensor, the proposed spiral sensor here has two
extinguished characteristics, one is the measurement of corrosion mass loss rate along the
steel bar, another is to lengthen the tested fiber sensor. In order to attain the practicability
of distributed fiber optic corrosion sensors, a given winding helix angle difficult to measure
was transformed into a wrapped interval called a winding pitch. A small interval may
reduce the rebar-concrete bond strength and increase optical light loss, while a coarse
interval may miss corrosion information and lengthen the tested length. Meantime, a
smaller interval will generate noise in the measurement results, and a larger interval will
omit corrosion information, which fails to accurately reflect the corrosion of reinforcement.
An optimal wound angle is indispensable to consider both bond strength and the length
of the distributed corrosion sensor. The corresponding spiral angle is 30◦ and 60◦. Due
to an unmeasurable spiral angle, the winding pitch is adopted as a predominant wound
parameter. Then, the pitch in this study is correspondingly 8.7 cm and 6.5 cm.
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3. Prediction Model of Corrosion Rate
3.1. Quantification of Corrosion Rate Based on Spiral Fiber Strain

Corrosion rate before concrete cracks occur is discussed based on elastic mechanics
theory, while the distributed fiber strain is dependent on the crack width after the concrete
crack. Therefore, we make the following assumptions:

(1) According to elastic mechanics theory, the fiber model can be simplified to a two-
dimensional model, due to the corrosion expansion independent on the steel bar
length, and concrete material is further assumed to be isotropic [9,37].

(2) The actual corrosion duration and corrosion velocity depends on the electrical cur-
rent intensity;

(3) It is assumed that the steel bar corrosion expansion is uniform, then the thick wall
cylinder elastic mechanics model can be used to describe the corrosion process [9,38].

When pristine concrete and steel bar are considered as an integrated object, the corro-
sion process of reinforcement concrete is divided into three stages, as shown in Figure 2.
In the first stage, the corrosion product fills the pore in the contact interface [28,32]; in the
second stage, the accumulated corrosion product generates tensile stress and the concrete
deformation occurs; in the third stage, the through-crack of reinforcement concrete occurs.
Based on literature [7,9,39], the concrete deformation δcon from corrosion product can be
expressed as:

δcon =
q

Ee f
[(1 + µc)

R(R + c)
2Rc + c2

2

+ (1− µc)
R3

2Rc + c2 ] (5)

where q is the tensile stress from the corrosion production, Ee f and µc are modulus of
elasticity (MPa) and Poisson ratio of concrete [40], R is the diameter of steel bar(mm), c is
the thickness of concrete cover(mm), µc is the Poisson ratio of concrete.
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According literature [39], the tensile stress induced by corrosion production before the
crack is given:

q =
[
√
(n− 1)ρ+ 1− 1]R

n(1−µ2
r )
√

(n−1)ρ+1R
Er{[(1+µr)n−2]+2/ρ} +

1
Ee f

[(1 + µc)
R(R+c)
2Rc+c2

2
+ (1− µc)

R3

2Rc+c2 ]
(6)

where Er and µr are the modulus of elasticity (Mpa) and Poisson ratio of the rust, respec-
tively. The value of µr is 0.49. Er is determined as Er= 6000(1− 2µr), n is the volume
expansion coefficient of rust, typically 2–4.
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Plugging Equation (4) into Equation (3), the thickness of the rust δcon can be calculated
as follows:

δcon =
[
√
(n− 1)ρ+ 1− 1]R 1

Ee f
[(1 + µc)

R(R+c)
2Rc+c2

2
+ (1− µc)

R3

2Rc+c2 ]

n(1−µ2
r )
√

(n−1)ρ+1R
Er{[(1+µr)n−2]+2/ρ} +

1
Ee f

[(1 + µc)
R(R+c)
2Rc+c2

2
+ (1− µc)

R3

2Rc+c2 ]
(7)

Then the combined diameter of steel bar and the rust before the concrete begin to crack
is determined:

D = d− 2δ + 2δcon (8)

As shown in Figure 3, the initial circumference of steel bar is C0. When the diameter
of rebar is increased to D arising from steel bar corrosion expansion, the circumference of
steel bar is correspondingly C1. Unwinding optical sensing fiber based on a spiral wound
angle, fiber optic strain can be expressed as follows:

L0 =
√

C2
0 + L2 (9)

L1 =
√

C2
1 + L2 (10)

ε f =

√
π2D2 + L2 −

√
π2d2 + L2

√
π2d2 + L2

(11)

where L is the winding pitch, L0 is the initial length of steel bar, L1 is the ultimate length of
rebar caused by corrosion expansion; ε f is the fiber strain caused by corrosion expansion.
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Plugging Equation (6) into Equation (9)

ε f =

√
π2[d− 2δ + 2δcon]

2 + L2
√

π2d2 + L2
− 1 (12)
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Plugging Equations (5) and (6) into Equation (10), the mathematical relation between
fiber strain and corrosion rate is derived:

ε f =


√

π2
[
d− 2Pvpdp + 2A

]2
+ L2

√
π2d2 + L2

− 1

× 106 (13)

A =
[
√
(n− 1)ρ+ 1− 1]R 1

Ee f
[(1 + µc)

R(R+c)
2Rc+c2

2
+ (1− µc)

R3

2Rc+c2 ]

n(1−µ2
r )
√

(n−1)ρ+1R
Er{[(1+µr)n−2]+2/ρ} +

1
Ee f

[(1 + µc)
R(R+c)
2Rc+c2

2
+ (1− µc)

R3

2Rc+c2 ]
(14)

where the unit of fiber strain is µε.
The magnitude of corrosion expansion ratio [41,42] has been investigated. When

the main corrosion product is Fe2OH, and Fe3O4 Fe2O3, the expansion volume of Fe2O3
is identical with that of Fe3O4. The volume of Fe3O4 and Fe2O3 in corrosion product is
accounted for 85%, n is approximately from 1.79 to 2.56, typically 2. The elastic modulus of
concrete is 35 GPa.

3.2. Calculation and Influencing Factors of Fiber Strain

Figure 4 show that the relationship between the protective layer thickness and the
helical distributed strain. It decreases rapidly with the protective layer thickness to a
steady strain. When the protective layer thickness is greater than 35 mm, the helix strain
is unrelated to the protective layer thickness. In other words, the reinforced concrete
with a thinner protective layer is easily deformed, then generate a greater helix strain.
Additionally, the spiral strain depends on the corrosion mass loss rate and rise to a constant
and ultimately keep steady. Figure 5 shows the relations between the corrosion mass loss
rates with the helix distributed strain. It increases rapidly to 500 µεwith the corrosion mass
loss rate, and subsequently remain stable. When the protective layer thickness is 67 mm
and 142 mm, no significant difference was observed from the distributed strain-mass loss
rate curves. Simultaneously, the spiral distributed strain is proximately proportional to the
corrosion mass loss rate. The regression error is approximately 50 µε, which is acceptable
due to a measured error induced by the BOTDA instrument. The corrosion sensitivity is
92.8 µε/% beyond 0.5% corrosion mass loss rate, shown as in Figure 5.
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Meanwhile, the author analyzed the influence of the steel bar diameter of 5 mm,
10 mm, 16 mm, 20 mm on helix distributed strain (c = 67 mm, n = 2, δ = 0.001 mm), as
shown in Figure 6. The optical fiber strain firstly increases with the diameter of steel bar,
subsequently rise to a peak value and then drop slowly. Therefore, to attain a higher
sensitivity, the steel bar diameter is around 25 mm.
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The influence of corrosion expansion coefficient on the spiral fiber optic strain is shown
in Figure 7. The helical strain is mainly dependent on the corrosion expansion coefficient n.
As shown in Figure 7, fiber distributed strain with corrosion expansion coefficient of n = 4
increases more sharply than that with the corrosion expansion coefficient of n = 2 at initial
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corrosion duration. Finally, the helix fiber strain remains basically unchanged. The reason
for the above phenomena is that a greater corrosion expansion coefficient accelerates the
filling process of corrosion products and leads to a higher compress of concrete. Thus, the
corrosion rate threshold (generating an actual deformation of concrete around the bar) is
less than that the specimen with a smaller corrosion expansion coefficient. However, the
corrosion expansion coefficient n is difficult to be precisely measured, and the helix fiber
strain is consequently unable to be calculated by Equation (11).
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To sum up, these parameters such as the protective layer thickness, corrosion mass
loss rate, bar diameter, corrosion expansion coefficient has a remarkable influence on the
spiral distributed strain.

4. Experiment and Test

The optical fiber used in the experiment is a tight-jacketed optical cable in 0.9 mm
diameter with a high stain transmission efficiency. The mortar cover is produced with
ordinary Portland cement, water, fine aggregate and water reducing agent (Shanshufeng
Technology, Hubei, China) in a weight proportion of 1.0: 0.45: 0.1: 0.03. The cement used
is P.O 42.5. There is a 200 mm-long straight round carbon steel bar in 16 mm diameter
used. To induce a uniform surface property, the bar surfaces were sandblasted to remove
the mill scale in order. Subsequently, a spiral distributed sensing fiber with a 30◦ helix
angle was wound with an 8.7 cm interval around the steel bar. Meanwhile, Mortar is cast
to a cylindrical mould and a 10 mm-thickness mortar layer is covered on the steel bar.
Eventually, a spiral distributed sensing fiber with a 60◦ helical angle was wound with
a 6.5 cm pitch and embedded into concrete with a 67 mm and 142 mm concrete cover,
demolded after 24 h, and cured for 28 days. The specimens are named as 2-150# and 2-300#,
respectively. To the end, the concrete end surfaces were sealed using silica gel to prevent
from the outflow of corrosion products.

After 28-days of concrete curing, the concrete specimens were subjected to electro-
chemically accelerated corrosion to obtain a continual corrosion loss. Before corrosion test,
the fabricated concrete samples were immersed in 5% sodium chloride solution for 48 h.
The content of admixed chloride in this study far exceeded the critical chloride threshold.
Hence depassivation was warranted for the adopted polished surface condition. A copper
wire was subsequently soldered at each end of steel bar. Meanwhile, the steel bar and a cop-
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per beam were, respectively, connected to the positive and negative electrodes of the power
supply. The initial designed corrosion current is 0.1 A constant current. The calculation of
steel corrosion rate follows Faraday’s law. Both ends of the fiber jumper are connected to
the Pump and Probe end of BOTDA. The FBG temperature sensor is connected to SM130
Demodulation System and placed in the U-shaped slot in a free state. The experimental
setup is detailed in Figure 8. The specimens were tested at room temperature and measured
the strain distributions along the sensing fiber every 10 min. The moment when the fiber
strain holds constant is defined as completion of the electrochemical test.
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5. Testing Results and Discussion
5.1. Temperature Effect in Electric Accelerated Corrosion Test

For the specimen with a 67 mm protective layer (mortar layer), the electrical current
generated more heat in the corrosion process. FBG sensor (Tongwei Technology, Beijing,
China) was used to measure the temperature around the steel bar. It is observed from
Figure 9 that the internal temperature magnitude of reinforced concrete specimen generated
by an applied electrical current varied from 0 ◦C to 4 ◦C in the process of electric corrosion.
The bottom and top horizontal axis represents the accumulated corrosion time and steel
bar corrosion loss rate. The vertical axis represents the magnitude of internal temperature
variation calculated by the wavelength shift of FBG sensor. The inner temperature rises
sharply shortly after accelerated corrosion starts. Subsequently, when through-thickness
cracks occurred, there is a fast temperature drop. The phenomena are attributed to ingress
of sodium chloride solution through the cracks. Ultimately, the steel bar temperature is
identical with the corrosion solution temperature after cracking. For the specimen with
a 142 mm cover layer, as shown in Figure 10, the internal temperature magnitude of the
reinforcement concrete varies between −4 ◦C and 16 ◦C, and the temperature variation
is similar with the concrete specimen with a 67 mm protective layer. In addition, the
temperature fluctuations are in a good agreement with the applied corrosion current in
the corrosion process and ambient temperature after a through crack was generated. After
concrete cracks, the temperature fluctuations depend on the ambient room temperature.
Then it indicates that the temperature has a remarkable influence on the Brillouin frequency
shift, further causing a measured error of helix distributed strain. In a word, temperature
should be measured in the duration of electrical corrosion, otherwise the greater test error
is generated.
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5.2. Variation Law of Actual Optical Fiber Strain with Corrosion Time

The strain-time curves before and after temperature compensation for specimens
2-150# and 2-300# are shown as Figures 11–13, and the test parameters for significance
of fitting curve is list in Tables 2–7. The vertical axis represents the raw strain measured
from the spiral distributed fiber sensor and actual strain subtracted the induced-strain by
the temperature fluctuation. The top and below horizonal axes represent the mass loss
rate and accumulated corrosion duration. The actual distributed strain of sensing fiber
represents the corrosion-induced strain, whereas raw strain comprises that induced not
only by corrosion expansion but also a varied temperature due to a corrosion current.
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Figure 11. Fiber strain—time curve in mortar layer of 2-150# specimen. (a) raw data from reinforced
layer distributed sensor; (b) fitting curve after temperature compensation.
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Figure 12. Fiber strain—time curve of reinforced layer of 2-300# specimen. (a) raw data from
re-inforced layer distributed sensor; (b) fitting curve after temperature compensation.
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Figure 13. Fiber strain—time curve of mortar layer of 2-300# specimen. (a) raw data from reinforced
layer distributed sensor; (b) fitting curve after temperature compensation.
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Table 2. Test parameters for significance of fitting curve (red curve) of Figure 11b.

Value t-Value Prob > |t|

Strain A_1 98.30747 3.95197 8.23733 × 10−5

Strain B_1 125.1493 4.22839 2.54594 × 10−5

Strain B_2 2021.94744 140.84509 0
Strain B_3 295.13916 24.4112 7.69873 × 10−106

Strain A_2 −2671.61663
Strain A_3 3965.07549

Table 3. Test parameters for significance of fitting curve (blue curve) of Figure 11b.

Value t-Value Prob > |t|

Strain A_1 24.56684 0.97998 0.32731
Strain B_1 3.37462 3.32703 9.06876 × 10−4

Strain B_2 68.32792 138.76564 0
Strain B_3 11.24715 25.91615 6.50915 × 10−166

Strain A_2 −2769.68178
Strain A_3 3706.5015

Table 4. Test parameters for significance of fitting curve (blue curve) of Figure 12b.

Value t-Value Prob > |t|

A_1 −64.07285 −8.21951 3.55932 × 10−16

Slope1 121.01677 38.41754 2.76929 × 10−244

Slope2 760.23007 105.48555 0
Slope3 312.77225 84.81807 0

A_2 −2365.37966
A_3 151.20291

Table 5. Test parameters for significance of fitting curve (red curve) of Figure 12b.

Value t-Value Prob > |t|

A_1 −21.01267 −2.3259 0.02012
Slope1 2.9852 31.15847 3.91241 × 10−175

Slope2 14.59532 200.9341 0
Slope3 11.57084 – –

A_2 −1888.62174
A_3 −674.59671

Table 6. Test parameters for significance of fitting curve (blue curve) of Figure 13b.

Value t-Value Prob > |t|

A_1 −251.04553 −30.10543 9.8069 × 10−166

B_1 156.46386 60.62707 0
B_2 1635.02955 286.98289 0
B_3 210.0488 4.14511 3.53191 × 10−5

A_2 −8098.57618
A_3 4095.15913
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Table 7. Test parameters for significance of fitting curve (red curve) of Figure 13b.

Value t-Value Prob > |t|

A_1 −188.89164 −33.08537 1.96872 × 10−193

B_1 3.41087 80.75018 0
B_2 55.05059 343.94794 0
B_3 7.1853 5.06991 4.33013 × 10−7

A_2 −12,274.16787
A_3 3518.39254

(1) Reinforced concrete specimen with a 67 mm concrete cover

The strain-time curves are shown in Figure 11 before and after temperature com-
pensation of 2-150# specimen. Since the distributed sensor located in steel bar layer is
broken during the mold removal process, only the distributed sensor wrapped on the
mortar layer is available. It is observed from the figures that the strain measured from the
distributed sensor gradually grow, subsequently increases rapidly after 50 h. To the end,
the strain increases to a maximum value and remain constant. Additionally, the concrete
specimen cracks at 50 h, close to the observed crack time (55 h), the difference between the
predicted cracking corrosion rate and the actual corrosion rate, observed crack time of 55
h, is approximately 0.17%. Enlarging the curve before specimen cracking, the raw strain
along the distributed sensor increases to 150 µε sharply before 2 h in the inner illustration.
Subsequently, the fiber strain increases linearly. Meanwhile, a rapid strain growth in first
2 h induced by the current is consistent with the temperature variation (Figure 9). Thus,
it is essential to use a temperature sensor for decreasing a tested strain error. In addition,
the actual optical fiber strain (0~11 h) remains constant, which is defined as the corrosion
rate threshold (0.36%), being consistent with the existed literature [28,32]. The thickness
of porous zone δ is approximately 0–20 um [23], which contributes to the corrosion rate
threshold. This reason is that the corrosion product used to fill porous area offsets the corro-
sive force, simultaneously alleviates the strain from a distributed sensor. Likewise, as more
rusts are produced and accumulated at the concrete-steel interface, the expansive strain
begins to increase until the corrosion products generate a compress on the surrounding
concrete. Consequently, more corrosion products generate an expansive strain causing a
distributed fiber deformation. Then the corrosion rate threshold is in turn increased.

Meanwhile, the raw and actual strains in the distributed sensor monotonically increase
over time and corrosion mass loss rate. Each curve shows four stages, which the I, II, III
stages are consistent with the degradation of reinforcement concrete in Figure 2. Regression
analysis is performed to determine the equation of stages 2, 3 and 4. Before reinforcement
concrete cracks, the slope of the fitting equation between the distributed strain and corrosion
mass loss rate is 125 µε/% as shown in Table 2, while the slope of the fitting curve between
the distributed strain and corrosive time is 3.37 µε/h as shown in Table 3, less than
16.8 µε/h in this literature[28,32]. Possibly, their difference is attributed to their distinct
thickness of concrete cover. This 3.1 section shows that the helix strain is dependent on the
protective layer thickness greater than 35 mm. Simultaneously, the P value of regression
equation less than 0.05 illustrates that the linear arrogation equation developed in this work
is credible.

(2) Reinforced concrete specimen with a 142 mm concrete cover

Figures 12a and 13a indicates the relationship between corrosion time and the dis-
tributed strains from the distributed sensor located in steel bar layer and mortar layer of
specimen 2-300#. At first 2 h, the raw strain wrapped on the steel bar layer and the mortar
layer increases rapidly to 200 µε and 250 µε up to 40 h. Subsequently, the optical fiber strain
rises linearly. At the time t = 78 h, the raw strain of optical fiber in the reinforcement layer
increases to 1000 µε and that in the mortar layer increases to 750 µε. At 80 h, the raw strain
in the reinforcement layer and mortar layer decreases sharply (the reinforcement layer
decreases to 500 µε and the mortar layer to 300 µε), subsequently, continue to decrease
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rapidly to 300 µε and 150 µε at 120 h. The above-mentioned phenomena are consistent
with the current fluctuations adjusted from 0.1 A to 0.05 A and 0.03 A. At the time of 225 h,
the epoxy resin layer is peeled off. The corrosion experiment is forced to stop, resulting in a
strain decrease and then increase (at the marking position in Figure 12a) after continuing to
carry on the corrosion experiment. It is also found that the influence of the factors such as
current adjustment and sealant leakage on the fiber strain before the crack of concrete are
eliminated after temperature compensation(Figures 12b and 13b). Moreover, the raw and
actual fiber strain fluctuations after concrete cracks depend on the ambient temperature.

Meanwhile, the distributed expansive strain at the initial stage of specimen corrosion
(about 0~40 h) after temperature compensation fail to be generated. The called corrosion
rate threshold is about 1.34%, and cracking occurs at 160 h close to the observed cracking
time of 155 h. The error is approximately 0.14%. Additionally, the distributed strain
depends on a rising ambient temperature induced by the electro-accelerated corrosion.

To the end, the raw and actual strains from the distributed sensor monotonically
increase over time and corrosion mass loss rate. Each curve shows three stages, being
consistent with the degradation of reinforcement concrete. Regression analysis is performed
to determine the equation of stages 2, 3 and 4. Before reinforcement concrete cracks, the
slope of the fitting equation between the distributed strain and corrosion mass loss rate
from the distributed sensor on the steel bar and mortar layer is 121 µε/% and 156 µε/%,
as shown in Tables 4 and 6, respectively. While their slopes of the fitting equation are
2.98 µε/h and 3.41 µε/h shown in Tables 5 and 7, basically being consistent with 2-150#
specimen. Simultaneously, the P values of regression equation are less than 0.05, thus the
linear equation is credible.

To sum up, each curve can be divided into four stages (I, II, III, IV), which mirrors
applied electrical current fluctuations and the degradation of concrete structure. A compar-
ative analysis of specimens with protective layer thicknesses of 67 mm and 142 mm and
an effective length of 200 mm shows that the corrosion rate thresholds in the first stages
are related to the protective layer thickness of concrete structures. Furthermore, the crack
corrosion rates observed the crack from the distributed strain are basically consistent with
the actual corrosion rate optically observing crack.

Moreover, the corrosion sensitivity (stage II) before cracking of 2-150# and 2-300#
concrete specimens is shown in Figures 11b, 12b and 13b, Tables 2 and 6. The corrosion
sensitivity of the distributed sensor located in steel bar is 125µε/%. In the contrast, the
corrosion sensitivity located in mortar layer is 156 µε/%. These experimental sensitivities
are in good agreement with the theoretical sensitivity of 92.8 µε/%. The difference between
the theoretical and measured data is attributed to these parameters such as corrosion expan-
sion coefficient. Based on aforementioned corrosion sensitivity of 125, 156, 92.8 µε/%, the
tested error of a helix distributed sensor is lowered or enhance its the corrosion sensitivity
further to attain a higher precision of measured corrosion mass loss.

6. Conclusions

To predict the corrosion rate of steel bar before the concrete crack, the authors put
forward a prediction method using a spiral distributed optical fiber sensor. The main
conclusions are as follows:(1) The mathematical model between steel corrosion rate and
optical fiber is illustrated and the influencing factors of fiber strain are discussed here.
The numerical analysis shows that the helical strain increases with the decrease of the
thickness of concrete cover, declines with the increasing thickness of the porous zone,
and grows with the corrosion expansion ratio.(2) In the process that reinforced concrete is
corroded and broken, the strain measured from the spiral distributed optical fiber sensor
is divided into four stages: (i) no strain stage; (ii) slow growth stage, (iii) abrupt change
stage; and (iv) stabilized stage. These four stages are consistent with the concrete structure
degradation: the corrosion products filling the porous region, the corrosion products
accumulating until cracks generate, cracks propagating, and the equilibrium between
corrosion products generation and outflow from cracks. (3) In the electro-accelerated



Micromachines 2022, 13, 1868 15 of 16

corrosion test, a temperature fluctuation should be measured to eliminate the temperature
error. The corrosion rate thresholds in the first stages depends on the protective layer
thickness. In addition, the corrosive sensitivity of the proposed distributed sensor here is
basically in a good agreement with a 92.8 µε/% theoretical value. This work provides a
feasible monitoring method and a practical prediction model for the corrosion loss rate.
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